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An understanding of the regularities in the side chain conformations of proteins and how
these are related to local backbone structures is important for protein modeling and design.
Previous work using regular secondary structures and regular divisions of the backbone
dihedral angle data has shown that these rotamers are sensitive to the protein’s local
backbone conformation.  In this preliminary study, we demonstrate a method for combining a
more general backbone structure model with an objective clustering algorithm to investigate
the effects of backbone structures on side chain rotamer classes and distributions. For the
local structure classification, we use the Structural Building Blocks (SBB) categories, which
represent all types of secondary structure, including regular structures, capping structures,
and loops. For classification of side chain data, we use Minimum Message Length (MML)
clustering from information theory.  We show an example of how MML clustering on data
classified by backbone SBBs can reveal different distributions of rotamer classes among the
SBBs.  Using these preliminary results, some of the characteristics of a rotamer library
created using MML clustering on SBB  dependent rotamer data are demonstrated.

1.  Introduction

The regularities in the residue side chain conformations in proteins are known as
rotamers1.  Typically, though not always, the side chain rotamers for each amino
acid are those conformations that are most energetically favorable2. Rotamers
simplify the task of modeling, predicting and analyzing protein side chains by
reducing the complexity of searching and representing the otherwise continuous
conformational space of each side chain1,3-5.

Because the amino acid side chain interacts with the protein backbone, the
distribution of the rotamers for an amino acid will depend not only on the identity of
the amino acid, but also on its backbone conformation.  Incorporating regular
secondary structure and related backbone information into a rotamer library improves
the usefulness of rotamers in modeling and design projects6-8.

In this paper, we introduce techniques to evaluate the effects of general protein
backbone structure on rotamer distributions.  To effectively describe the backbone
conformations of both regular and non-regular secondary structures, we utilize the
Structural Building Block (SBB) model of local structure9,10.  SBB classes,
described in more detail below, are a general representation of local structures.  The
advantages of using the SBB model to develop a backbone-dependent rotamer library
include: 1) coverage of all backbone conformations including capping structures,
loops, and turns; 2) a manageable number (six) of SBB categories; and 3) no
arbitrary cutoffs in conformational space.  Since the SBB classes represent all

Pacific Symposium on Biocomputing 4:278-289 (1999) 



backbone conformations, using them to build a backbone-dependent rotamer library
has the potential to reveal interesting and useful information about the general effect
of different backbone structure  on the regularities of side chain conformations.  

For the rotamer classes, we have used Minimum Message Length (MML)11,12

from information theory13 to discover the conformation clusters. MML provides an
objective method of finding rotamer categories based on the clustering of the side
chain conformation data.  

In this preliminary study, we briefly describe MML clustering and SBB
structural categories.  We then describe the application of MML to developing a
backbone-dependent rotamer library based on the SBBs. This preliminary study
allows us to explore the application of MML theory to describe side chain groups
classified by SBB structural classes.  In the results, the analysis of one residue,
isoleucine, is described in detail.  By finding additional rotamer categories and
distributions that are dependent on the backbone environment, the rotamer model is
made more specific. The preliminary data are encouraging and we can now
investigate our rotamer library’s value in the prediction of side chain conformations
in protein modeling, and as a tool in protein structure and function analysis.  

2.  Background and previous work

2.1  Rotamer libraries

Ponder and Richards1 used rotamers to represent and predict side chain positions in
protein cores. They created a rotamer library where the entry for each amino acid
contains the side chain conformational information for that amino acid.  Rotamer
conformations are given as representative side chain dihedral angles, χ i. For each
rotamer, the probability that the amino acid side chain will be found in that
conformation is given. In the prediction task, side chains are modeled on backbone
protein models using the rotamer library and an algorithm to enforce overall quality
criteria for the resulting model.  Many different algorithms have been used to
incorporate rotamer libraries into protein modeling tools (summarized by
Vasquez14).  

Many rotamer modeling algorithms use a single table entry of rotamer
categories and distributions for each amino acid.  However, Janin et al.2 observed
that the rotamer distribution changes with the backbone conformation of the residue.
Elaborating on this observation, several researchers have created rotamer libraries and
rotamer modeling algorithms that are backbone-dependent6-8.  In these approaches,
there is a separate rotamer library entry for each different backbone conformation.  
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The question then becomes how to adequately describe a protein’s backbone
conformation. One early approach6 examined only α helices and β strands, as
defined by the DSSP program15.  Another group used generalized regions of regular
secondary structure from a backbone φ  and ψ dihedral angle (Ramachandran) map8.
A third method divided the Ramachandran map into 20° by 20° sections7.  These
approaches either ignore non-regular backbone structure regions, or represent them
in a discontinuous fashion.  Thus, none of these descriptions is fully adequate for
describing the continuous range of non-regular secondary structures in proteins9.  

There is an additional difficulty in constructing rotamer libraries.  While the
fundamental definition of a rotamer is an energetically favorable side chain
conformation2, in practice some amino acids have significant clusters of side chain
conformations that are not energetically favorable3,8.  If a rotamer library were
restricted to energetically favorable rotamer classes, the energy minima would
provide a principled definition for the set of classes.  However, when defining
rotamers based on actual conformational data, there is no such clear-cut criterion,
which has led to great variation in the definition of categories in various rotamer
libraries3,8.  

2.2  The SBB classification of backbone structures

In contrast to previous work, the backbone environment used in this study is the
SBB classification of local protein structure9.  The SBB classes are based on the
regularity of Cα atom distances and angles in a seven-residue segment of protein.
The classes themselves are discovered automatically.  The distance and angle data for
each segment are encoded as a length 43 vector.  These vectors are then used to train
an autoassociative artificial neural network16.  The hidden layer representations of
the network, which are of length eight, are used as a reduced representation of the
data and these vectors are then clustered using k-means.  Details of the process can
be found in Zhang et al.10.  The most general results are found when the vectors are
clustered into six clusters. These clusters are used as the SBB local backbone
structure categories, α, β, ζ, η, τ, ι9.  

After the automated clustering procedure, the backbone segments corresponding
to these six clusters were analyzed and it was discovered that they corresponded to
both known, and in some cases previously unknown, protein backbone
classifications9.  Two SBB classes were found to represent the regular secondary
structures – α-helices (SBB α) and β-strands (SBB β).  In addition, the other four
SBB categories correspond almost uniquely to the capping structures for the helices
(N-cap SBB ζ; C-cap SBB η) and strands (N-cap SBB τ; C-cap SBB ι).  All six
SBB classes are also found in the non-regular structures or “loop” regions of
proteins.  In the capping structures and in the loops, the SBBs are often found in
recurring patterns, which describe distinct, local structures that can be analyzed for
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specific hydrogen bonding patterns and unique interactions9. The library of SBB
classifications for the database of proteins described here can be found at
http://www.cs.albany.edu/compbio    .

Use of the SBB classification of local backbone structure for a backbone-
dependent rotamer library provides advantages over previous methods. First, it
avoids the discontinuities inherent in simply representing backbone geometry by
dividing the φ-ψ map into arbitrary 20° by 20° blocks7. Second, it provides a more
realistic representation of the non-regular secondary structures than division of the
backbone conformational space based on the regular secondary structures8. The six
SBB classifications provide a relatively smaller number of categories compared to
the work of Dunbrack7 or some other methods for automatic recognition of
backbone conformations17,18, thus reducing the number of low population,
statistically problematic categories.  

2.3  Minimum Message Length (MML) Classification

MML classification11,12 is a concept from information theory.  Simplifying
somewhat, it can be viewed as inference based on the Minimum Description Length
(MDL) principle13.  In MDL, an encoding is defined for a set of data so that the
expected size of the message needed to transmit a data item selected at random is
minimized.  In MML, the minimal encoding is produced using knowledge of the
structure and regularities in the data.  Thus, the MML encoding can be used as an
automatically generated, objective clustering of the data.  

However, in order to use MML for dihedral angle values, a representation is
needed that can model the circular nature of the data.  The von Mises distribution is
a generalization of the Normal distribution suitable for circular data.  It models the
continuous and circular properties found in data such as dihedral angles19.  Thus,
MML theory combined with the von Mises distribution can be used automatically
to cluster side chain conformations based on their SBB backbone classifications.  

2.4  Related Work

Dowe et al. used MML and the von Mises distribution to find distinct protein
backbone structures, using φ  and ψ angle data18.  The MML principle provided an
objective method of finding the clusters in the data.  The von Mises distribution
effectively modeled the circular nature of the dihedral angle backbone data.  Using
these techniques they found 27 distinct backbone classes.  In subsequent work20,
they augmented their analysis with a Hidden Markov Model, and refined their
number of classes to 17.  

In related work, Thompson and Goldstein used mutual information to find
substitution classes for amino acids, where the classes were optimized for
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substitutions that did not change a protein’s local structure21.  They used these
classes in an algorithm to predict solvent accessibility in proteins22.  

3.  Application of MML to side chain rotamers classified by
backbone geometry

3.1  The database

In order to do MML classification of rotamers it was necessary to first construct a
high quality database of protein structures.  The OBSTRUCT Internet server23 was
used to obtain a list of protein structures from the Protein Databank (PDB)24.
Protein structures were limited to those with a resolution of 2.0 Å or better, 30%
sequence identity or less, no NMR structures, and no structures using only the Cα

backbone.

The list of PDB structures was subsequently examined.  Structures without
refinement R-values in their PDB files were removed.  Non-globular proteins or
domains (e.g. fibrous or membrane structures) were removed.  Also any entries with
abnormalities that compromised the side chain data (e.g. large regions that were
modeled rather than built from experimental data) were removed from the list. A
final list constructed according to these criteria contained 339 protein structures.
This list can be found at     http://www.cs.albany.edu/compbio/sbb/rotamers    .  

To minimize the effect of solvent on side chains and to further limit the number
of modeled side chains in the data, the database was filtered to remove any residues
with more than 5.0 Å of solvent accessible surface area.  The solvent accessible
surface area was measured by the DSSP algorithm15.  

The rotamer analysis was performed on 17 amino acids.  The side chains for
Ala, Gly and Pro have no rotatable side chain dihedral angles and thus cannot be
modeled by rotamers.  For this preliminary study, cystine and cysteine residues are
combined.  This conflates two possibly distinct conformational distributions.  The
resulting high-quality database for the 17 amino acid types contained 13,939
residues.  

For most of the amino acids, the side chain dihedral data were used directly.
However, to account for symmetry in their side chains, χ2 values for several amino
acids were adjusted 7.  For Asn and Asp, 180° was added to all χ2 values less than
–90°, and 180° was subtracted from values greater than +90°.  This mapped the χ2

angles into the range [-90°, +90°]. For His, Phe and Tyr, all χ2 values less than 0°
have 180° added to them to bring all values into the range [0°, 180°].
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3.2  Application of MML clustering to discover side chain rotamers

The Snob program18 is an implementation of MML classification that supports the
von Mises distribution19.  The FORTRAN software was downloaded from the ftp
site given by Dowe et al. and compiled for use in this research.  Separate Snob
clusterings were made for each amino acid and SBB class combination.  Each
resulting clustering was a backbone-dependent rotamer library entry.  For
comparison, Snob was also run on all dihedral angle data for each amino acid, thus
producing a backbone-independent rotamer library.  

Clustering was done on χ1 and χ2 side chain dihedral angle data for all amino
acids, except for Cys, Ser, Thr and Val, which have only χ1 data.  Since the χ2

angles for Asn, Asp, His, Phe and Tyr are not in the expected range [-180°, +180°],
these χ2 angle values were linearly transformed into this range for use by Snob.
Following clustering, the results were mapped back into the amino acids’ specified
χ2 angle ranges.  

An error term must be supplied to the Snob program since the precision of the
data affects its information content, which affects the MML clustering18.  At the
2.0 Å resolution of the database, the precision of the dihedral angles should be
within 10°8.  For this reason, the error term was set to 10° in the Snob runs.  

Snob was run ten times for each amino acid/SBB classification data set, to find
a minimal or near minimal clustering.  Each run was started with a different
randomly chosen set of nine clusters, and allowed to continue until convergence, or
a maximum of 100 iterations.  No manual intervention was done on the runs.  The
low cost run, as measured by the number of nits (log2 e times the number of bits)18

required to represent the data, was chosen as the clustering for the entry.  

In general, Snob returns the mean χ1 and χ2 values for the clusters it finds, as
well as measures of the cluster’s concentration, κ1 and κ2, along both dimensions,
and the number of residues in the cluster.

4.  Results:  Preliminary analysis of the rotamer classes

Clustering side chain conformations into rotamers based on an SBB classification of
the backbone uncovers many interesting details.  While a complete statistical and
conformational analysis of the results is beyond the scope of this paper, we show
some overall results, as well as detailed results for isoleucine.  These data illustrate
the advantages and limitations of the approach described here.

The number of rotamer classes found for each entry in the SBB backbone-
dependent rotamer library is given in Table 1.  Also given is the number of rotamer
classes found for the backbone-independent library (“All SBBs”).  As suggested by
Janin2 and confirmed by others6-8, the overall rotamer distribution for a given
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Table 1.  The number of MML-discovered rotamer classes for each amino acid and amino

acid/SBB combination.

Amino Number of rotamer classes

 Acid All SBBs SBB α SBB β SBB η SBB τ SBB ζ SBB ι
Arg 6 4 3 1 3 1 2

Asn 3 3 3 3 3 3 3

Asp 4 3 4 2 3 3 3

Cys* 4 3 3 3 3 2 3

Gln 7 4 6 1 3 2 1

Glu 8 5 4 3 2 3 3

His 3 2 3 1 3 1 3

Ile 9 6 7 3 5 5 4

Leu 13 8 6 4 4 3 4

Lys 5 2 3 1 1 1 1

Met 8 6 6 3 4 3 4

Phe 6 4 4 2 3 3 3

Ser 4 4 4 3 3 3 3

Thr 4 3 4 2 3 3 3

Trp 6 5 5 1 3 1 2

Tyr 4 4 4 2 3 3 3

Val                             4                        3                        4                        3                        4                        3                        3             
* Cysteine and cystine residues were combined into one category.

amino acid is actually the combination of different rotamer distributions for different
backbone conformations.

In many cases MML clustering finds the standard, canonical rotamer classes.
For the backbone-independent clustering of Ile, MML finds five of the nine
canonical, energetically favorable rotamers:  (g+,g+), (g+,t), (g-,t), (t,g-), and (t,t)
(where the first symbol refers to χ1 and the second symbol refers to χ2, and g+ is
gauche+, corresponding to angles around –60°, g- is gauche-, corresponding to
angles around +60°, and t is trans, corresponding to angles around 180°2) (Figure 1).
The other four canonical rotamer classes are not populated by Ile residues.  The
missing classes are indicated by O’s in Figure 1.  The g- conformation of χ1 is
generally avoided in Ile because of the β-branching of the isoleucine residue and this
agrees with data described by others1,3,7,8.

MML also finds clusters in the side chain conformation data that do not
correspond to the canonical rotamers.  For instance, in Ile clusters are found around
(-95°,g-), (g-,93°) and (g+,150°) (Figure 1). In general, these rotamer classes are not
found in other rotamer libraries, although a few correspond to non-canonical
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Figure 1.  The distribution of χ1 and χ2 data and backbone independent MML rotamers for the amino

acid isoleucine.  The χ1 and χ2 values for individual residues in the database are indicated by dots.

Rotamer classes discovered by MML clustering are indicated by X’s and classes described by MML

along only one dimension are indicated by arrows.  Canonical rotamer classes that are not populated by

isoleucine residues are indicated by O’s. 

rotamers found by others.  For example, (g-, 93°) is near a rotamer identified by
Schrauber at (61°,100°)8.  

Snob also finds a cluster at χ1 = 153°.  While in some instances, described later,
such one dimensional clusters can represent uniform distributions of data along the
second dimension, more often they are symptomatic of the clustering algorithm
trying to handle sparse or scattered residue data.  This is the case for the one-
dimensional clustering in the backbone independent library entry for Ile (Figure 1).  

Figures 2a-f show the distributions of χ1 and χ2 data found by MML clusterings
of Ile residues in each of the SBB classes.  The results for Ile are representative of
other well-populated amino acids in our database, but complete analysis of all
residues is beyond the scope of this paper.  A summary of all data is presented in
Table 1.

The MML clusterings find distinctly different clusters for Ile, both among the
individual SBBs (compare Figures 2a-2f), and when each SBB distribution is
compared to the backbone-independent distribution (compare Figure 1 to Figures 2a-
2f).  While in a few cases, this can be attributed to sparse data (discussed below),
most of the SBB classes in Ile are well enough populated that the clustering shows
distinct differences in the side chain conformations exhibited by Ile in different
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backbone conformations.  For example, while the (t,t) conformation is well
populated in general, it is almost completely absent in SBB η and SBB ι.   The
locations of these unpopulated rotamer classes are indicated by O’s in Figures 2d and
2f.  In general, other work on backbone dependent rotamer libraries6-8 detects only
differences corresponding to our results for SBB classes α and β (data not shown).

As in the backbone-independent case, the MML clustering finds non-canonical
rotamers for the SBB-classified data.  For instance, in SBB α, a cluster is found
around (-109°,84°) (Figure 2a).  This cluster would appear to be an amalgamation of
the canonical rotamer (g+,g-) and the (–95°,g-) conformation described above for the
backbone-independent data.  Neither the canonical (g+,g-) nor the non-canonical
(–95°,g+) cluster is found in any of the other SBB categories. While statistical
analysis of this clustering is beyond the scope of this paper, 32% of all the data
points in the backbone-independent dataset are found in the SBB α category,
suggesting that either the (g+,g-) or the (–95°,g-) conformations are only found
when the Ile backbone is in the α−helical conformation in proteins.

The MML clustering results are clearly sensitive to sparse data.  For SBB ζ
MML finds a single “rotamer” at (-165°,115°).  However, there is no residue data

Figure 2.  The distribution of χ1 and χ2 data and backbone dependent MML rotamers for the amino

acid isoleucine.  The χ1 and χ2 values for individual residues in the database are indicated by dots.

Rotamer classes discovered by MML clustering are indicated by X’s and classes described by MML

along only one dimension are indicated by arrows. Unpopulated instances of the rotamer class

(trans,trans) are indicated by O’s.  (a) rotamer classes and data for residues classified as SBB α (helix)

(b) SBB β (strand) (c) SBB ζ (d) SBB η (e) SBBτ (f) SBB ι.  
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Figure 2.  (Continued)

near this position.  Rather, this purported rotamer conflates two sparsely populated
clusters of residues at (t,t) and (t,g-) (Figure 2c).

Also, MML occasionally finds a cluster using only one dimension (Figures 1,
2b, 2d and 2e). For some amino acids this can reflect continuous distributions along
one dimension.  Examples of this are one-dimensional clusters for Asn (occurring in
the clusterings of - All SBBs, SBB η, SBB ι, and SBB β) and Asp (All SBBs, SBB
ζ, SBB ι, and SBB β) (data not shown) that correspond to continuous χ2

distributions reported in the literature8.  But, more often one-dimensional clusters
occur when there are sparse, widely dispersed data.  In these cases, the clusters do not
reflect the distribution of the data, but are rather an artifact of the clustering
algorithm.  The one-dimensional clusterings in Figures 1, 2b, 2d and 2e are
examples of this.
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5.  Conclusions and future work

The results in this paper show that MML clustering and SBB local structure
classifications can be combined to create a backbone-dependent rotamer library.  In
many cases these rotamer classes show differences in the distribution of rotamers for
different SBB classes.  It has been known that regular secondary structures have an
effect on rotamer class distributions, but the results here show this effect also
generalizes to non-regular backbone structures.  In addition, in some cases there are
rotamer classes that are unique to specific amino acid/SBB combinations, and
completely absent in the other entries for the same amino acid.  These results show
that using a more general backbone structure model reveals additional dependence of
side chain conformations on a residue’s backbone environment.

To extend this preliminary work, we will first relax the restrictions on allowed
sequence identity, greatly increasing the database size.  This will alleviate the
scarcity of data in some of the lightly populated rotamer library entries.  In the cases
where there is still too little data in library entries, statistical back-off techniques can
be used to build approximate entries25. The two Cys populations will be separated
and rotamer libraries created for each of them. Once this is done a new library can be
created, and we can then analyze the side chain distributions for each amino acid in
detail. A variety of factors, such as variable solvent accessibility of residues can be
analyzed to assess their effects on the rotamer libraries.  

Additional work can be done to evaluate the quality of the MML rotamers.  The
κ concentration parameters can be evaluated to distinguish those purported rotamers
that truly represent residue data clusters.  Appropriate statistical techniques can be
used to determine the statistical significance of the difference in rotamer distributions
among SBB categories.  

Traditionally, rotamer analysis has been restricted to single residues.  However,
since SBB patterns along the protein backbone have been found to correlate with
specific structures9, the SBB model is ideally suited for finding rotamer distributions
for entire local structures.  Patterns of SBBs along the protein backbone will be
analyzed in this fashion to discover rotamer populations that occur in specific
protein structures.

All of this information will be used to improve protein modeling, design, and
prediction tools.  Rotamer classes for specific backbone conformations, as identified
by SBB patterns, may also facilitate the use of rotamers as a tool for analyzing
structure and function in proteins.
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