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The detection of motifs withimnd amongfamilies of protein sequencesan provide useful
information regarding the function, structure and evolution of a prot®iith the increasing
number of computer programs available for motif detection, a compaeatalaationof the
programsfrom a biological perspectiveis warranted. This study usesa setof 20 reverse
transcriptase(RT) protein sequencesto test and compare the ability of 7 different
computational methods to locatiee ordered-series-of-motifshat are well characterizedin

the RT sequences. The results provide insight to biologists as to the usage,value, and
reliability of the numerous methods available.

1 Introduction

Early work in protein pattern recognition suggested that islahdsnino acidsmay
be conservedn the sameorderof a given protein family. [M.O. Dayhoff et al.,
1983] Today, a region of amino acids that is conserved througfetolution of
a protein family is calleé motif. Motifs canbe presentamongprotein sequences
either as a set of unique motifs or as a set of repeateidis. VWhen motifs occurin
a specificorderamonga setof sequencesthey can be thought of as an ordered-
series-of-motifs (OSM), [M.A. McClure, 1991] or protein signature. The
designatiornof protein signaturerefersto the OSM that characterizes particular
family of proteins.

Therearetwo aspectsof motif detectionworth clarifiying. The first is the
initial recognition of a unique motif pattern, or OSM, tldafinesa protein family.
The secondis the use of known motifs to identify potential functions in
uncharacterized sequences. Weiaterestedn new computationalmethodsfor the
initial inference of an OSM. Our approatth motif detectionis an attemptto find
the OSM amonghighly divergentsequencesn orderto provide insight into the
function, structure and evolution of the protein family.

OSMs are selectively constraindttoughoutthe evolution of a protein family
asa resultof their importanceto function and structure. Thus, an OSM can be
defined in more thaone biologically meaningfulway. A functional OSM canbe
describedby the residuesof a catalyticsite, e.g., the Asp-Asp (DD) motif of the
reversetranscriptas€RT) protein sequence. An OSM may also define structural
patterns.e.g., a-helicesor B-sheets. A functional OSM can be superimposedn
structural domains; e.g., the RT OSM location witthie fingers, palm andthumb
domains of the RT (figure 1). [L.A. Kohlstaedltal., 1992] Regardles®f how the
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OSM is defined,function and structureis maintainedonly whenall motifs of the
OSM are present and in the appropriate order relative to one another .

In retroviruses, the RT constitutes one functional domain of the RNA-dependent
DNA-polymerase(RDDP). The other domainis the ribonuclease-H(figure 1).
Primary sequencanalysisshowsthat all known RT sequencegontain an ordered
seriesof six characteristianotifs (figure 2). [M.A. McClure, 1993] The crystal
structureof the RT revealsthe location of the structural folds confirming the
functionalimportanceof the OSM. [L.A. Kohlstaedtet al., 1992] The individual
motifs of the OSM have varying levetd conservation. The orderof conservation
for the motifs, from high to low, is as follows: IV > 1l > VIH > | or V. Since
the OSM inthe RT proteinis well-characterizedthe RT sequencesanbe usedto
evaluate the performance of motif detection methods.

Reverse Transcriptase Ribonuclease H
—T 2 3 4 56 TT~——11 23 4

COOCHER__ I E £ yod)
fingers palm fingers palm  thumb connection

Figure 1. The RNA-dependent DNA polymerase (RDDP) is comp$ado functional domains,RT

and RH. The most highly conserved residues of the OSM of the RT functional domain\iCAure,
1993] are placed withithe structuraldomains(fingers, palm, fingers, palm, thumb, and connection)
identified by the HIV-1 RT crystal. [L.A. Kohlstaedtal., 1992] Themosthighly conservedresidues
of the ordered-series-of-motifs of the RH domain [M.A. McClure, 1991] are placed withim¢hBH

structuraldomainsbasedupon comparisonof the HIV-l and E. Coli RH crystal structures.[J.F.I.

Davieset al., 1991]

With the increasein available sequenceadata, there has been an increasein
computerprogramscreatedto define new motifs. Computational methodsthat
attempt to identify an OSM without regard to théerveningregionsarereferredto
as local alignment methods. Methods that attempt to align the entire lengsletof a
of sequences are referred to as global alignment methods. A previousfsgidial
and local methodsrevealedthat global methods outperform local methods in
identifying motifs. [M.A. McClure et al., 1994] Another comparativestudy of
global methodsandHMM approachesoncludedthat HMMs were as good as or
betterat motif detectionthan classicaldynamicprogrammingmethods. Although
HMMs display improved performance, they ayet 100% accurate[M.A. McClure
and R. Raman, 1995; M.A. McClure, 1996] With the increasein new
computationalmethodsfor local alignment, a current comparative analysis is
warranted. This study compares recently developed local alignmethbdsandthe
HMM approach.
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From a biologist’'s perspective,choosing a computational motif-detection
method is not simple, especially with the many different methods avail@bleea
method has been chosdmw doesone know what parametershouldbe alteredto
produceoptimal results? Comparativeanalysesof computationalmethodsassist
biologists in choosing and using the best method for their studies.

| Il 11 (Y \ Vi
HT13 pvkKa- - t - | DLkdaf -LPQG f k qYMDDI | | shGL- - kFLGqi i
NWO i kkK--- ti LDl gday - LPQG wk - YNMDDI yi qyGFM kWLG el
SFV1 pvpKp- - tt LDLt ngf -LPQGf aYVDDI yi naGYW eFLG ni
HERVC pvpKp- - t cLDLkdaf - LPOR-fk qYVDDLI | tvG Re cYLG ti
GVGL  nvr Ka- - t kVDVr aaf -CPFG | a aYLDDI | i --GLN- kKYLG i v
GML7  v-pKkqd tt| DLakgf - MPFG | k vYLDDI i v - - NLK- t FLG hv
MDGL | vpKksl scLDLnsgf -LPFG | k | YMDDLVV - - NLK- t YLG hk
MORG  vvr Kk- - t t MDLgngf - APFG- f k | YMDDI i v - - GLK- hFLG- hi
CAT1 | vdKpkd eqMDVkt af kSLYG- | k | YVDDM i - - EMK- rl LG di
CMClL titKrpe hqgMDVkt af kAl YG- | k | YVDDWvi - - - KR- hFI G ri
CST4 ftkKrng t - LDl nhaf KALYG- | k vYVDDCvi i nKLK- dl LGrdI
C1095 fnrKrdg t qLDI ssay kSLYG | k | FVDDM | it TLKK dl Ld ei
NDMD  mi hKt - - af LDl gqqaf gVPQGsvlI t YADDTav tsGL- - kYLG t |
NL13 |i pKp-- s- | DAekaf gTRQGcpl | FADDM v vsGYK- kYLG ql
NLOA fi pKa- - af LDI egaf gCPQGgVI gYADDI vi evGLN- kYLGvi -
NTCO vl rKp-- anLDG nay gVRQGWV/I aYLDDVt v al Gl E- rvLGagv
I CDO ei pKp-- vdl DI k- gf gTPQGyI | r YADDFki r| DLDi dFLGF ki
| AGO fkkKt-- i eCDI ks-f gVPQGyi i r YADDW v el KI Tl -FLGvnl
I CSO  wi pKp-- | dADI sk-c gTPQGgVi r YADDFvi enGLEI nFLGF nv
| PLO yi pKs-- | eADI r - gf gVPQGgpi r YADDFvv srGLVI dFVGE nf

Figure2. The six motifs of the RT OSM are indicatedby roman numerals(l-VI). [M.A. McClure,
1993] The bold and capitalized letters represent the core amino a@dslomotif usedto scorethe
programs in this study. Dashes represent gaps in the alignment. Abbreviatibedefh side bar are
defined in materials and methods.

2. Materials and Methods

All analyses were performed on a Sun SPARCstation Ultra 1 running SUN OS 5.6.

2.1 Biological data

The RT test sequencesvere obtainedfrom GenBank,with the exceptionof one
sequence (C1095) from ttf@&accharomyce§&enomeDatabase. Initially, morethan

500 RT sequences were retrieved from the databases. Using a program that generates
pairwise similarity scores basedon the Needleman-Wunschalgorithm, [S.B.
Needlemanand C.D. Wunsch, 1970] and CLUSTER, an in-house hierarchical
clustering method, 20 representativeRT sequenceswere selected from this
collection. The pairwise sequencedentity amongthe test set of sequencesanges

from 7-48%. Basedon the conservativesubstitutionof amino acids,the sequence
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similarity is alsolow. The dataseincludesan evendistribution of RT sequences
from the following groups: retroviruses(HT13, NVV0, SFV1, HERVC); gypsy
retrotransposons (GMG1, GM1F¥DG1, MORG); copia retrotransposonfCAT1,
CMC1, CST4, C1095); non-long terminal repeatretroposons(NDMO, NL13,
NLOA, NTCO); andretrointrons(ICDO, IAGO, ICSO0, IPL0). GenBankaccession
numbersare L36905, M60610, X54482, M10976, M77661, X01472, X59545,
727119, X53975, X02599, M94164, M22874, L19088, X60177, M62862,
X98606, U41288, X71404, and Z48620.

2.2 Moatif-identification programs

Seven computer programs were included in this study (tabl®Vith the exception
of SAM, all of theseprogramsare local alignment methodsthat are not search
enginesfor motif databases.Although SAM is a global alignment method, it is
includedin this study becauséat wasfoundto perform at leastas well as global
methodsthat are better than local methods.[M.A. McClure et al., 1994] Brief
descriptions of each program are provided below.

BLOCKMAKER, [S. Henikoff et al., 1995] the downloaded version,
implementsthe Motifj algorithm. [R.F. Smith and T.F. Smith, 1990] Motifj
searchesghe sequencefor conservedriplets of amino acidsthat are separatedy a
user-specifiedength. If the triplet is foundin enoughsequencesan alignmentis
created that maximizes thock score. From the bestalignments,the triplets are
merged and the alignment is extended to get the highest score for the blocks.

ITERALIGN usesthe symmetric-iterativeprotocol. [L. Brocchieri and S.
Karlin, 1998] It starts by aligning the sequencesaccordingto the significant
segmentpair alignmentmethod. Improved sequencesnd, eventually,consensus
sequences are generated until they conveRjecks are derivedfrom the alignment
of the consensussequencesand are improved by displacementof individual
sequences. The blocks are defined by a consensus residue and conservation index.

MATCHBOX implements a scanning algorithm. [E. Depiereual., 1997] It
begins the search using a 9-residue running window that moves Hwassuences
in search of a match. A match is basedlmmnumberof identicalamino acidsand
the sum of the distancesobservedbetweenmatchedresidues. A databaseof
matches/boxes is created and boxes are deleted based on their |setghtedbased
on the residual length and gap cost ratio.

The PIMA (Pattern-InducedMulti-sequence Alignment) program starts by
constructing a binary tree based on pairwise similarity scores. [R.F. antith F.
Smith, 1992] The tree is reduced to one pattern by replacidgswith a common
pattern node that is generateyg an alignmentbasedon the Smith-Watermar(SW)
algorithm. [T.F. Smith and M.S. Waterman,1981] Common patterns are
constructed from the alignment using amino acid class-covering hierarchy patterns.
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The PROBE programimplementsthe SW algorithm that performstransitive
searcheso find regionsof sequenceimilarity. [A.F. Neuwaldet al., 1997] The
sequences collected from this search are purged to eliminate unequal representation of
the dataandthen aligned co-linearly using the Gibbs sampling algorithm. [C.E.
Lawrenceet al., 1993; A.F. Neuwalat al., 1995] The Gibbs samplingalgorithm
startsat a randomposition for all of the sequencesexceptone. The excluded
sequencés alignedto the others. This processs reiterateduntil the information
content score is maximizedAfter Gibbs sampling,a geneticalgorithmis usedto
recombinea randomly selectedalignmentand choosethe bestalignment produced.
This alignment is used tsearchfor more sequencesyhich areincludedin another
iteration startingwith the Gibbs samplingstep, until no more new sequencesre
found.

Both MEME (Multiple ExpectationMaximization for Motif Elicitation) and
SAM (SequenceAlignment and Modeling) locate motifs by estimating the
parameters for a model that maximizes the likelihoothefdata. MEME startsby
breaking up the data into overlapping sequences of specified length. [T.L. &adley
C. Elkan, 1994] The MM (Mixture Model) algorithm createsa finite mixture
model of the new dataset that consists of two components, the motifs andtthe
background probabilities. The EM (Expectation Maximization) algoridstimates
and maximizes the expected log likelihood value of the model parameters.

The SAM programis a linear HMM that implements the Baum-Welch
algorithm. [A. Kroghet al., 1994; R. Hughey ané. Krogh, 1996] The estimated
parametersare the transition and observation probabilities. Once the model
converges, a multiple alignment can be created and motifs detected.

Severalprogramsare not includedin this study for a variety of reasons. In a
previous study, MACAW [G.D. Schuleret al., 1991] and PRALIGN [M.S.
Watermanand R. Jones,1990] were found to give sub-optimal results. [M.A.
McClureet al., 1994] MOTIF [H.O. Smittet al., 1990] was not includedbecause
it is only available for DOSnda modified version, Motifj, is implementedn the
BLOCKMAKER program. The FILTER programwas not suitablefor this study
dueto a maximumsequencdimit of 16. [M. Vingron and P. Argos, 1990; M.
Vingron and P. Argos, 1991] PRATT was nintludedbecausealetectednotifs are
based on PROSITE patterns. [I. Jonaseh., 1995; A. Brazmat al., 1996] The
EMOTIF program did not suithis study becauset requiresthe input sequenceto
be aligned.[C.G. Nevill-Manning et al., 1997] The TEIRESIAS programis not
readily available. [I. Rigoutsosand A. Floratos, 1998] Initially, the GIBBS
programwasincluded. However,our analysisof GIBBS clearly indicatesthat the
authors’ most recent program, PROBE, performs better.

All programswereinitially run at the default parametersettingsto establish
baseline results. Rangtudiesfor user-specifiegparameteoptions were conducted
for all methodsanalyzed. Parametersvere changedaccordingto the descriptionof
their function and default value#\ rangeof valuesfor eachparametemvas chosen
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to determine the effects on motif detectiorhe bestresultsfor eachprogramwere
determined by a motif-scoring scheme.

2.3 Motif Scoring

Program performancewas assessedoy manually scoring the detected motifs.
Individual programscoresconsistof six values,onefor eachmotif of the OSM.

The value for eachmotif is equalto the numberof sequencesorrectly identified,

with the highest score being the number of sequences (20) used to test the programs.
The correct identification of a motif is based on the residues that represent the motifs
(figure 2).

3. Results

The bestresultsfrom thesestudiesare presentedn table 2. Of all the programs
evaluated,ITERALIGN, MEME, PROBE, and SAM were the only ones that
detectedhe entire OSM (figure 2). The highly conservednotif IV was the only
pattern detectetb somedegreeby all methods. The degreeto which other motifs
could be detected varied from method to method.

The webserverversion of BLOCKMAKER implementsboth the Motifj and
Gibbs sampling algorithms, without the option of changing parameters. The
results for either algorithm are not any better thardihvenloadedversionof Motifj
with parameter changed.he bestrun of Motifj only detectsthe two most highly
conserved motifs (figur@; Il and1V), with a high scoreof 19 for motif IV. The
ITERALIGN programfinds the entire OSM with motif VI (figure 2) having the
highest occurrence of detection at 14 sequences. Parameter chamyesasadable
for the webserverversion of MATCHBOX. The only result obtained from this
program is the detectioof the most conservednotif 1V in all 20 sequences.The
highest score§20) for MEME arefor the two most conservednotifs (figure 2; I
and 1IV). MEME also reports high scores for motifs I, Ill, and VI. PIMA detelits
of the motifs except the highly divergent motif \Wotifs Il andIV aredetectedn
all 20 sequences while motif Ill detectedas two different unalignedsubsets. The
SAM method locates the enti@SM. All motifs, exceptmotif Il with a scoreof
15, are detected as unaligned subsets.

PROBE hasthe highest occurrenceof detectionfor the entire OSM. These
results were obtainedafter running the program severaltimes under the default
parameters. Differences in the results of these runs are due to different random seeds.
The best random seed runs fitte four most conservednotifs, Il, Ill, IV, andVI,
for all 20 sequences.Matif |, a single residuemotif, wasfoundin 18 out of 20
sequences.In two of the copiaelementdfigure 2; CAT1 andCMC1), the lysine
residues were not correctly aligned. The highly divergent motif, V, was correctly
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Table 1: Computational Motif-Detection Programs

PROGRAM ALGORITHM? MATRIX INDEL RUN USER SPECIFICATIONS®
PENALTY® TIME (#MOTIFS) (WIDTH) _ (# SEQUENCES)
BLOCKMAKER  Moatifj PAM 250 none ~1lm N N Ne
ITERALIGN Sl PAM 250 C ~1h40m N Y Y
MATCHBOX Scanning BLOSUM 62 none ~45m N N Ni
MEME MM/EM PAM 250 none ~2m Y Y Y
PIMA SW AACHP I+E ~2m N N Ni
PROBE SW+G+GA PAM 250 I1+E ~2h30m N N Y
SAM BW none none ~2h20m N N Ni

2Algorithms are: SI = Symmetric-Iterative protocol; MM = Mixture Model that uses (EM) Expectation Maximization; SW = Smith-
Waterman; G = Gibbs Sampling; GA = Genetic Algorithm; and BW = Baum Welch. ®PAACH = Amino Acid Cluster Hierarchy
(patgen, class 1; and class 2). “Theindel penalties are: C = constant and | + E = initial + extension. % MOTIFS = number of motifs to
be detected; WIDTH = width of motifs to be detected; # SEQUENCES = number of sequences that contain the motif; N = user cannot
specify; Ne=user cannot specify and program excludes sequences; Ni = user cannot specify, but program automatically includes all
sequences; and Y = user can specify, but it is not required.

Table 2: Motif Scores and Parameter Options

PROGRAM 1(1) 11(3) 11(4) 1V(5) V(3) VI(3) PARAMETERS

BLOCKMAKER 0 18 0 19 0 0 run type=1; sign=>5; dist=5% (5-30)
ITERALIGN 10 9 8 13 12 14 1tw=0.99° (0.0-0.99)
MATCHBOX 0 0 0 20 0 0 default on webserver®

MEME 16 20 19 20 10 17 mod oops; nmotifs=10; maxw=10
PIMA 18 20 8+12 20 0 15 default with class 2 matrix
PROBE 18 20 20 20 14 20 S=500°

SAM 10+2 15 8+5+3+2  10+3+2 9+2 6+2+2+2 iw=2; FIMs @ 10,20,30,40,50'

Roman numerals indicate motifs and values in parenthesis indicate number of amino acids scored for in each motif. Values in the
columns indicate the number of sequences in which the motif was correctly identified. Some methods find correct matches in more
than one subset of the data without correct alignment of these subsets to one another, indicated by more than one result per motif.
The parameter column indicates the changes which gave the best results. Values in parenthesis in this column indicate the range
over which a parameter was tested. 2run type = 1 is non-iterative mode; sign = significance level; and dist = search width. °ltw =
weight assigned to lower threshold hits. °no parameter changes available on the webserver. “mod oops = motif distribution equals
one occurrence per sequence; nmotifs = number of motifs to find; maxw = maximum motif width to be detected. °S = level at which
to purge similar sequences. fiw = internal_weight; FIMs = free insertion modules inserted at these positions; other parameters were
changed according to (M.A. McClure and R. Raman, 1995, M.A. McClure, 1996).
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identified in 14 out of 20 sequences. This motif wasaootectly identified in any

of the copiasequenceandtwo non-long terminal repeatelements. Nonetheless,
this study clearly indicates that tFRROBE programoutperformsall other methods
(table 2).

Another strength oPROBE s that the resultsarereportedas collinear blocks
of motifs. Sincecollinearity is definitive of an OSM andblock formatis readily
analyzed , this makes the result format of PROBE higffigient. Other methods,
such as BLOCKMAKER, MATCHBOX, MEME also display the resultsiblock
format. However, MEME has a tendencyto report motifs regardlessof their
position in the sequence. This is useful when looking for repetitive motifs
throughout a set of sequences, but it does not maititaicollinearity of an OSM.
Collinearity of BLOCKMAKER and MATCHBOX cannotbe determinedsincethe
entire OSM was not detected. Methods,suchas ITERALIGN, PIMA, and SAM
display the results as an alignment of the data set. The alignments are cdilimear,
difficult to analyze. The motifs of the ITERALIGHIlignmentare difficult to score
becausdhe programallows gapsandinsertionswithin the motif. PIMA reports
motifs as a consensggquencaising 60 symbolsthat representhe different types
of substitutions per position. This difficult to analyzewithout a symbol legend
andan alignmentof the sequence$o the consensusequence.Since SAM is not
meantfor local alignment, it requiresmuch effort to searchthe entire global
alignment for the regions of aligned motifs.

4. Discussion and Future Studies
4.1 Discussion

The purposeof this studyis to find the most reliable method of motif detection
currently available. Motif-detection programs are sensitive to the defjsmjuence
similarity amongthe analyzeddata. A programmay be robust for analysis of
similar sequences, but inadequfte a highly divergentset of sequences.Methods
that are able tidentify motifs amonghighly divergentsequenceare morereliable
than those methods that cannot.

While all programsanalyzedwere able to detectthe most highly conserved
motif 1V, four of the methods (ITERALIGN, MEME, SAM, and PROBE) were able
to detect the entire OSM. All other methd@. OCKMAKER, MATCHBOX, and
PIMA) werenot ableto identify motif V becausat is oneof the most divergent
motifs. This indicatesthat althoughconservednotifs are easily detected,only the
most robust methodswill be able to detectan entire OSM that also contains
divergent motifs. These results demonstratethat motif-detection programsare
sensitive to the degree of sequence similarity.
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Of all methods evaluate®ROBE performedthe bestat detectingthe OSM in
the highly divergent RT sequences. The PR@B&gramcorrectly locatedthe four
most conservedmotifs and was able to detectthe two divergent motifs with
considerable accuracy. The error in detecting motif | for two sequences is surprising,
becausethe two correct residuesare only out of column registerby 1 and 2
positions, respectively. PROBEis a robust methodfor detectingan OSM even
without making any parametecchanges. This is becausat is designedto locate
motifs as they are found in an OSM, collinearly among a ss¢adences. In this
study, PROBE detected more than the six collinear motifs of the OB1i4.is not
an inaccuracy of the method, butlisplay of PROBE’ssuperiorperformance. The
additionalmotifs detectedare actually recognizedsub-motifsin the RT sequences.
[M.A. McClure, 1993] PROBEdetectsboth motifs and sub-motifs without any
specificationfrom the user. This is useful when the numberof motifs is not
known. MEME, on theother hand,requiresthe numberof motifs to be specified.
MEME performances improved when the specified numberof motifs is greater
than the actual number of motifs. This generates some sub-motif detbctiomgt
as accurately as PROBE.

Although MEME hasscoresalmostas high as PROBE, a recentanalysis of
both MEME and PROBE using a datasetof 497 RT sequencedemonstratedhat
PROBE:is still ableto outperformMEME. [submittedto GIW, McClure, Hudak
and Kowalski, 1998] The data set used in the study contained an unequal
distribution of sequencsimilarity which resultedin somesequencesr motifs, to
be over-represented. MEME will geappedin a local optima by recognizingthe
biased motif as the correct motif and considering any divergentifmonrect. This
results in the exclusion of the entire sequence, thus reducing theasd@m®@ducing
biologically uninformative resultsPROBE, however,handlesa biaseddataset by
eliminating redundantsequence®r sequenceshat are too similar to each other.
Purging of sequencesproducesan equally distributeddataset representativef the
entire 497 sequences from which it can detect informative motifs with a high score.

A recentcomparisonof severalmethodsthat are also includedin this study
(ITERALIGN, BLOCKMAKER, MEME, andPIMA) cameto similar conclusions
about program performanci.. BrocchieriandS. Karlin, 1998] ITERALIGN and
PIMA were able to find the entire OSM tife Rec-A sequences.MEME displayed
better performancethan BLOCKMAKER. Contrary to our experience with
MATCHBOX (table 2), the programcorrectlyidentified 6 out of 7 Rec-A motifs.
With the exception of MATCHBOX, program performance was compaltazdiieeen
the two studieseventhough our study usedmore divergentsequencewvith shorter
motifs.

Our study has elucidated that PROBE is a superlative method currently available
for the detection of an OSM.
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4.2 Future Sudies

Future studieswill attemptto find an OSM among a larger group of highly
divergentprotein sequencethat shareanalogoudunction. In addition to the RT
domain sequencet)jis datasetwill be include sequencefrom the RNA-dependent
RNA polymerases (RDRHpundin all other RNA viruses(e.g., HIV, Ebola, and
Measles). In this case, some sequences of the datars®itbe statistically shown
to share commorancestry. This raisesthe questionof whetherthe observationof
an OSM is due to common ancestry versus sequence convergence.

Whether or not common ancestryis responsiblefor the limited sequence
similarity detectedbetweenthe RT and RDRP sequencess an open question.
Several studies suggest a common ancestry amibmNA-dependenpolymerases.
[P. Argos, 1988; O. Poctt al., 1989; M. Delaruet al., 1990] Thesestudieswere
prompted by the detection tie highly conservedAsp-Asp motif in the RDRP of
polio [G. Kamer and P. Argos, 1984] which is also found in retroviruses. Although
the Asp-Asp motif is conserved among some RDBfthe RT domain,thereare
only three additional residuesfound in common among these proteins, whose
lengths vary from approximately 300 to 2000 amino acids. A recent reevalaoftion
the multiple alignments thatuggestedheserelationshipsconcludesthat thereis a
lack of statistically significant signal remaining among the sequencego claim
common ancestry. [P.M.d.A. Zanotbal., 1996]

A more robust motif-detectionalgorithm may aid in addressinghe ancestry
versusconvergencejuestionregardingRDRPs and the RT domain of RDDPs.
Future studies will use the most reliable motif-detection method, as deterimanmed
this study, to locate a potential OSM shared among the RDRPs and thenkiin.
Finding a reliable OSM would assistin creating separatenidden Markov models
(HMMs) representinghe sequencesf both the RDRPsandthe RT domainbased
on a new OSM-anchoring approach [see McClure and Kowalski, in these
proceedings]. By comparing the protein sequences of one grolop neodel of the
other,theseHMMs can be usedto evaluatethe possibility of common ancestry
betweenthese sequences. If the probability is significant, then it would be
worthwhile to constructan HMM representindboth the RDRP andRT sequences.
This approach could provide statistical evidetweither supportor refute common
ancestry among all RNA-dependent polymerases.
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