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A new method (particularly suited to the analysis of High Throughput Screening data) is
presented for the determination of quantitative structure activity relationships.  The method,
termed “Binary QSAR,” accepts binary activity measurements (e.g., pass/fail or
active/inactive) and molecular descriptor vectors as input.  A Bayesian inference technique is
used to predict whether or not a new compound will be active or inactive.  Experiments were
conducted on a data set of 1947 molecules.  The results show that the method exhibits high
accuracy and is robust to measurement errors.

1 Introduction

The automation of physical experiments through robotics to effectively perform
hundreds of thousands or millions of experiments in a short time has opened the
door to a large-scale brute-force approach to drug discovery.  This approach is
generally called High Throughput Screening (HTS).  The motivation behind this
approach is to reduce, and possibly eliminate, time-consuming and costly manual
interventions by physically synthesizing and testing a very large number of
compounds.  This HTS brute-force ideal can, perhaps, be realized when a few
million compounds need to be tested; however, two factors will likely interfere with
the HTS ideal:
• The number of possible ligands.  The number of stable drug candidates is not

known.  Estimates vary widely; however, the lowest estimate is that there are at
least ten trillion reasonable candidates.  Even if one million candidates can be
tested per day an exhaustive test of all candidates would require ten million
days, or more than 27,300 years.  A throughput rate of one billion
measurements per day would require over 27 years.

• The economics of HTS.  The cost per HTS measurement is not negligible.  The
average cost of raw materials and overhead results in a rate of approximately $5
per measurementa.  This is certainly a substantial improvement over manual
measurement; however, a one-million-test-per-day rate results in a daily
expenditure of $5 million (sufficiently high to warrant an attempt at cost
reduction).

                                                          
a This figure is based upon communications with High Throughput Screening system manufacturers and

screening facility operators.
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These two factors strongly suggest that “Brute Force HTS” will have to become
“Smart HTS” rather quickly.  In other words, to reduce the total number of
experiments, an experiment/analysis cycle will have to be developed so that, for
example, the results of an HTS run on 100,000 compounds are analyzed and used to
determine the next 100,000 compounds to be tested.

It is generally accepted that the structure, composition, or physical properties of
a ligand directly affect its biological activity against a target.  The attempt to
transform this qualitative belief into a quantitative method of activity assessment is
known as the determination of Quantitative Structure Activity Relationships
(QSAR) which began with the work of Hanschb and further developed by othersc,d.
Determining a QSAR generally proceeds as follows:
1. Define a quantitative measure of activity (e.g., the amount of ligand needed to

produce an interference with the functioning of the target).
2. Express the ligand in some quantitative manner; that is, select a collection of

numbers that characterize the ligand.  These numbers are called molecular
descriptors or, descriptors.

3. Determine a functional relationship between activity and the selected
descriptors; that is, search for a mathematical function, f, that has the property
that “activity = f (descriptors)” to a suitably high level of accuracy.

4. Use the determined activity measure, molecular descriptors and determined
functional relationship to predict the activity of new candidate ligands.

Currently, QSAR techniques are applied to relatively small data sets consisting of
several tens, or perhaps several hundreds, of molecules for which activity
measurements are available.  These activity measurements are performed manually
in the laboratory and produce relatively accurate measurements (e.g., IC50 numbers:
the concentration of ligand required to attain 50% inhibition).  The most widely
used method of determining the functional relationship is the statistical technique of
regressione or least squares.

It is natural and tempting to assume that all one needs to do is apply current
QSAR methodology to the large scale data sets of HTS and provide the necessary
analysis portion of the proposed HTS experiment/analysis cycle.  Unfortunately,
                                                          
b Hansch,C., Fujita,T. ρ-σ-π Analysis.  A Method for the Correlation of Biological Activity and

Chemical Structure.  J.Am.Chem.Soc. 1964.
c Cramer,R.D., Patterson,D.E., Bunce,J.D. Comparative Molecular Field Analysis (CoMFA). 1. Effect of

Shape on Binding of Steroids to Carrier Proteins.  J.Am.Chem.Soc., 1988, 110, 5959-5967.
d Rogers,D.,Hopfinger,A.J., Application of Genetic Function Approximation to Quantitative Structure-

Activity Relationships and Quantitative Structure-Property Relationships, J.Chem.Info.Comp.Sci., 1994,

34.
e Hogg,R.V, Tanis,E.A. Probability and Statistical Inference.  MacMillan Publishing Company, New

York.  1993.
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two critical factors render the current QSAR technology practically useless for
HTS:
1. Precision Loss.  HTS has given rise to the following trade-off: higher

throughput reduces the precision of the activity measurement.  Many HTS
technologies report a binary condition: a candidate ligand is either “active” or
“inactive.”  Some HTS technologies report a discrete measure, e.g., activity on
a scale from 1 to 10.  In either case, current QSAR technology requires a
continuous activity measurement; e.g., accurate to 2 or 3 decimal places.

2. Potentially Significant Error Rate.  Many HTS techniques have the unfortunate
property that the activity measurement is error prone.  The error rate is
significant enough to warrant special attention since current QSAR technology
is very sensitive to outliers and errors.  A significant error rate will neutralize
the predictive capabilities of current QSAR technology.

Consider a simple example.  Suppose that activity y is linearly related to a single
descriptor x; that is, y = mx + b.  A conventional data set would consist of n
observations (yi,xi).  Without loss of generality we may assume that m > 0, the xi

have mean 0 and variance 1 and that activity is indicated by the condition that y < 0
(i.e., when x < -b/m).  The linear regression estimates for m and b are
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When presented with binary measurements (1 is active, 0 is inactive) representing
the condition that yi < 0 the linear regression estimates become
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where a is the number of active compounds.  These estimates are completely
different than those obtained from non-binary input (e.g., the b estimate is always in
[0,1] for binary data).  For example, the descriptor value at the boundary between
active and inactive is
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i.e., inversely proportional to the mean active descriptor value.  Contrast this with
-b/m, the true descriptor value at the boundary.  Fundamentally, the trouble stems
from the fact that the assumptions of linear regression are not satisfied with binary
HTS data.

The problems do not lie with the concepts of QSAR itself but with the
underlying mathematical techniques used to determine the functional relationship
between structure and biological activity.  Indeed, the fundamentals of QSAR are a
promising avenue for HTS data analysis.
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In this article, we present a new method for the determination of a QSAR from
binary activity data.  We will outline the method and give the results of experiments
conducted to validate the method and assess its sensitivity to measurement error.

2 Methods

Let {(yi,Li)} be m results of a High Throughput Screening (HTS) experiment on a
common target in which yi is either 0 or 1 (either “inactive” or “active”) and Li is a
molecule.  In other words, the output of the HTS for each molecule is binary.  Note
that continuous activity data can be made binary using a threshold criterion.  We
will assume that there is a mapping, D, from molecules to real n-vectors that
corresponds to the calculation of a set of n molecular descriptors; let xi = D(Li).  In
the text to follow Y denotes a random variable with value 0 or 1 and X = (X1,…,Xn)
denotes a random variable over n-vectors (a random molecule).

Our fundamental method uses the conditional distribution Pr(Y|X) in order to
determine the probability that a new molecule L is active with Pr(Y=1|X=D(L)).  Let
a denote the prior probability Pr(Y=1) and define f(x,y) = Pr(X=x|Y=y).  We can now
use Bayes’ Theoremf and write
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Without loss of generality we can assume that each descriptor has mean 0 and
variance 1.  Suppose that the individual molecular descriptors {Xi} are mutually
independent.  In this case we have
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where fj(x,y) = Pr(Xj=x|Y=y).  Thus, we must estimate distributions of the form
Pr(Xj=x|Y=y) and the prior probability a.

The random variable, Y, takes on the values 0 or 1.  Now, the maximum
likelihood estimate for a is S/m where S = y1+…+ym.  This is an unbiased estimate
with the smallest possible variance over all unbiased estimators; however, for small
sample sizes, or samples in which a single value is observed it is possible to have an
estimate of a = 0.  This can be catastrophic for the above formulae which require
likelihood ratios.  For this reason we use the biased Bayes estimate under a uniform

                                                          
f Feller,W. An Introduction to Probability Theory and its Applications, Vol.1, Wiley & Sons Inc., New

York, 1950.
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prior which is a = (S+1)/(m+2) which is always in (0,1) and is well defined when m
is zero.  Let m1 be the number of active molecules in the data set and m0 = m-m1.
We now have
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Let Z be a random variable over the reals and let f(z) be the probability density
for Z.  We can estimate f by accumulating a histogram of observed sample values on
a set of B bins (b0,b1],…,(bB-1,bB] defined by B+1 numbers bk < bk+1, b0 is minus
infinity and bB is infinity.  The usual procedure for counting the number of
observations among m samples in bin k>0 is
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which has unfortunate sensitivity to the selection of bin boundaries since
observations close to the boundary between two bins are treated as if they were in
the middle of one of the bins.  To reduce the sensitivity to the bin boundaries we
replace the delta function observation density with a Gaussian with variance 2σ
(this can be interpreted as an observation error as well as a smoothing parameter).
We now have
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which is more efficiently calculated with
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Even with this smoothing, it may happen that some bins are essentially 0.  We
therefore construct the final distributions by adding a constant to each bin before
normalizing (similar to the Bayes estimate of a).  Thus, the discrete density for Z is
estimated with

∑
=

− =
+

+
≈∈

B

l
l

k
kk Bc

cBc

cB
bbz

1
1 ,

/

/1
]),(Pr( (11)

Finally, to evaluate the density f at a particular point, z, we calculate
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which simplifies to
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We can thus model each of the descriptor distributions fj(x,y) for y in {0,1} and
j in {1,…,n}; that is, for each descriptor, we estimate two distributions: one for the
active molecules in the training set and one for the inactive molecules.  We thus
arrive at the estimate
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The above considerations suggest the following computational procedure:

1. For each molecule in the experimental data set, compute di = D(Li).

2. Perform a principal component analysisg to produce a matrix Q and a vector u
such that the covariance matrix of {xi = Q(di-u)} is the identity matrix.

3. Estimate the parameters of the probability model, p, from {(yi,xi)}.

4. The probability that a new molecule L is active is then estimated as
p(Q(D(L)-u)).

3 Results and Discussion

A set of 1,947 small molecules with molar refractivity data were chosen to test the
correctness and robustness to measurement error of the method.  The range of
molecular weights in the data set was (28,1609) with a mean weight of 312 and a
standard deviation of 131.  The molar refractivity values were in the range (0.3,30)
with a mean of 8.3 and a standard deviation of 3.27.

An inactivity criterion of yi > y0 was used to create a binary experimental value;
that is, if the molar refractivity was greater than a pre-set threshold then the
molecule was considered inactive.  Several values of y0 were chosen which resulted
in different divisions of the data set into active and inactive (between 51% and
97.5%).  Table 1 gives the threshold values used in the experiments and the
percentage of molecules in the data set that were, as a result, classified as inactive.

                                                          
g Glen,W.D, Dunn,W.J., Scott,R.D. Principal Components Analysis and Partial Least Squares

Regression.  Tetrahedron Comput. Methodol., 1989, 2, 349-376.
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y0 % > y0 y0 % > y0

2.650 97.48 5.575 80.28
2.975 97.02 5.900 77.04
3.300 96.46 6.225 73.70
3.625 95.07 6.550 70.31
3.950 93.07 6.875 67.13
4.275 90.24 7.200 63.79
4.600 87.78 7.525 60.25
4.925 85.82 7.850 56.09
5.250 83.05 8.175 51.52

Table 1.  Proportion of inactive compounds as a function of the threshold.

Four molecular descriptors were chosen to represent the molecules: two zero’th
order and two first order connectivity indicesh defined as follows:
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where d is the number of heavy atoms connected to atom i and s = (v-h) / (Z-v-1),
where Z is the atomic number, h is the number of attached hydrogens, and v is the
number of valence electrons.  The sums over ij denote summation over all heavy
atom bonds i-j.

The descriptors were calculated using the 1998.03 version of the MOEi

software from Chemical Computing Group Inc (the descriptor codes used were
chi0, chi1, chi0v, chi1v).  The prediction method was implemented using the
SVL programming language built into MOE.

For each threshold value y0 a predictive model was estimated (with Gaussian
smoothing parameter 25.0=σ ) and evaluated against the data set.  Estimation of
model parameters required approximately 2 seconds of CPU time for each threshold
value.

Performance was measured as follows.  Let m0 be the number of inactives in
the data set and m1 the number of actives.  Let c0 be the number of inactives
correctly labeled by the model and let c1 be the number of actives correctly labeled
by the model.  Performance is measured with the following three percentages: a =
100(c0+c1)/(m0+m1) the percentage of correctly predicted activity values over all of
the data, a0=100c0/m0 the percentage of correctly predicted activity values over the
inactive molecules only, and a1=100c1/m1 the percentage of correctly predicted
activity values over the active molecules only.  Figure 1 summarizes these results.
                                                          
h Bicerano,J., Prediction of Polymer Properties, Marcel Decker Publishing, New York, 1996.
i Consult http://www.chemcomp.com for more information.
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Figure 1.  Proportion of inactive compounds as a function of the threshold.

At all threshold values yi, accuracy is extremely significant (statistically) and
well above what is expected from random assignments using the percentage of
actives in the data set.  Overall accuracy was between 91% and 99.5%.  More
importantly, the accuracy on the active subset was between 93% and 99.5%.
Accuracy in the inactive subset was between 83.5% and 99.5%.  It should be noted
that the drop in accuracy in the active subset (in the right-most portion of the graph)
was probably due to the fact that very few molecules were used to estimate the
active distributions.  This small sample fall-off would likely be eliminated with a
larger data set.  When the number of actives in the data set was below 10% the
model performed very well with all accuracy measures above 90% correct.

To measure the sensitivity of the method to errors in the measured activity
values, the following procedure was used.  To each refractivity value yi a uniform
random error was introduced in the range [-ws,ws] where s is the standard deviation
of the refractivity values and w is a pre-set error scale factor.  This resulted in an
activity criterion of yi + ei > y0 where ei is uniform in [-ws,ws].  The data set was
trained on the modified data and accuracy measured against the actual criterion
yi > y0.  Three values of w were used: 0.1, 0.5 and 1.0.  Each value of w was used 10
times for each value of y0 and the accuracy results averaged.  Figure 2 presents the
accuracy results for the entire data set.
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Figure 2.  Accuracy results for entire data set with uniform errors.

At all error widths of w overall accuracy is maintained between 90% and
99.5%.  Figure 3 presents the accuracy results on the active subset of the data for
each of the w values.
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Figure 3.  Accuracy results for actives only with uniform errors.

High statistical significance was maintained at all error rates and reasonable
accuracy was maintained.  The active-only subset showed some accuracy fall-off at
very large error widths in the small sample region of the plot (lower right).  This
was probably due to the small number of actives that were used to estimate the
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probability distributions.  Despite this fall-off, it is clear that the method is capable
of withstanding very high levels of measurement error in the data set.

Another form of error generation was tested.  Each activity measurement was
randomly inverted with probability p; that is, active and inactive was reversed for
randomly selected data points.  Error rate values of 5% and 10% were used.  Each
error rate was used 10 times and the accuracy results averaged.  Figure 4 presents
the overall accuracy rates for each of the error rates.

80

82

84

86

88

90

92

94

96

98

100

52 60 67 74 80 86 90 95 97
% Inactive in Data Set

%
 C

o
rr

ec
t

p=0% p=5% p=10%

Figure 4.  Accuracy results for entire data set with inversion errors.

At both error rates the accuracy on the entire data set was maintained and fell
between 92% and 99.5%.  It is interesting to note that the overall accuracy was
better when some errors are introduced in the cases where the number of actives
was below 10%.  This suggests that it might be possible to improve the overall
accuracy by data smoothing techniques (e.g., addition of “constructive noise”) that
directly model sources of error; i.e., one can take into account knowledge that there
is a 5% error rate.

Figure 5 presents the accuracy results of the same experiments on the active
subset.
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Figure 5.  Accuracy results for actives only with inversion errors.

High significance is maintained at both error rates with accuracy on the active
subset falling between 81% and 98%.  As with the previous results, the observed
accuracy fall-off was likely due to small sample effects.  It must be emphasized that
this fall-off is rather minor and very high statistical significance is maintained even
with the small sample size.

All calculations were performed with MOE 1998.03 on a Compaq Pentium 133
with 32Mb of memory running Windows95.

4 CONCLUSIONS

A new method for QSAR analysis called Binary QSAR was presented along with
results that strongly suggest the method’s accuracy and robustness to measurement
error.  Future work will attempt to characterize the effect of the smoothing
parameter upon accuracy.  In the present formulation the smoothing parameter is a
free parameter.  As such, it can be optimized for a particular data set with a cross-
validation procedure.  It may be possible to eliminate the smoothing parameter by
making it a function of, perhaps, the bin widths or the number of data set points.

A notable drawback of Binary QSAR is that there is no obvious way to
determine the relative importance of the descriptors.  In linear regression analysis,
for example, each descriptor is assigned a single coefficient that can be used to
estimate descriptor relevance.  On the other hand, since Binary QSAR is a non-
linear modeling method there is no analogous coefficient.  Assessing the relative
importance of the descriptors will be the subject of future work.

Binary QSAR is a fundamental shift away from the empirically fitted functional
relationship methods of traditional QSAR methodology.  Rather than fitting the
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parameters of a model to experimental data, Binary QSAR builds predictive binary
models through the use of large-scale probabilistic and statistical inference.
Because data fitting is not used, the predictive capacity of Binary QSAR is not
interpolative, but based on generalizations substantiated by the experimental data.

Binary QSAR has several important and immediate applications:
• Prioritization of HTS Experiments.  Rather than test, for example, 5,000,000

compounds in a single run, break up the set of 5,000,000 compounds into lots
of, say, 50,000 compounds.  Binary QSAR could then be used to estimate the
number of active compounds, or hits, in lots that have not been tested.  In this
way hits are found earlier and subsequent HTS experiments are more focused.
Each HTS experiment proceeds from maximal diversity in the tested
compounds to minimal diversity focusing on the discovered hits.

• Combinatorial Library Design.  It is often the case that combinatorial
chemistry techniques are used to create candidates for HTS experiments.
Current combinatorial library design methods focus on maximizing the
diversity of the resulting collection of compounds.  Using Binary QSAR
facilitates the design of more focused combinatorial libraries: the data from an
HTS experiment is used to bias the combinatorial library towards diverse, but
active, compounds.

• Virtual Screening and Virtual Synthesis.  Once a Binary QSAR analysis is
performed on HTS results, the resulting data model is used to search for other
active compounds in corporate or supplier databases or even reaction pathways.

Chemical Computing Group has sought patent protection for the Binary QSAR
methodology.  Binary QSAR is available in Chemical Computing Group’s MOE
software as QuaSAR-Binary™ and may be licensed from Chemical Computing
Group Inc.
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