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We consider the problem of obtaining the maximum a posteriori probability (MAP)

estimate of a consensus ancestral sequence for a set of DNA sequences. Our max-

imization method, called ASA (dnA Sequence Alignment), can be applied to the

re�nement of noisy regions of a DNA assembly, to the alignment of genomic func-

tional sites, or to the alignment of any set of DNA sequences related by a star-like

phylogeny. Along with the optimal consensus, ASA �nds suboptimal solutions

together with their relative probabilities. The probabilistic approach makes it pos-

sible to establish the limits to which an ancestor can in principle be recovered from

diverged sequences. In simulations on rather short synthetic sequences (of length

up to 80) with di�erent coverage and error rates ranging from 5% to 30%, ASA

restored the consensus from noisy observations essentially as best as is theoretically

possible for the given error rates. We also illustrate the performance of ASA on

the alignment of E.Coli promoters and the Alu-Sb subfamily of human repeat se-

quences. Since our model is a special case of a pro�le HMM, we give a comparison

between these two approaches, as well as with other DNA alignment methods.

1 Introduction

This paper deals with a probabilistic model of consensus multiple alignment.
Suppose that N observed sequences S1; : : : ;SN evolved independently from a
common unknown ancestor C. The evolutionary process introduces insertions,
deletions, and substitutions in the sequences with probabilities �; �, and 
,
respectively. The problem we consider is to restore the original sequence C, or
in other words, to infer the consensus.

When sequences are related via an evolutionary tree it is common to simul-
taneously infer the correspondence between letters and the tree labels using
high-dimensional dynamic programming 1. In our case of consensus alignment
for the star topology2, we are interested primarily in the ancestor and consider
all possible alignments that contribute to it. After the consensus is inferred,
the multiple alignment can be obtained trivially by aligning every sequence
to the consensus. Our approach is close in spirit to the treatment of proba-
bilistic pairwise alignment in ( 3;4) and can also be considered to be a special
kind multiple sequence alignment via a pro�le HMM 5;6;4. Indeed, every pair
of C � c1; : : : ; cL and error parameter E = (�; �; 
) corresponds to a pro�le
HMM with LMatch states and transition probabilities into Insertion and Dele-
tion states equal to � and �, respectively. The output probabilities in state i
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are determined by ci and substitution rate 
. Our methods for estimating the
parameters of this HMM are di�erent from those normally used, however.

Let us assume an a priori distribution P0(C) on possible ancestor se-
quences C. Then the most plausible ancestor sequence would be the one that
maximizes P (CjS1; : : : ;SN ; E), the posterior probability of ancestor given the
set of observations. We show in section 2 that this probability can be e�ectively
evaluated up to a constant. Therefore the problem of consensus restoration is
an optimization problem on the discrete set C of possible consensus sequences

C� = argmaxC2CP (CjS1; : : : ;SN ; E): (1)

It follows from the HMM interpretation of our model, that consensus re-
construction can be viewed as the problem of optimizing the architecture of
the HMM embodied in the discrete HMM \parameter" C. This boils down to
estimating the size of the HMM model (the number of match states) and the
choice of the output probability distribution (from four possibilities, each de-
termined by the �xed substitution rate 
) in every match state. The problem
of architecture choice has been known to be a serious issue in HMM train-
ing 7 and for pro�le HMMs has been treated heuristically 5;4. Though these
heuristics work well for protein sequence alignment, especially when there are
relatively conserved regions almost free from indels, they are not very reliable
in predicting the consensus for noisy DNA sequences, as illustrated in Sec-
tion 3.1. Our approach is complimentary to the classical HMM training: we
optimize architecture, but heuristically �x all continuous parameters.

We approach the optimization problem (1) by combining deterministic op-
timization with a Markov Chain Monte Carlo (MCMC) method that samples
from P (CjS1; : : : ;SN ; E) . We initialize the deterministic optimization with
one of the sequences in the data set and after it converges switch to MCMC
sampling. In the course of sampling we keep track of the optimal and subop-
timal consensus sequences, and as a result get not only the best solution but
also the suboptimal ones together with their relative probabilities. We call our
algorithm ASA (dnA Sequence Alignment). The MCMC approach to multiple
alignment in the form of simulated annealing was also considered elsewhere
8;9, where the sampling was performed on alignments rather than consensus
sequences as in ASA. Also an MCMC in the form of a Gibbs sampler was
applied to block alignment of protein sequences 10.

In Section 3 we give experimental results on synthetic data for di�erent
overall error rates � 2 f5%; 7:5%; 10%; 15%; 30%g, where � = � + � + 
, and
di�erent numbers of observed sequences (coverage) N . In all cases the opti-
mal solution a found by ASA is never less probable than the true consensus.

aThis solution may be locally and not globally optimal.
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Furthermore, the optimal solution is usually attained in the �rst few steps of
deterministic optimization, and the suboptimal solution is often attained dur-
ing the subsequent MCMC sampling. As is expected, for low coverage and high
error rate the optimal solution sometimes has higher probability than the true
consensus. Thus these kinds of experiments empirically establish the accuracy
to which one can, in principle, recover the consensus for noisy sequences.

Since in practice the true error parameters are never available, our second
set of experiments optimized the posterior probability in (1) with a �xed error
parameter Ef = (�f=3; �f=3; �f=3), �f = 5%, whereas the sequence sets were
generated with di�erent error rates. Surprisingly, the proportion of correctly
inferred consensus sequences was practically the same as in the ideal case,
when ASA used the actual error parameters (Table 1.a). In 3.1 we give an
example of the ASA alignment and a corresponding SAM HMM alignment11

for one of the synthetic data sets, which shows some of the e�ects of the
parameter specialization in ASA. It may be argued that other, nonHMM-
based consensus estimation methods such as those typically employed in DNA
sequencing projects may be more appropriate for the type of data we explore.
Therefore we also compare the accuracy of ASA consensus with that of CAP2
assembler12 and ReAligner13. ASA is shown to give superior results.

We also include experimental results of ASA on real genomic data. In
Section 4 we explore the di�erences between ASA, SAM HMM and CLUSTAL
alignments of the Alu-Sb subfamily of human repeat sequences. Then we
extend our algorithm to allow for cases when sequences have mutual consensus
only in certain regions and apply it to the alignment of 252 E.Coli promoters14.

2 Consensus Optimization in ASA

Here we describe the theoretical ideas behind ASA. Let a nucleotide sequence
C = c1; : : : ; cL, ci 2 fA;C;G; Tg be copied independently into N sequences
S1; : : : ;SN , Si = si1; : : : ; siLi ,sik 2 fA;C;G; Tg with errors. When copied,
a letter can be deleted with probability �, if not deleted, substituted with
another letter (chosen uniformly from the rest of the letters) with probability

. Furthermore, during the copy process, before any letter (and after the last
one ) there can be inserted  letters, where  is geometrically distributed with
parameter �. These assumptions can be generalized, e.g. to allow residue-
dependent substitution rates. The problem is to restore the original sequence
C from its N observed noisy copies.

We adopt a Bayesian approach, successfully used in many related kinds of
biosequence analysis15;16. To reconstruct the consensus we �nd the maximum
a posteriori probability (MAP) estimate of C by solving (1). First, we specify
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P0(C), the a priori distribution of the original sequence. We assume that
the length of the sequence has uniform distribution on some interval jCj �
L � U([Lmin; Lmax]), and that given the length of the sequence all letter
combinations are equally likely. Thus P0(C) / 4�jCj. More sophisticated
priors, e.g. allowing di�erent a priori probabilities for the four bases, are also
possible. Second, we observe that due to insertions and deletions there are a
variety of ways in which a correspondence between letters in Si and C can be
assigned. We refer to such a correspondence as an alignment between Si and C
and denote it by a. Thus, P (SijC; E), the probability that C was copied into
Si with the error parameter E = (�; �; 
), is a sum over all possible alignments
a of P (Si; ajC; E). Putting this together we get

P (CjS1; : : : ;SN ; E) = P0(C)P (S1; : : : ;SN jC; E)=P (S1; : : : ;SN jE) / (2)

P0(C)

NY

i=1

P (SijC; E) = P0(C)

NY

i=1

X

a

P (Si; ajC; E):

It is easy to see, especially adopting an HMM representation of our model,
that the sum over all alignments can be e�ectively calculated via the forward
algorithm17 and thus for every C the a posteriori probability can be evaluated
e�ciently up to a constant.

Our approach to the MAP estimation of C given in (1) starts with a
greedy optimization algorithm that has the same 
avor as \model surgery"5.
If one has a tentative consensus C, the sequence itself can give some hints
about how to change it so as to increase the a posteriori probability (3). Let
eins(k); edel(k); esub(k) be the expected number of insertions, deletions and
substitutions at position k 2 [0; L], given the current tentative consensus.
These errors can be expressed in terms of su�cient statistics for HMM param-
eters and can be calculated via the standard forward-backward algorithm17.
If, say the average number of deletions at position k is the highest relative
to other errors e�(�) one can try to propose a new sequence Cnew by deleting
the k-th letter. If the number of insertions eins(k) (or substitutions esub(k))
is the highest, one can propose a sequence Cnew by inserting before the k-th
position (or substituting k-th letter for) the best letter out of fA;C;G; Tg. If
the objective function (3) increases on Cnew then one accepts the new tentative
consensus. If not, one tries instead the change with the next highest e�(�).

This greedy algorithm attempts to change only one position of C at ev-
ery step, or, as we say, to propose a single C-neighbor. It is clear that due
to local changes it might converge to a local maximum of (3) and miss the
global one. To avoid convergence to a local maximum, ASA also includes a
Metropilis-Hastings algorithm. This stochastic algorithm is capable of moving
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from one mode to another by accepting, with some small probability, less fa-
vorable Cnews that bridge the two modes. The Metropolis-Hastings algorithm
at step t uses the current tentative consensus Ct and randomly chooses a se-
quence Cnew according to some proposal distribution Q(�jCt; E) de�ned on the
set of Ct-neighbors, i.e. Cnew

� Q(�jCt; E). After this it randomly decides
whether or not to accept Cnew according to the Metropolis-Hastings ratio18

r =
P (Cnew

jS1; : : : ;SN ; E) Q(C
t
jCnew; E)

P (Ct
jS1; : : : ;SN ; E) Q(Cnew

jCt; E)
(3)

by putting Ct+1 = Cnew with probability min(1; r) and Ct+1 = Ct with
probability 1�min(1; r).

This procedure constructs an ergodic Markov chain fCt; t = 0; 1; ::g whose
stationary distribution is the distribution (3). This clearly helps in maximizing
(3) since the Markov chain is expected to spend the most time in the subset of
consensus sequence space where the objective function is high. From a practical
standpoint the acceptance ratio (3) should not be too low, and can be adjusted
by choosing a proper proposal distribution. In ASA, the proposal distribution
Q(Cnew

jCt; E) is a linear combination of the uniform distribution on the set of
Ct and a data-driven distribution, related to the errors eins(k); edel(k); esub(k)
used in the greedy algorithm.

In practice we combine the deterministic and stochastic approaches. We
�rst run the greedy algorithm starting with one of the sequences in the data
set and after it converges switch to the Metropolis-Hastings algorithm. Every
iteration of our algorithm is quadratic in L, the length of consensus, and linear
in the number of sequences. To speed up these calculations it is possible to
consider only near-diagonal alignments.

3 To what extent can the consensus be recovered?

An accurate consensus inference plays a special role in sequence assembly. Cer-
tain assemblers, like CAP212 and TIGR19 assembler build a layout of sequences
and then re�ne poorly aligned regions in attempt to �nd a more reliable con-
sensus, others, like ReAligner13, re�ne the overall original layout.

In the problem of consensus restoration, one should distinguish two issues:
the capacity of optimization algorithm to �nd the maximum of the objective
function and whether this maximum is attained on the true consensus. For
data conforming to the probabilistic models described above, the a posteriori

probability is the proper objective function for optimization. Therefore, if the
true consensus is not the optimal one, it just can not be reconstructed from the
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noisy observations. Similar probabilistic reasoning was used in the assessment
of pairwise alignment accuracy20.

In real-life sequence assemblies the unreliable regions to be realigned are
usually fairly short (about 10 � 20 bps) and very rarely span more than 50
nucleotides. The error rate is estimated to be on average about 5%, but for
certain regions it can be substantially higher. In our experiments N copies
of a random consensus C� of length L = 20 were generated according to the
model described in Section 2 with error parameter E� = (��; ��; 
�). Adopting
the sequence assembly terminology, we refer to N as coverage. We denote by
error rate the sum of the insertion, deletion and substitution probabilities b

� = �+ �+ 
, and perform the experiments with � = � = 
.
In our �rst set of experiments the true error parameter E� with which se-

quences were generated was used by the ASA algorithm, and thus the a poste-

riori probability P (CjS1; : : : ;SN ; E
�) in (3) was the perfect objective function

for consensus optimization (1). The error parameter E� was varied from 5% to
30%. For every pair of coverage N and error rate ��, we used 100 trials to gen-
erate diverged sequences and 300 iterations of ASA (Table 1.a). In many trials
the optimal solution was attained on the �rst iteration of the deterministic
greedy algorithm (statistics are given in columns 7 and 8), while the subop-
timal solution was often attained in the stochastic Metropolis-Hastings phase
(data not shown). To get better estimates of the quality of our consensus re-
construction, and to relate our results to simulations in other studies13, where
in the worst case scenario the error rate �� was 10%, we carried out another
set of experiments with 1; 000 trials for every coverage value and the error rate
10%. Since we were primarily interested in the optimal solution rather than
suboptimal ones, we reduced the number of iterations to 30 ( Table 1.b).

Since in practice the true error parameter E� is unavailable, in additional
experiments we attempted to restore the consensus using the \wrong" objective
function, i.e. the a posteriori probability (3) conditioned on some �xed error,
E
f = (�f=3; �f=3; �f=3); �f = 5% in our case. Surprisingly, the results of these

two types of experiments were almost indistinguishable. The proportion of
correctly inferred solutions in the ideal (1.a) and heuristic experiment (1.b)
is given in columns 6 and 5. Observe that there is no way to con�rm that
a solution C0 is globally optimal. However, in cases when it is less probable
than the true consensus C� , P (C0

jS1; : : : ;SN ; E) < P (C�
jS1; : : : ;SN ; E), the

solution is clearly not a global optimum but a local one. If the proportion
of local solutions was non-zero we reported it in parenthesis in columns 6
and 5. Otherwise, in the case where we used the true objective function,
the quality of reconstruction was marked by asterisk. Since some of solutions

bThe expected number of errors per position, �=(1 � �) + �+ 
(1 � �), is close to �
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a: Consensus inference: 100 trials, 300 iterations
1 2 3 4 5 6 7 8

Cov �
�(%) CAP2 ReAligner ASA ASA Iterations

N � = 5% true �� mean max

5 .81 .81 .81 .81� 1.09 6

7.5 .71 .71 .79 .79� 1.74 8

10 .53 .53 .67 .68� 3.34 23

3 15 .22 .22 .36 .35� 6.99 69

30 .01 .01 .02 .03� 22.64 217

5 .98 .98 1 1� 0.98 4

7.5 .94 .94 .99 .99� 1.63 18

5 10 .86 .86 .93 .94� 2.67 11

15 .62 .63 .79(.01) .79� 5.59 94

30 .05 .05 .13(.01) .20� 13.95 107

5 1 1 1 1� 0.93 4

7.5 .99 .99 1 1� 1.41 7

7 10 .97 .97 .99 .99� 2.03 8

15 .85 .86 .94 .92� 5.03 116

30 .13 .13 .46(.02) .49� 19.32 290

5 1 1 1 1� 0.93 4

7.5 .99 .99 1 1� 1.36 5

9 10 .98 .98 1 1� 1.99 6

15 .93 .94 .98 .96� 3.58 13

30 .22 .25 .69 .70� 10.99 183

5 1 1 1 1� 0.92 4

7.5 1 1 1 1� 1.36 5

11 10 .98 .98 1 1� 1.97 6

15 .92 .95 1 1� 3.44 11

30 .32 .35 .79 .83� 9.45 261

15 30 .39 .45 .90 .92� 5.73 15

b: Consensus inference: 1000 trials, 30 iterations
3 10 .573 .574 .671(.002) .671(.002) 3.037 23

5 10 .870 .870 .933 .934� 2.423 24

7 10 .963 .966 .990 .989� 2.079 16

9 10 .981 .983 .999 .999� 1.959 8

11 10 .985 .989 .999 .999� 1.912 7

Table 1: The length of true consensus L = 20. 1: Coverage. 2: Error parameter �,

� = � = 
 = �=3. 3-6: The proportion of trials with consensus correctly inferred by CAP2

(3), ReAligner (4), ASA with �xed error parameter (5), ASA with true error parameter (6).

The asterisk marks the best achievable. 7-8: The mean and max of the number of iterations

until the optimal solution is found.

that converged to the true consensus may be not globally optimal, the quality
marked by asterisk is the upper bound for the ideal MAP-based performance
on the simulated sequence sets. The true consensus just cannot be restored
in certain cases because there is too much noise in the observed sequences.
We also examined the situation when the insertion, deletion and substitution
errors were not equal to each other, but the results did not di�er qualitatively
from those in column 5 (data not shown).

We also compared the performance of ASA with that of the CAP212 as-
sembler and with ReAligner 13, which we used to re�ne the output of CAP2
(columns 3 and 4 of Table 1). To make CAP2 produce an assembly we added
identical 
anking sequences to the noisy sequences generated in our experi-
ments. Though the quality of ASA (column 5) is almost ideal, our algorithm
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needs a larger number of iterations (columns 7 and 8) than ReAligner. Hence
ASA may be more appropriate when the main issue in consensus reconstruction
is the accuracy.

It is natural to expect that as consensus length increases, the number
of steps required by ASA to �nd the optimal solution should grow, and the
e�ciency (column 5 of Table 1) should diminish. The results of simulations
for di�erent consensus lengths L and coverage N are shown in �g. 1.
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Figure 1: Actual error rate is �� = 10%, error rate used in the optimization �f = 5% (a)

Proportion of correctly inferred consensus sequences vs. the length of true consensus. (b)

Average number of iterations until optimal solution is found.

3.1 HMM alignment vs. ASA

As has been mentioned already, our model is a special case of a pro�le HMM.
Though HMM models are very successful in protein alignments, especially
when certain blocks of sequences are aligned almost without indels, it has been
noted that their application for DNA alignment can pose certain di�culties.
To illustrate this we compare an HMM alignment produced by SAM5 with
default parameters and the corresponding ASA alignment (Table 2). As seen,
the SAM alignment method tends to merge alignment columns, allowing less
peaked and more varied distributions in Match states. Of course, this is only
one setting of the SAM parameters, and further tests would need to be done
to �nd the optimal SAM parameters for this kind of sequence data.
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SAM HMM alignment ASA alignment

............*......................*.

ACTCG-----Aa/tTC-CGAATAGATAGAAGTCTGGT A-CTCG---AATTC-CGA-ATAGATA-GAA-GTCTGCT

AC-CG.....A A TT.CCAATAGATAGAAATCTGGTAA A-C-CG---AATTC-C-A-ATAGATA-GAA-ATCTGGTAA

ACTCG.....G C TCaCGAATATATAGAAGTCTGCT A-CTCG---GCT-CACGA-ATATATA-GAA-GTCTGCT

ACTC-.....A T TC.CGAAATGATAGAAGT-TGGT A-CTC----A-TTC-CGAAAT-GATA-GAA-GT-TGGT

AGTTGggttaA T TC.CGAATACATATGAATGCTGC AGTTGGGTTAATTC-CGA-ATACATATGAATG-CTGC-

ACTCG.....A A TC.CGAATAGATAGAAGTCTGCT A-CTCG---AA-TC-CGA-ATAGATA-GAA-GTCTGCT

Original: ACTCG-AATTCCGAATAGATAGAAGTCTGCT

ASA optimal: ACTCG-AATTCCGAATAGATAGAAGTCTGCT

ASA suboptimal: ACTCGGAATTCCGAATAGATAGAAGTCTGCT

Table 2: Comparison of SAM and ASA alignments. The sequences are generated from the

original sequence with error rate � = 30%. The consensus for HMM alignment was deduced

by hand. The stars mark the erroneous positions.

4 Alignment of human Alus and E.Coli promoters

We applied ASA to the alignment of 10 sequences that constitute Alu-Sb
subfamily of human repeat sequences (ftp://ncbi.nlm.nih.gov/pub/jmc/alu/).
The ASA consensus coincides basically with the consensus implied by SAM
HMM SAM5 and ClustalW21 alignments. However, the alignments themselves
di�er dramatically. We illustrate the di�erence with alignments of one small
region in Table 3. Again, as in Section 3.1 we see that the ASA alignment tends
to produce conserved columns and to �nd plausible indels. In this respect ASA
is close to an assembler and nevertheless allows one to align relatively diverged
sequences such as Alu repeats. The CAP2 assembler split the Alu-Sb subfam-
ily into several contigs, and so could not be used on this data. The same is
true for the TIGR assembler.

As a generative model, an HMM is much more 
exible in representing
diverse kinds of sequence distributions than the model used in ASA, with its
limited parameterization. However, the parameter estimation methods used for
HMMs may be more prone to local convergence than the optimization methods
used in ASA. One possibility we plan to explore is, �rst, to produce an ASA
alignment with good agreement in the columns and then use the corresponding
model as an initial model for full HMM parameter estimation.

ASA can also be applied to consensus inference for a set of DNA functional
sites. Since in alignment of functional sites, certain sub-regions of sequences
can be unrelated, and the corresponding regions in di�erent sequences might
have varying length, we generalize our model by allowing an extra letter N in
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ASA alignment SAM HMM alignment

Consensus -AGCTTGCAGTG-AGCC-G-AG-AT--C-GCGCCA--CTGC-A---C----T- AGCTTGCAGTG-AGCCG--AGAT-----CGCGCCACT-------GCAc/tT

HSU14568 -AGCTTGCAGTG-AGCC-G-AG-AT--C-CCGCCA--CTGC-A---C----T- AGCTTGCAGTG.AGCCG..AGAT.....CGCGCCACT.......GCA C T

HSU14570 -AGCTTGCAGTG-AGCC-G-AG-AT--T-GCGCCA--CTGC-AGTCCGCAGT- AGCTTGCAGTG.AGCCG..AGAT.....TGCGCCACTgcagtccGCA G T

HSU14569 -AGCTTGCAGTG-AGCC-G-AG-AT--C-GCGCCA--CTGC-A---C----T- AGCTTGCAGTG.AGCCG..AGAT.....CCCGCCACT.......GCA C T

gb|M63005 CA-CT-GCACTCCAGCCTG-GG--TGACAGAGCGAGGCTCCGT---C------ CACTGCACTCC.AGCCT..GGGTgacagAGCGAGGCT.......CCG T C

gb|M20902 -AGCTTGCAGTG-AGCC-G-AG-AT--C-GCGCCA--CTGC-A---C----T- AGCTTGCAGTG.AGCCG..AGAT.....CGCGCCACT.......GCA C T

gb|M64231 CA-CT-GCACTCCAGCCTG-GGCAG--CAGAGC-A--A-G--A---C----TG CACTGCACTCC.AGCCT..GGGC.....AGCAGAGCAa......GAC T G

gb|M26939 -CGCCTGCAGTCTAGCCTGGAG-AG--A-GGGCGA--C-CC-----CG---TA CGCCTGCAGTCtAGCCTggAGAG.....AGGGCGACC.......CCG T A

gb|M20556 -AGTTTGCAGCG-AGCC-G-AG-AT--T-GCGCCACACTGC-A---------- AGTTTGCAGCG.AGCCG..AGAT.....TGCGCCACA.......CTG C A

gb|S54330 -AGCTTGCAGTG-AGCC-A-AC-AT--C-GCGCCA--CTGC-A--------T- AGCTTGCAGTG.AGCCA..ACAT.....CGCGCCACT.......GCA T -

CLUSTAL alignment

Consensus AGCTTGCAGTGAGCCGAGATCGCGCCAC--TGCA-c/tC

HSU14570 AGCTTGCAGTGAGCCGAGATTGCGCCACTGCAGT- C C

gb|M20556 AGTTTGCAGCGAGCCGAGATTGCGCCACACTGCA- C C

HSU14568 AGCTTGCAGTGAGCCGAGATCGCGCCACTGCACT- C C

HSU14569 AGCTTGCAGTGAGCCGAGATCCCGCCACTGCACT- C C

gb|M26939 GACTTGCCGTGAGCCAG-ATTGCGCC----TGCAG T C

gb|S54330 AGCTTGCAGTGAGCCAACATCGCGCCAC--TGCA- T C

gb|M20902 AGCTTGCAGTGAGCCGAGATCGCGCCAC--TGCAC T C

gb|M63005 ----TGCAGTGAGCCGAGATCATGCCAC--TGCAC T C

gb|M64231 ----TGCAGTGAGCTGAGATCGTGCCAC--TGCAC T C

Table 3: Similar regions in di�erent alignments of Alu-Sb subfamily sequences. Boundary

of the sequences may di�er in di�erent alignments. The consensus for HMM and CLUSTAL

alignments was deduced by hand.

the consensus alphabet, as well as additional parameters �ext; �ext, probabili-
ties of insertion and deletion extension.

We applied this extended ASA to the alignment of 252 E.Coli promoters14,
with � = � = �ext = �ext = :1 and di�erent probabilities of substitution (�g.
2). When the requirement of agreement within assembly columns becomes less
stringent the consensus reveals more signi�cant consensus letters. Even in case
(a), in addition to the familiar -10 and -35 boxes, the consensus contained T +3
bps downstream from -35 box with 60% conservation. When sequences were
aligned to both boxes without indels a weak conservation of T was reported14

at positions +3 and +4. Our alignment shows that these two weak conserved
positions can be explained by di�erent spacing between a conserved T and the
-35 box. One can �nd other consensus phenomena of this kind in the data, but
in this case it is not clear which have biological signi�cance, and which may be
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attributable to artifacts resulting from the very speci�c form of the parametric
model we are using.
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Figure 2: Alignment of E.Coli promoters with substitution probability .2(a) and .3(b) and

the rest of the error parameters equal to .1. Every \N" in consensus is substituted by a dot.

The �gure shows the average number of insertions and deletions, as well as conservation, in

the signi�cant consensus positions.

5 Conclusion

We presented a probabilistic approach to multiple sequence alignment, embod-
ied in the ASA algorithm. An ASA alignment di�ers from those produced by
SAM and CLUSTAL, in that it has higher agreement in columns and looks
more like an assembly.

In our experiments on synthetic data, ASA inferred the correct consensus
with almost maximal possible accuracy and showed the robustnes to param-
eter choice. The latter indicates that in HMM training for this type of DNA
data, the values of the continuous parameters that characterize the agreement
with the consensus in Match states and transitions into Insertion and Deletion
states do not play any signi�cant role, and the e�ort should instead be con-
centrated on accurate architecture inference. On synthetic data ASA by far
outperformed CAP2 and ReAligner at the expense of more extensive compu-
tations. Currently, ASA is being implemented in an EST assembly re�nement
that realigns noisy assembly regions. Further work needs to be done to deter-
mine the applicability of this algorithm to genomic data.
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