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Various bioinformatics comparison problems require optimizing several different
properties simultaneously. Often linear objective functions combine the values for
different properties of solution candidates into a single score to allow for multi-
variate optimization. In this context, an essential question is how each property
should be weighted. Frequently, no apparent measure is available to serve as a
model for the score. However, if preferences of certain solution candidates over
others in a training set are available, the implied partial ordering may be used
to best possibly adjust the weights. We apply different strategies to optimize the
parameterization of empirical scoring functions used for two molecular comparison
problems, protein threading and small molecule superposition. Using well estab-
lished evaluation methods, it can be shown that the results of both comparison
methods are significantly improved by systematically choosing appropriate weights
for the scoring function contributions.

1 Introduction

Many analysis procedures in bioinformatics apply empirical scoring schemes
that involve linear scoring functions composed of several terms. Two examples
from the work in our group are the protein threading tool 123D ! and the
small molecule superposition tool FLEXS 2. Usually, the terms, which we will
call scoring contributions, model different aspects of the optimization problem
on a phenomenological basis. In this context, it is unclear how the different
contributions should be weighted. Because of the absence of a suitable measure
that could serve as a model for the score, regression methods are not applicable.
Instead, we will calibrate the score by giving a preference to certain so-called
reference solutions, e.g. solutions derived from experimental data.

We have introduced novel methods?® that can be used in such cases. More
precisely, our methods deal with the following problem. Given a data set, each
point s of which is characterized by a descriptor ¢ = ¢(s) which is a d-vector
of scoring contributions, determine a weight vector w such that the reference
solutions rank highest according to the following definition of the score

score(s) = we = Ei:lwp * Cp. (1)

Previous related work can be found in*. Maiorov and Crippen introduced
the idea of calibrating weights such that a single reference solution ranks top.
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Here, we consider two problem variants, both related to pattern recogni-
tion . We developed three methods to tackle these problems: an algorithm
(called caLP) based on polyhedral intersections, an algorithm that is distantly
related to the classical perceptron algorithm® (called visH), and an algorithm
that is based on a linear programming approach for the pattern recognition
problem 7 (called VALP). Recently, Akutsu and Tashimo® suggested a similar
linear programming formulation and applied it to protein threading.

Our calibration methods have been described in detail previously®. In this
paper, we discuss the application of the methods to two molecular comparison
problems using an iterative procedure to estimate weights and to compute the
corresponding solutions. Our goal is to improve the performance and sensi-
tivity of the underlying comparison methods for threading and superposition.
In small molecule superposition we perform predictions that aim at approxi-
mately reproducing experimentally observed data that serve as reference solu-
tions. The quality of a predicted solution is measured in terms of a positional
error (rmsd). An appropriate weighting of the different scoring contributions
should score the reference solutions highest. With respect to threading we are
interested in reproducing a predefined fold classification ®. Le., given a certain
threading procedure and objective function, the weighting should score highest
a set of similar folds which serve as (multiple) reference solutions for the pro-
tein sequence. We show that for both applications significant improvements
can be achieved over results obtained without systematic calibration. E.g., we
can improve the fold recognition rate in threading experiments by about 40%.
Our procedure is able to compute reasonable weights for the different scoring

contributions®.

2 Calibration methods

In this section, we briefly summarize our calibration methods. A more detailed
description can be found in 3.

Recall that we compare solutions s that are scored with real values (cf.
equation 1). Here, ¢ = (¢1,...,¢4) is a d-vector of scoring contributions and
w is a d-vector of weights. In essence, the goal of our methods is to determine
weights such that our preselected reference solutions score higher than other
solutions. We confine our algorithms to samples of the respective solution
space, since complete coverage is usually infeasible. Let S’ be a sample of
solutions for the problem instance 7 in a certain limited training set®. Reference
solutions in S; have been chosen a-priori. Details on how to choose instances,

“according to structural criteria (SCOP), independent of threading scores
bi.e. meaningful from a structural point of view
¢E.g.in threading, ¢ denotes a protein sequence and S; a set of threadings of that sequence.
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samples and reference solutions are given in the application sections.

In general, it is impossible to adjust the weights such that all reference
solutions score higher than all other elements of S;. The assumed reasons for
this are the deficit of a simple scoring function to accurately model reality as
well as experimental errors in the reference solutions. Therefore, we relax the
calibration goal and consider the following two problem variants:

Definition 1 [Violated Inequality Minimization (VIM)]:

Here, we assume a single reference solution 5* for each training in-
stance i, and ask for minimizing the overall number of non-reference
solutions that score higher than the corresponding reference.

Definition 2 [Cone Intersection Maximization (CIM)]:

Here, we allow for several reference solutions for each training in-
stance, and aim at maximizing the number of instances for which
an arbitrary reference solution scores highest.

Both problems are computationally hard?. We have developed two approx-
imation algorithms for VIM, and one for CIM. The methods for VIM can also
be applied to pattern recognition (PR) problems, and perform competitively
with established PR algorithms®.

Using formula (1), VIM can be written as a system of linear inequalities

wz > 0, with z := ¢(5%) — c(s). (2)

Such an inequality is defined for each non-reference solution s € S; of each
training instance i. The vector x is normal to a hyperplane that divides the d-
dimensional space of weight vectors into two half-spaces. The regions in d-space
for which a fixed set of these inequalities holds is a polyhedral (cone) which
amounts to the intersection of the respective positive half-spaces. In order to
satisfy all inequalities simultaneously, the weight vector must be chosen from
the intersection of all positive half-spaces (called solution cone).

Frequently, the inequality systems derived from application data are incon-
sistent, implying an empty solution cone. Minimizing the number of violated
inequalities (VIM) amounts to finding a cone that is the intersection of as
many positive half-spaces as possible. However, since the number of cones
grows exponentially in d, cones cannot be examined exhaustively.

2.1 VIM Line Search Heuristic (VLSH)

Starting from a given point w in weight space, VLSH explores a polynomial
number of cones as follows. For each inequality violated by w, a line through

dproven to be NP-complete3
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w and perpendicular to the corresponding hyperplane is constructed. For every
cone intersected by the line, the number of satisfied inequalities is calculated
and the best cone found so far is stored. Finally, w is replaced by an inner
point of the best cone found after processing all lines. This greedy strategy is
iterated until no further improvement is achieved.

We consider two different choices of starting points. VLSH(centr) indicates
that the centroid of the vectors x is used. VLSH(VALP) applies VLSH to the
result of VALP (see below).

2.2 VIM Approzimation Linear Program (VALP)

The basic technique used in VALP has already been applied successfully to the
pattern recognition problem?, which is closely related to VIM®. We formulate
an approximation of the number of violated inequalities that can be expressed
by means of a linear objective function and linear constraints. This enables
us to use existing linear programming (LP) solvers to optimize the resulting
objective function.

For each inequality, we define a measure of error. If the inequality holds,
the error is zero, otherwise it amounts to the slack that must be added to the
left side of inequality (2) in order to fulfill it. The sum of the error terms for all
inequalities serves as a linear substitute for the number of violated inequalities.

2.3 CIM Approximation Linear Program (CALP)

The CIM problem considers several separate inequality systems, one for each
reference solution of each training instance i. Any such inequality system states
that the considered reference solution scores higher than any other candidate
from the respective sample S?. The goal is to find a weight vector w lying
within the intersection of as many solution cones as possible. This maximizes
the number of instances with a reference solution scoring highest.

In order to address CIM problems, we use an approach that is analogous
to VALP. Here, we define a measure of error for each solution cone. It is
zero, if the cone is hit, and the Euclidean distance to the most distant positive
half-space, otherwise. The sum of these error terms over all cones serves as a
substitute for the number of cones not hit by w. Again, minimizing the sum
of errors fits the framework of linear programming.

3 Applications

3.1  Small molecule superposition

A typical task in pharmaceutical research is to align small molecules struc-
turally in 3D space (ligand superposition). This is done to allow for a detailed
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comparison of local physico-chemical properties of the molecules. A common
assumption is that molecules with similar distributions of properties in space
behave similarly °.

Methods Our program FLEXS ¢ takes a combinatorial approach to
the ligand superposition problem 2. It allows to fit a flexible test ligand onto a
rigid reference ligand applying the following protocol. First, the flexible ligand
is decomposed into small and relatively rigid portions (fragments). Second, an
anchor fragment of the test ligand is selected. Third, using a discrete surface
approximation, possible positions of the anchor on top of the reference molecule
are determined. Finally, in an iterative incremental construction procedure,
the anchor placements are extended by adding the remaining fragments of the
test ligand step by step considering a discrete set of possible conformations
for each fragment. The number of partial placements, generated in this way,
grows exponentially with the number of added fragments. A greedy strategy
is applied in each iteration to select a suitable subset of placements which is
used for the next iteration. In order to do so, partial placements are scored
and sorted by score.

Relevant parameters The scoring contributions of FLEXS com-
prise a matching term (Cn..) that accounts for intermolecular interactions, a
van der Waals overlap term (c,qaw), a topology matching term (c.,..), and five
overlap terms considering Gaussian functions that model different physico-
chemical properties/ p (c,). Le., the objective function to be maximized is:

Whnateh * Cmateh + Weaw * Coaw + Wetm * Cotm + E Wy - Cp (3)

property p

Hence, we consider an eight-dimensional descriptor ¢ for every placement. The
choice of weights for each term critically influences the optimal superposition
found. There is experimental evidence on reference superpositions for test cases
from X-ray data. Obviously, the similarity score should achieve its maximum
at the observed orientation in those cases. For two ligands that bind to the
same protein, the reference superposition is obtained by superimposing the
backbones of the corresponding protein-ligand complexes. The rigid reference
ligand is taken in this orientation. For the flexibly fitted test ligand the root-
mean-square deviation (rmsd, for short) from its orientation in the reference
superposition can be calculated.

Our data set comprises 284 ligand pairs (instances) obtained from protein-

€available via http://cartan.gmd.de/FlexS (case sensitive!)
felectron density, hydrophobicity, partial charge, H-bonding donor potential, and H-
bonding acceptor potential
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ligand complexes of 14 proteins 9. This selection covers the whole range of
drug-size molecules from 18 to 158 atoms.

Calibration In order to specify a calibration problem we define in-
stances as ligand pairs from the training set. S; is a sample set of superpositions
generated by FLEXS. For the VIM specification the reference superposition $;
is derived as detailed above. For the CIM specification the set of reference
superpositions for an instance 7 is extended to those superpositions from the
sample S? with an rmsd to §° of at most 1.5 A. For sample set generation the
scoring used for the greedy selection is simply replaced by a random number.
The final set of complete superpositions is evaluated for the different scoring
contributions. The training set comprises about one third of the entire test set
(90 ligand pairs). Thus, the ability of the method to generalize to novel data
is implicitly accounted for in the results.

Results In order to evaluate the performance of the calibrated scor-
ing functions we distinguish by rmsd between four classes of superpositions ".
Furthermore, in order to account for the ranking of the generated superposi-
tions, we distinguish between superpositions found at the first rank, within the
top ten ranks, and among all ranks?, respectively. The corresponding figures
can be found in Table 1. Carrying out several iterations of data generation
and calibration will be subject of future work.

As a point of reference, the results using the original parameterization
(w = (1,...,1)) are provided together with the results using the calibrated
scoring functions obtained by the different methods. The average number of
candidates handled by the algorithms is about 25.000 and the runtime required
for candidate generation (60%) plus calibration (40%) is about 2.5 hours.

The data show that the application of any of the calibration methods
generates a parameterization of the empirical scoring function that is superior
to the original scoring scheme with respect to any of the indications tabulated.
VALP shows a slightly better and CALP a slightly worse performance than VLSH.
However, as desired, the density of placements with low rmsd on the best ranks
(1st—10th) increases markedly. Note that flexible ligand superposition has to
be considered an extremely difficult task 2 7. With this respect, 12% more
superpositions with an rmsd <1.5A and about 13% additional superpositions

9immunoglobuline, streptavidin, trypsin, glycogen phosphorylase, concanavalin, HIV-
protease, elastase, thermolysin, carboxypeptidase, thrombin, dihydrofolate reductase, human
rhinovirus, and fructose bisphosphatase

h<1.0A, <1.5A, <2.0A, and >2.0 A; of course the smaller the rmsd the better

Since the greedy strategy is applied after each expansion step also the final number of
placements generated by FLEXS amounts to at most k, all of which are plausible placements.

JIn contrast to protein-ligand docking ligand, superpositioning relies purely on a compar-
ison of ligand structures.
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Table 1: Results using FLEXS with the original and any of the generated scoring schemes

labeled by the type of algorithm given in the first column. The remaining four columns show

the percentage of instances having superpositions with four specific rmsd. The difference in
percent between the original and the generated scoring schemes is provided in brackets.

1st rank

method

<1.0A <15A <2.0A >2.0A
original 16.2% 32.4% 43.3% 56.7%
VALP 17.6% (1.4) | 35.9% (3.5) | 47.5% (4.2) | 52.5% (-4.2)
VLSH(VALP) | 17.3% (1.1) | 35.9% (3.5) | 47.9% (4.6) | 52.1% (-4.6)
CALP 16.5% (0.3) | 35.2% (2.8) | 47.9% (4.6) | 52.1%  (-4.6)
method 1st—10th rank

<1.0A <15A <2.0A >2.0A
original 24.3% 41.5% 52.1% 47.9%
VALP 27.5% (3.2) | 46.5% (5.0) | 58.8% (6.7) | 41.2% (-6.7)
VLSH(VALP) | 27.1%  (2.8) | 45.8% (4.3) | 59.2% (7.1) | 40.8% (-7.1)
CALP 26.1% (1.8) | 45.4% (3.9) | 57.7% (5.6) | 42.3%  (-5.6)
method all ranks

<1.0A <1.5A <2.0A >2.0A
original 33.1% 53.5% 63.0% 37.0%
VALP 33.5% (0.4) | 53.5% (0.0) | 65.1% (2.1) | 34.9% (-2.1)
VLSH(VALP) | 33.1%  (0.0) | 53.9% (0.4) | 65.1% (2.1) | 34.9% (-2.1)
CALP 33.1% (0.0) | 53.5% (0.0) | 64.4% (1.4) | 35.6% (-1.4)

with an rmsd <2.0 A appears to be a promising first step. It is encouraging
that all experiments indicate improvements in all categories, especially since
the test set is about two times larger than the training set.

3.2  Threading of protein sequences and structures

Threading methods map protein sequences onto known protein structures in
order to find the most compatible fold using empirical objective functions.
These objective functions (similarity measures) are statistically derived from
known protein structures using the inverse Boltzmann law !°. Many proposals
for such empirical potentials have been made in recent years!'. General agree-
ment has not been reached yet, neither about the scoring function nor about
the threading method. It is apparent, however, that such scoring functions
have to involve several contributions, the exact balancing of which influences
the outcome and the performance of the respective threading experiment in
non—trivial ways.

Here, we show that the careful choice of such weighting parameters is
crucial by applying calibration methods which significantly improve the fold



Pacific Symposium on Biocomputing 4:482-493 (1999)

recognition rate. An orthogonal approach to the determination of weights is
taken by parametric alignment methods 1213, Unfortunately, for more than
two parameters, the parametric alignment methods are still much too slow to
allow for optimal parameter selection.

Methods Many methods have been proposed for threading!!. In
order to perform a systematic analysis of relevant parameters and parame-
ter settings for the calibration methods a very fast program is necessary. We
therefore choose the 123D ' method, as implemented in the ToPLign package*.
It is extremely fast and optimizes an interesting new empirical scoring poten-
tial. 123D uses a dynamic programming algorithm to compute, for a given
sequence seq and given weights w, an optimal ranking list of a set of folds
F. The ranking is derived from the scores of the corresponding optimal align-
ments. 123D has been developed to optimize a new type of scoring potentials
(called contact capacity potentials CCP 1), but also exploits standard scoring
contributions. One goal of the experiment described here is to evaluate the
CCP potential and to derive an optimal weighting of the contributions in order
to improve similarity searches.

123D threads a sequence of length n = 150 amino acids in about 15 minutes
CPU time on a current workstation/PC against the entire set of about 13.000
PDB ! chains. A threading run against the representative set of 251 proteins
used in this study requires about 20 seconds.

Relevant parameters For the scope of this paper we consider
six terms of the objective function used in 123D: a sequence score (segp), a
secondary structure preference (ssp), a ‘local’ contact capacity potential (ccpl),
a ‘global’ contact capacity potential (ccpg), and an affine gap penalty function
with gap insertion costs (gi) and gap extension costs (ge) . These terms are
evaluated independently for three types of secondary structure elements: alpha
helix (H), beta strand/extended (E), and all other conformations/loops (L).
The reason for this distinction is the different degree of structural conservation,
and the corresponding level of confidence, in secondary structures, structural
cores, and loops. The following objective function to be maximized combines
the 18 relevant terms for an alignment A ':

score?(seq, f) = Z Wij * C%(Se% 1)

i€{H,E,L}
j€{seqp,ssp,ccpl,ccpg,gi,ge}

For any setting of the weights w, 123D guarantees to compute optimal

kavailable via http://cartan.gmd.de/ToPLign.html (case sensitive!)

!The scoring terms cg‘;(seq,f) for a given alignment A are defined by summing the re-
spective scoring terms (dependent on amino acids, contacts and the like) over the positions
of the alignment A.
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sequence—structure alignments, i.e. an alignment of the sequence seq with the
fold f € F that achieves the maximal score max 4 score? (seq, f). Hence, for
any threading instance with given weights w and sequence seq, 123D computes
| 7| optimal alignments and the corresponding scoring contributions. These are
used as a sample of candidates in the calibration procedure.

Our data set is derived from (HS25)15™. We used the SCOP classification
in order to select 81 proteins from 11 families each with 5 or more members as
training set TR and an additional 74 proteins from 24 families as test set TS.

Calibration For the calibration approach described here, we in-
terpret a fold recognition experiment as follows: Given a problem instance
consisting of an objective function score = we (with defined weights w), a se-
quence seq, and a set of representative folds F = {f1,..., fx}", the threading
problem is: Compute the set of all optimal alignments of seq with all folds of F
with respect to score. A ‘similar’ fold f with sufficiently high ‘confidence’ in
the similarity may be used to predict a putative fold for seq and in some cases
allows for using f as a template structure to derive a 3D model for seq. For the
fold recognition problem, in addition, a partition FAM of F into disjoint fold
families Fy is given. We say a sequence seq is recognized by its family Fs.q,
if any member of Fs., (excluding the native fold fseq) scores highest. In this
setup, the training set TR is the union of certain families and the test set TS is
another union of families disjoint from TR. The candidates for the calibration
of weight parameters are all alignments computed via the threading of the
sequences from TR. Reference solutions are those aligned sequence structure
pairs being classified into the same family °. This situation perfectly fits the
CIM problem definition. The goal of the calibration, as defined by CIM, is to
find weights w such that the number of recognized folds is maximized. Note
that, in general, changing weights leads to changed optimal alignments and,
thus, to new sets of candidates. Therefore, we repeat cycles of threading and
subsequent re-estimation of weights.

In order to apply the algorithms developed for VIM to the fold recogni-
tion problem, we need to define a single reference structure for each problem
instance seq. Here, we initially choose the most similar structure from F,.,
according to structural superposition. Despite VIM aiming at scoring the ref-
erence structures higher than all others it may happen that different family

™available from EMBL: ftp://ftp.embl-heidelberg.de/pub/databases/pdb_select/

"Note that for our purposes here, we have seq € F, i.e. we know the structure of all
sequences involved.

°We exclude native sequence structure pairs, since fold recognition is intended to be
applied to sequences of unknown structure. Furthermore, 123D easily recognizes native
structures for a broad range of possible parameterizations of the scoring function, any of
which would equally well solve the resulting calibration problem.
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Table 2: Number of correctly recognized folds as defined in the text from the training set

(top half) and test set (bottom half). This measure of success is shown for the standard

weights (iteration zero) and for the following iteration cycles applying the different calibration

algorithms. As a point of reference, a purely sequence based approach recognizes 31 of 81
folds for the training set and 17 of 74 for the test set.

iterations on the training set

method

zero | 1st 2nd 3rd 4th 5th 6th 7th

35 34 (-1) 36 (+1) | 30 (-5) 30 (-5) 30 (-5) 31 (-4) 28 (-7)

35 36 (+1) 44 (+9) | 46 (+11) | 49 (+14) | 48 (+13) | 46 (+11) | 48 (+13)
VLSH(centr) 35 37 (+2) 41 (+6) | 41 (+6) | 38 ( +3) | 46 (+11) | 47 (+12) | 41 ( +6)
VLSH(VALP) 35 36 (+1) 48 (+13) | 45 (4+10) | 45 (+10) | 45 (+10) | 49 (+14) | 49 (+14)

iterations on the test set

method

zero | 1st 2nd 3rd 4th 5th 6th 7th

26 28 (+2) 24 (-2) 17 (-9) 19 (-7) 15 (-11) 16 (-10) 17 (-9)

26 29 (+3) 31 (+5) 29 (+3) 31 (+5) 30 (+4) | 30 (+4) | 30 (+4)
VLSH(centr) 26 30 (+4) 27 (+1) 34 (+8) 33 (+7) 31 (+5) | 31 (+5) | 32 (+6)
VLSH(VALP) | 26 | 29 (+3) 31 (+5) 32 (+6) | 33 (+7) 32 (+6) | 34 (+8) | 31 (+5)

members score higher for some sequences. Accordingly, we reselect the refer-
ence solution after each iteration of threading and calibration as follows: taking
the latest threading result, the highest scoring member of F;., becomes the
new reference structure for seq. In our experiments, this strategy appears to
converge quickly, both with respect to the recognition rate and the resulting
weights.

Results For the threading parameter calibration we have per-
formed several experiments, each iterating parameter calibration? followed by
the recomputation of the threading alignments. Table 2 exhibits the recogni-
tion rates using the different calibration methods during the iterations. The
results are given for both the training and test sets. Consistently for all calibra-
tion methods except CALP, we observe a significant increase of the recognition
rate. However, we also find quite a few differences in the convergence and the
stability of the respective optimized weightings.

Table 2 shows that 35 out of 81 sequences are found with all parameters
having equal weight. Calibration with VLSH(VALP) leads to 36 recognized se-
quences in the first iteration. A substantial increase (to 48 cases) in the recog-
nition rate due to the reranking of the alignments is obtained in the second
cycle. Unfortunately, this is not fully sustained in the subsequent recompu-
tations. Finally, in iteration 7, we obtain a parameter setting which not only
yields 47 recognized sequences after recalibration, but even 49 hits after recom-

Pusing one of the different methods as described in section 2
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putation with these calibrated parameters. Overall, this is an improvement of
almost 40% starting from 35 recognized sequences. Additionally, for the much
more difficult test set, we start with a recognition rate of 26 sequences out of
74, which is already a remarkable improvement over the 17 sequences recog-
nized with pure sequence alignment. The sustained performance increases to
well above 30 sequences with a peak rate of 34 recognized folds, i.e. doubling
the rate of pure sequence alignment.

In all experiments, the sequence scores are weighted quite heavily as com-
pared to the other contributions. This is remarkable for two reasons: First,
the recognition rate for pure sequence alignment is only around 30 recognized
sequences . Thus, threading with the trivial weights already results in an im-
provement by about 15% above the sequence alignment recognition rate. Us-
ing our new weighting, the improvement in recognition rate increases to more
than 50% as compared to sequence alignment. Second, the sequence identities
among the family members are at most 25% by definition. Moreover, if we
analyze the sequence identities not for optimal alignments but structural su-
perpositions the percent identities drop well below the number which is to be
expected by chance, i.e. below 17-18% (often even below 10%).

A more detailed analysis of the recognized sequences over the iterations
also reveals that the procedure is well-behaved along its way to an improved
parameter setting. In the first major improvement of the recognition rate from
36 to 48, only one sequence previously recognized is lost and 13 additional
sequences are found. Just 5 sequences find a different family member scoring
highest as compared to the previous run. Only the second iteration shows
some divergence in that 7 sequences are lost and 4 new sequences are found
leading to a net loss of three recognized sequences ™.

4 Conclusions and Outlook

We applied novel calibration techniques to the calibration of empirical scor-
ing functions of two important molecular comparison problems. Significant
improvements could be achieved for both applications.

Using a carefully parameterized scoring function for threading improved
the recognition rate on our test data from 35 to 49 sequences (43% to 60%,
respectively), i.e. an increase of about 40%. In small molecule superposition
significant improvements of the performance of our approach could be achieved,
too. This demonstrates the usefulness of parameter calibration and the capa-
bilities of our methods.

9depending on gap parameters and scoring matrix
"In three cases different top ranked family members are recognized.
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The efficiency of our approaches, both of the application software and
the calibration methods, is essential for carrying out the proposed parameter
optimizations and to achieve the presented improvements. Using prominent
alternative approaches, as for example THREADER ' for protein threading or
GAsP!7 for ligand superpositioning, would result in a tedious procedure because
of the computational costs. However, even with our fast application methods
simple gradient-based parameter optimization would require many iterations
and thus days and weeks of computing time.

Currently, our calibration approaches detect local optima, at best. Ac-
cordingly, improved strategies to find global optima have to be developed in
future work. Also, the choice of a representative training set and an appropri-
ate sampling of solution candidates have the potential to further improve the
scoring functions and will be subject of future research.
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