
IMPROVING THE EFFICIENCY OF A USER-DRIVEN

LEARNING SYSTEM WITH RECONFIGURABLE

HARDWARE. APPLICATION TO DNA SPLICING.

E. LEMOINE, D. MERCERON, J. SALLANTIN

LIRMM, 161 rue Ada, 34392 Montpellier cedex 5, France

flemoine,merceron,sallanting@lirmm.fr

E. MEPHU NGUIFO

CRIL - IUT de Lens, Rue de l'universit�e SP 16, 62307 Lens, France

mephu@cril.univ-artois.fr

This paper describes a new approach to problem solving by splitting up problem
component parts between software and hardware. Our main idea arises from the
combination of two previously published works. The �rst one proposed a con-
ceptual environment of concept modelling in which the machine and the human
expert interact. The second one reported an algorithm based on recon�gurable
hardware system which outperforms any kind of previously published genetic data
base scanning hardware or algorithms. Here we show how e�cient the interaction
between the machine and the expert is when the concept modelling is based on
recon�gurable hardware system. Their cooperation is thus achieved with an real
time interaction speed. The designed system has been partially applied to the
recognition of primate splice junctions sites in genetic sequences.

1 Introduction

Molecular biology requires both 
exible and powerful tools to adapt itself to a
rapidly expanding �eld. In such a domain, an active research area in the hierar-
chical approach of sequence analysis is the prediction of primate splice junction
sites from the DeoxyriboNucleic Acid (DNA) sequence. Splice junction sites
are points on a DNA sequence at which 'super
ous' DNA is removed during the
process of protein creation in higher organisms. Established approaches to this
problem have involved handcrafted rules by experts, and statistical methods.
More recently, a variety of machine learning methods 17;24 have been applied:
both neural networks, and symbolic induction. The results of these methods
are often more e�ective and accurate than their human-designed counterparts.
We have therefore successfully applied our system LEGAL 22 to the prediction
of splice junction sites from genetic sequences.

LEGAL methodology 21 focuses on one concept with imperfect domain
theory, builds a concept formulation and the user is able to examine how the
concept formulation is e�cient on data, and how it is possible to force an
evolution of the concept formation. Its methodology is described in a data

Pacific Symposium on Biocomputing 4:290-301 (1999) 



driven way and is based on the di�erent levels expressed by Russell 27 when
searching for an abstraction using the domain of number theory. We have
extended Russell's process by relying it to Lakatos' work 12;16 on proofs and
refutations in order to establish a cooperative control between the user and
the system. As we deal with an imperfect domain theory, initial data may
be incomplete or may contain many biases. Our goal is to �nd a constructive
concept formation that gives to the user the tools to formulate a concept and
to revise this formulation with a human admissible 
ow of interaction. As
reported by Clark and Rawlings 5, the output of LEGAL forms part of an
active dialog with the user which may be critiqued so that the �nal hypothesis
is a synthesis of human knowledge and the empirical data.

However, the progresses made all around the world concerning the mapping
and sequencing of the genome of Homo sapiens and other species have increased
the size of databases exponentially. Therefore even the best workstation would
not be able to reach the scanning speed required. Consequently, this will limit
the cooperation between the user and the system as the required speed for
an active dialog would considerably decrease with a huge amount of data.
So to avoid this shortcoming, we have designed a new method based on the
partition of problem component parts between software and hardware 11;15;29.
As it had been already demonstrated, many advantages arises from the use of
an accelerator dedicated to molecular biology such as 18:

� the interaction between the user and the system is possible with an ad-
missible time complexity;

� many operations can be done;

� the user has enough time to validate the results produced through its
cooperation with the system;

Our approach derives from a new pattern matching algorithm 18 based
on recon�gurable hardware, A2

R
2, that outperforms any kind of previously

published genetic database. This algorithm runs on a new kind of massively
parallel and low cost computer now available: the recon�gurable hardware sys-
tems. It is based on a bit level operation model that enables the implementor
to �t the hardware to the problem rather than distorting the problem to �t the
computer. The main idea with A2

R
2 was to signi�cantly increase the speed

of an algorithm for molecular genetics in order to increase the quality of the
results produced.

Our approach is based on hardware/software dynamic recon�gura-
bility through data behavior and result interpretation. The problem
solving is partitioned between several units (see �g 1). The system adjusts

Pacific Symposium on Biocomputing 4:290-301 (1999) 



the hardware/software design according to its use and to the user behavior
during the application execution. Thus, we expect to have the best algorithm
for the best architecture. As a matter of fact, our approach can be seen as
an optimization of problem solving. Figure 1 illustrates the stream controls
between the three design units:

� User interface : takes charge of the hardware/software partition. This
unit assumes the interface between the hardware/software mapped func-
tions and the user actions.

� Software : takes charge of functions to be mapped on the software.

� Hardware : takes charge of functions to be mapped on the hardware.

DataBase

User interface

Queries
Wiring

DataBase

send
Results

Hardware

Software

Hardware

modifications

Satisfaction

%Querie

answers

Figure 1: Relation between our approach units. Our approach admits 3 layout
units (user interface, software, hardware) in which several data streams allow a good com-
munication. In this case, the user requests to the user interface, which makes a �rst hard-
ware/software partition and hardwires the queries on the hardware unit. After sending the

database, the user (knowing the results) may modify his queries or request new ones.

The paper is organized as follows. Section 2 overviews the system LEGAL
which is an implementation of concept modelling. Section 3 describes our
dynamic approach. Section 4 illustrates comparative results obtained with
or without our recon�gurable hardware system using DNA splicing problem
7;10;19. As many works have been devoted to software/hardwaremethodologies,
the last section discusses the strengths of our approach.

2 Concept Modelling: An Overview of LEGAL

We review here the foundations 21 of LEGAL. Automated knowledge acqui-
sition and machine learning systems generally consist in de�ning a language

Pacific Symposium on Biocomputing 4:290-301 (1999) 



description, �nding an abstraction, and validating it on data. Our process of
concept abstraction is progressive and requires di�erent levels.

The �rst level is related to the choice by the user of the examples char-
acterizing the concept. At the second level, the language used to describe
objects is de�ned. Level 3 de�nes regularity, which is a feature that is re-
trieved among objects descriptions. A regularity is a conjunction of attributes
which often holds for an example, like the presence of GGTG at the middle
of sequence segment. Level 4 is related to hypothesis, which is a combina-
tion of a regularity and a subgroup of objects, such that those objects verify
the regularity. Concept formulation in level 5 is related to an organization of
hypothesis which is a lattice of hypothesis.

Knowledge acquisition is achieved by �rst validating concept formulation
on new data sets, and then by interacting with the user. These are the aims
of levels 6 to 9 which respectively express decision and argumentation using
concept formulation. The decision in LEGAL is expressed by two di�erent
reasoning mecanisms. The �rst one, similar to that de�ned by Peirce 25, is
called empirical reasoning which is a deduction based on a principle of
majority vote onto the set of built regularities. The second one, analogical
reasoning, is based on a similarity measure to a reference set of objects, which
can be for example the training set of examples and counter-examples.

These decisions initiate an interaction between the user and the system, so
that the system becomes able to provide a plausible explanation to the user,
who in turn can validate or refute it. The control is partially based on the
notion of objection. An objection is what is su�cient on an object to refute it as
an example. There are two kinds of objections. The �rst one, termed general
objection is a su�cient reason to reject an object. The user may analyse
built general objections and reject thoses which are not relevant. For example
in biology it is well-known that there is a consensus for good splice junction
sites in about 90% of cases. If the user rejected it as an objection, he can then
introduce in the training set, some objects that have no consensus. He can also
change the object description. In both cases this allows the system to re�ne
its knowledge. Contextual objection is related to a reference example given
by the user. Searching contextual objections comes to build new existential
propositions that can be experimentally refuted. Thoses qualities expressed
modi�cations required to an object to be an example.

The cooperation between the user and the system allows to return to pre-
vious levels if the user critics the system justi�cation. The concept formulation
is re�ned by removing or modifying this knowledge. Recent years have wit-
nessed a growing interest in developping multistrategy systems that integrate
two or more inferences types and/or computational paradigms 20. Our goal

Pacific Symposium on Biocomputing 4:290-301 (1999) 



in LEGAL has been to build di�erent strategies (induction, deduction, anal-
ogy) that are from now handly managed by the user. Such goal allows the
system to take advantage of the complementarity of di�erent inference types
of representational mechanisms.

In a domain such as molecular biology, there is often a great exchange of
information between the user and any dedicated system when analyzing new
sequences. This interaction may really decrease the utility of LEGAL if the
dialog with the user isn't done with an admissible required speed. In order to
avoid this shortcoming, we have designed a new methodology which is based
on dynamic recon�gurable hardware.

3 Recon�gurable Hardware and CoDesign

The recon�gurable hardware concept, as well as its implementation with Field
Programmable Gate Arrays (FPGAs) was introduced by di�erent teams at the
end of the Eighties. Vuillemin, Lopresti and Kean described various systems
based on this concept2;9;8. In fact, this concept had been latent in the literature
since the Seventies. One of the �rst to have expressed it was Scha�ner 28 in
1972. However, it is only with the arrival of the SRAM based FPGA in 1985 by
Xilinx that it became possible to implement this concept. The characteristics
of recon�gurable hardware are, a great development facility, together with a

exibility that is only encountered in programmable systems. The level of
performances reached by a recon�gurable hardware are those of a dedicated
system.

3.1 The Experimental Platform

FPGA

Basically a FPGA is a grid of small memories 16x1 bits interconnected by a
network across the whole grid. These small memories are lookup tables that
can implement any logic functions of four variables. In the FPGA that we
used, the lookup tables are grouped by two with two additional 1 bit registers
and form a CLB (Con�gurable Logic Block) the basic element of the Xilinx
FPGA. The network is fully con�gurable, each interconnection is made with
on pass transitors controlled by the state of an one bit static memory. The
bitmap (bitstream �le in the FPGA terminology) form by all this one bit
memory plus the CLBs look-up table was download in the FPGA before the
execution. Therefore change the design of an FPGA is done by download a new
bitstream �le that con�gurate the interconnections between binary functions
(CLB look-up table).

Pacific Symposium on Biocomputing 4:290-301 (1999) 



DecPerle-1

The experimental platform is constitued by a DEC workstation and a co-
processing card attached to it. This card contains 23 Xilinx FPGAs and 4
MBytes of SRAM. 16 FPGAs are connected in a 2D array with local intercon-
nection and memory buses. Therefore 5120 (16 � 320: 16 FPGA, 320 CLBs
per FPGA), binary fonctions, equivalent to 1 bit arithmetic and logic unit, can
be evaluated, at each cycle, in the array. The maximum bandwidth between
this array and the memory is 320 MBytes/s with an access time from SRAM
to FPGAs of 50ns. The hardware is connected to a DecStation 5000/240 by a
bus TurboChannel at 100 MBytes/s.

On this workstation the design is developed in C++ and translated through
Xilinx tools in a bitstream con�guration ready to be loaded on the FPGAs.
The bitstream con�guration can be considered as a unique nanoinstruction of
1.4 Megabits width that loads itself in less than 50 ms on the card 30.

3.2 Design Framework

Our approach is based on hardware/software dynamic recon�gurability through
data behavior and result interpretation. The problem solving is partitioned
in between several units such as User interface, Software or Hardware (see
�g 1) that take charge of a set of functions. The system adjusts the hard-
ware/software design according to its use and to the user behavior during the
application execution. After running, we expect to have the best algorithm for
the best architecture. The streams (represented by loops in the �gure) are :

� User interface/Software stream : The user interface con�gures the
software unit for the problem solving (after the hardware/software par-
tition). It can receive informations back from the software compilation
(errors, possible optimizations) or results from the software execution.

� User interface/Hardware stream : The user interface con�gures the
hardware unit for the problem solving (after the hardware/software par-
tition). It can receive informations back from the hardware compilation
(wiring & placement problems) or results from the hardware execution.

� Hardware/Software stream : This stream constitutes in fact the
hardware/software re�nement in order to reach the optimal problem solv-
ing. It also allows a hardware/ software data exchange.

Pacific Symposium on Biocomputing 4:290-301 (1999) 



MajAnd : A threshold Parallel Counter

In order to implement the majority vote needed by the empirical proof we used
a parallel counter (PCs) with a thresholded output. Dadda in6 has described an
optimal combination of PCs as building blocks. For the application purpose we
only need PCs smaller than (31,5) therefore with a 5 inputs CLB (two 4 inputs
look-up table grouped in one) we can implement any threshold functions thus
realize an n inputs majoritaire And with just an extra cost of one CLB over
the corresponding (n,m) PCs. We change the threshold by writing straight
into the bitstream con�guration of the FPGAs into the corresponding CLB
look-up tables.

Regularity 1

Regularity 2

Regularity 3

Regularity 4

Regularity 5

Regularity 6

Regularity 7

Regularity 8

Regularity 9

Regularity 10

Regularity 11

Regularity 12

MajAnd1

MajAnd2

MajAnd3

LEGAL

Learning

LEGAL regularities

Categorisation
Regularities categories

Results

Decision

Regularities

Wiring script

choice

Sequence study on DecPerle-1 board

Figure 2: Genetic sequence study through our approach.

3.3 Hardware/Software LEGAL Implementation

Basically the LEGAL system de�nes three levels (see �g 2) :

The �rst step is dedicated to the learning of a set of example and
counter example. For each set in input the learning algorithm
produces a set of regularities that characterizes the set and con-

cept associated with it. This step is performed totaly in software owing to the
complexity of the operations involved and also because it is not interactive and
therefore can be executed in batch mode.

Pacific Symposium on Biocomputing 4:290-301 (1999) 



The categorisation level is performed directly by the biologist
through an interface that requires little computing time.

The third stage is a loop between the biologist's queries set and
data bases answers. A query based on a sub set of regularities
generated by the previous stages of LEGAL is translated in a

wiring script and then integrated in the bitstream produced by the wiring
script. Eventually the bitstream is downloaded in the DecPeRLe-1 board and
the data base scanning can start. The answers produced by the scanning are
dispatched to the biologist who interacts and requests a new set of queries
closing the loop.

The most time consuming and time critical part of the LEGAL
system is the data base scanning with a subset of regularities. The
regularities are formed by a set of Binary Substitution Vectors

(bsvs). A bsv is simply the list of authorized letters at the position of the
vector. A regularity of length N on an alphabet of L letters is made up by a
list of N bsv of L bits. For example [A,G]...G..[C,T,G] is a regularity (. is a
short cuts for [A,T,G,C]) that can match with sequences like AtttGaaC or
GataGccT.

Let us now examine how the detection of a given regularity is translated
into the hardware. The key point is to �t a bsv with a lookup table. Then a
4x1 (20x1) bit lookup table implements a nucleotide (amino acid) bsv. This
is due to the number of bits necessary to code the nucleotide or amino acid
alphabet. As we have already pointed out one CLB contains two 16x1 bit
lookup tables. One CLB can implement two nucleotide bsv or one amino acid
bsv by bringing together each of their lookup tables of 16 bits. A regularity is
made up of a certain number of bsv therefore a motif detector is made up of
several CLBs whose outputs are combined by an AND gate. See �gure 3.

CLB CLB CLB CLB

match-mismatch lines
& ACK

Data In

pipeline bus : DNA 2bits, Protein 4 or 5 bits 

Figure 3: Scheme of a single regularity detector.

The data base is injected nucleotide by nucleotide sequentially and is

Pacific Symposium on Biocomputing 4:290-301 (1999) 



pipelined in the FPGA in such a way that a new word can be presented at
each cycle to all the regularity detectors. The pipeline can be seen as a window
that moves along the sequence. The output of each detectors are connected
to the inputs of a Majority And according to their categories. The output of
MajAnd are directly sent to the host station or through a hard wired decision
function (implemented with a look-up table).

4 Benchmarks

In order to estimate our approach performances, let's have a look at the main
benchmarks for the three streams previously introduced.

4.1 User interface/Software stream benchmark

This stream is the less used in our system. Its consists in com-
piling the software unit, which takes arround 2 seconds, and in
sending the results to the user interface. This step is almost im-

mediate, but still depends on the way to present the results (for instance, a
Yes/No answer will spend less time than a statistic answer).

4.2 User interface/Hardware stream benchmark

Once the user has queried the system, the queries must be wiried
on the hardware unit. This stream (which is actually the slowest)
is totaly depent on the wiring and routing tools performances.

The system can easily wire 64 regularities per FPGA XC3090 (used on the
DecPerle-1) with a 60 letter width pattern size. To be accomplished, this step
requires around 100 seconds per FPGA for wiring, placing and downloading
the queries on the hardware unit.

4.3 Hardware/Software stream benchmark

In order to have a better idea of the time scales, we will, in this
section, compare the application on the DecPerle-1 board with the
same application running only on a R3000 processor (40 Mhz).

Once programmed in C, the R3000 software has been strongly optimized thanks
to the -O3 compilation option and the pixie pro�ler tools. We also assume an
optimistic 1 cycle per instruction and an in�nite size cache. The performances
depend on the type of study we want to make. The �rst one concerns n
sequences with a PatternSize size, where PatternSize is the width of the study
pattern (see �g 4).

Pacific Symposium on Biocomputing 4:290-301 (1999) 



CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGT...

step 1

step 2

step 3

studied sequence
pattern

pattern

pattern

step n

Sequence 1 Sequence 2 Sequence 3

Figure 4: N genetic pattern studied with the pattern size equal to the sequence

size. We study here n sequences where both pattern and sequence sizes are equal. We
therefore need to serialy send the genetic sequences to the board which will make a logical

shift before starting the study.

In this case the speedup obtained by wiring queries is 440. This
result is independant of the sequence size and pattern size. This is due to a
logical shift on the hardware unit that slows down the sequence analysis

The second kind of study concerns only one sequence of size S on which
we shift the pattern. We would use this kind of study for the whole genomic
sequence (see �g 5).

step 1

step 2

step 3

studied sequence

pattern

patternstep n

pattern

pattern

CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGT...

Sequence 1

Figure 5: Genetic sequence studied by shifting pattern. We study here a sequence by
shifting nucleotide by nucleotide the window onto the sequence.

For the di�erent types of studies, we can obtain the following formulas to
calculate the time spent, where n is the number of sequences studied, S is the
sequence size, and PSize is the pattern (or window) size.

Type of study R3000 (40 Mhz) DecPerle-1 (40 Mhz) SpeedUp

n seq. with S=PSize 11.10�6*n*S (s) 25.10�9*n*S (s) 440

one sequence size S 11.10�6*S*PSize (s) 25.10�9*S (s) 440*PSize

5 Summary and Conclusions

We have shown that a Software/Hardware architecture is a solution for con-
structive concept modelling in a �eld such as molecular biology. This derived

Pacific Symposium on Biocomputing 4:290-301 (1999) 



platform has been tested for the LEGAL empirical reasoning level. Our ap-
proach opens a new �eld to genetic sequence investigation because we are able
to speed up the scanning of genetic databank and to control the time required
by the interaction between the user and the databank when he tries to build a
new concept. This acceleration allows a best control of the knowledge acquisi-
tion process as increasing the 
ow of results is su�cient to achieve statistical
interpretation and interactive construction of a concept.

In our methodology the more the user is satisfy by the given result, the
more the time to retrieve new results is accelerated (see �g 6). This is a
consequence of the fact that the user has gained con�dence with the hardwiring
queries. However two main limitations of this work arise from the knowledge
management 26 and the sequence description language which is due to the
di�culty to take in account knowledge provided by the sequence secondary
structure.

DecPerle1
(Hardware)

DecPerle1
(Hardware)

R3000
(Software)

R3000
(Software)

Number of studied nucleotid

Time (s)

0 100 500 1000 1500 2000

8

9

1201000

10

10

2*
7

7

10

10

Figure 6: Hardware and software genetic sequence study comparison. This �gure
shows the number of nucleotide studied during a given time. The hardware study needs
around 100 s for hardwiring the new queries (we use one FPGA here while we could use 16
times more). The intersection between hardware and software study is for 107 nucleotides.

Acknowledgments

Financial support for this work has been made available by French programmes:
GDR 1029 (Informatique et Genomes) and GIP GREG. Most of this research
was completed while all the authors were at LIRMM. Thanks to our latex
guru, Olivier Roussel. We would like to thank our anonymous reviewers.

Pacific Symposium on Biocomputing 4:290-301 (1999) 



References

1. Proc of ACM Intl. Symp. on Field Programmable Gate Arrays, ACM
Press, (1997).

2. P. Bertin et al, Systolic Array Processors, Prentice Hall, 300-309, (1989).
3. P. Bertin et al, Proc of the Symp. on Integrated Systems, (1993).
4. S.D. Brown et al, Field Programmable Gate Arrays, (1992), Kluwer.
5. D.A. Clark and C.J. Rawlings, CABIOS, 10(2), 199-205, (1994).
6. L. Dadda, Alta Frequenza, 19, 349-356, (1965).
7. J. Ficket, Nucleic Acids Research, 10, 5303-5318, (1982).
8. J.P. Gray and T.A. Kean, Proc of Caltech Conf., 279-295, (1989).
9. M. Gokhale et al, IEEE Computer, Vol. 24(1), 81-89, (1991).
10. M.R. Green, Annual Review Genetics, 20, 671-708, (1986).
11. R. K. Gupta and G. De Micheli, IEEE TR No. CSL-TR-92-518, (1992).
12. F. Hayes-Roth, Machine Learning: An AI Approach, 221-240, (1986).
13. Proc IEEE Symp. on FPGAs for Custom Computing Machines, (1996).
14. J.H. Jenkins, Designing with FPGAs and CPLDs, Prentice Hall, (1994).
15. A. Kalavade and E.A. Lee , IEEE Design & Test of comp., 16-28, (1993).
16. I. Lakatos, Preuves et Refutations, Hermann Ed, (1984).
17. A. Lapedes et al, Proc. of the Interface between Computation Science and

Nucleic Acid Sequencing Workshop, Addison-Wesley, 157-182, (1990).
18. E. Lemoine et al, Proc. of ISMB, (1994), AAAI Press, Standford, CA.
19. M. Li, Proc. of IEEE symp. on Found. of Comp. Sci., 125-134, (1990).
20. Machine Learning Journal, 11, (1993).
21. E. Mephu Nguifo and J. Sallantin, Proc. of ISMB, 292-300, (1993).
22. E. Mephu Nguifo, Proc. of TAI, IEEE Press, (1994).
23. W.R. Moore and W. Luk, FLP'95 - LNAI, Springer-Verlag, 975, (1995).
24. M. O. Noordewier et al, Advances in NIPS, M. Kaufmann Ed, 3, (1991).
25. C.S. Pierce, Reasoning and the Logic of Things, Havard U. Press, (1898).
26. H. Ripoche et al, Proc of GIW, (1994), Japan.
27. B. Russel, The Principles of Mathematics, A. Unwin Ed., (1956).
28. M. Scha�ner, IEEE Trans. on Computers, C27(11), 1015-1028, (1978).
29. D.E.Thomas et al, IEEE Design & Test of computers, 6-15, (1993).
30. H. Touati, Technical Report TN4, Paris Research Laboratory, (1992).

Pacific Symposium on Biocomputing 4:290-301 (1999) 


