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GENERATION OF HMMs REPRESENTING HIGHLY
DIVERGENT PROTEIN SEQUENCES
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Hidden Markov Models (HMMs) provide a flexible method for representing protein
sequence data. Highly divergent data require a more complex approach togiviivation
than previouslydemonstrated.We describe a strategy of motif anchoringand sub-class
modeling that aidén the constructionof more informative HMMs as determinedby a new
algorithm called a stability measure.

1 Introduction

The genomesof RNA-basedlife-forms (e.g., HIV, Ebola and Measles)exist as
guasi-specieswith accompanyingnutant clouds, due to the rapid rate at which
RNA genomesganreplicateand accumulatesrrors. [Domingo andHolland, 1997]
ThesemutatedRNA genomesrovide us with a highly divergentset of co-linear
genesencodinga variety of enzymatic and structural proteins. Many of the
relationshipsamongtheseprotein sequencedail statistical criteria for homology,
although all biological antfiochemicaldatasupportcommonancestry. We define
such proteins as functionally equivalent “relatives “ in contragtéee membersof
the setwhich are clearly homologous(usually greaterthan 25% identical). When
proteins are this highly divergent,the regionsof commonresiduesthe ordered-
series-ofmotifs (OSM), are those that contribute to the function or structural
integrity of the protein. [McClure, 1991]

The correctidentification of thesestrings of common sub-sequencesr OSM
amonga set of protein sequencess the first stepin multiple sequencalignment.
[McClure, et al.,1994] The secondsteprequiresthe alignmentof regionsbetween
the functionally selectedOSM. The motif-interveningregions (MIRS) are less
constrained by the functional selection operating on the OSM. The MIRs, however,
can be constrained by selectipressurespecificto sub-classesf the sequenceet
and often change more rapidly relative to the OSMIRs canvary widely in size,
and amino acid composition.

To accesghe maximum information containedin primary structuredata both
the OSM and MIRs mudie alignedas preciselyas possible. The OSM definesa
patternamongthe sequencethat allows the possibility of common function and
ancestry. These patterns populatetif databases.The MIRs candefine sub-class
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functional specificities and additional sub-classmotifs. These regions contain
information importantto the reconstructionof the phylogenetichistory of the
protein sequences. All positions in tAkgnmentprovide datathat can be usedto
test a wide variety of evolutionary hypothesesregarding gene and genome
construction. Automatedgenerationof a multiple alignmentof large numbersof
highly divergent homologous and functionally equivalent protein sequencesins
a challenge in the field of bioinformatics.

In the studiesinitiated here we explore a methodof incorporatingthe OSM
information,a priori, using the Hidden Markov (HMM) approach [Rabiner, 1989] to
model highly divergent protein sequence data. [Baldal., 1994, Fujiwara, et al.,
1994, Krogh, et al., 1994, Eddy, 1995, Hugheyand Krogh, 1996] An HMM is
essentiallya stochasticproductionmodel consistingof a linear series of nodes.
Each node contains the observation probabilities for matclinaed states,andthe
transition probabilities betweenmatch, insert and delete states. The SAM 2.0
HMM method,usedin this study, implementsthe full Baum-Welchexpectation
maximizationalgorithmwith the injection of noise to avoid local optima. The
Baum-Welchalgorithm guaranteeshe likelihood of the model will increasewith
eachtraining iteration. [Krogh, et al., 1994] Sequencesre then alignedto the
modelusing the SAM implementationof the Viterbi algorithm. [Rabiner, 1989]
The advantages of the HMM approach are: 1) knowledge gdfttpl@genetichistory
or pairwise orderingis not required,2) indel penaltiesare variable and position
dependent3) the model can provide information regardingstochasticand selected
featuresof a proteinfamily, 4) information can be incorporatedinto the model a
priori, and5) the computationcost of aligning a set of sequenceto an HMM is
linearly proportional to the number of sequences to be aligned.

In earlier studieswe exploredsome of the parametersinvolved in building
HMMs for distantly related protein sequences. [McClure and Raman, 1995,
McClure, et al., 1996] It wademonstratedhat HMM approacheperformas well
as or betterthan traditional dynamic programmingalgorithmsin identifying the
OSM in four benchmarkprotein families. Not even the HMM approaches,
however, can correctly identify the completeOSM in the most distantly related
members in two of the protein families. [compdetafrom McClure, et al., 1994
with McClure, et al., 1996] The correctidentification of the OSM that defines
membershipin a specific protein family or class is the first criterion for
constructinga meaningfulHMM representinghe sequencedata. [see paper by
Hudak and McClure submitted to this proceedings]

We are interestedin the constructionof HMMs that adequatelyreflect the
evolutionaryrelationshipfor the entirelength of all sequence®f a given protein
class. In our attemptsto constructa HMM representingpver 500 unique reverse
transcriptase (RT) sequences foundhe retroid family, we developeda strategyof
HMM construction based on OSM-anchoring and sub-class modeling. These studies
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generatedmultiple alignmentsfrom numerousHMMs requiring an automated
scoring methodo assesghe ability of this strategyin robustmodel construction.
This paperdescribesa multiple alignmentscoring method and the results of our
studies on HMM generation for distantly related protein sequences.

2 Material and Methods

2.1 Platforms and Software

All analyseswvere conductedon SUN Ultras (1/140and1/170) or SPARCstations
(4, 5 or 10/514MPYunning SunOSReleasés.5 or 5.6. Version2.0 of Sequence
Alignment and Modeling (SAM) wasusedfor all studies. [Krogh, et al., 1994,
Hughey and Krogh, 1996]

2.2 Data sets

Two types of sequence relationship distributions were irsé¢ldesestudies:1) low-
to-high sequenceadentity with high similarity; and?2) low identity, low similarity
(LILS). Sequence identity is based on thenberof commonamino acid residues,
while sequence similarity is based on the conservative substitution of amino acids.

In the studiespresentecherewe testedvarious ranges(80-99%, 60-99%, 40-
95% and 20-95%) of low-to-high sequenceidentity with high similarity
relationshipsfound among the RT proteins of the retroviruses. The LILS
relationships ranged from 7-48% identity and included representativesfrom
retrovirus, retrotransposontetroposonand retrointron RT sequences. [McClure,
1993] ThelLILS datasetincludesan evendistribution of RT sequence$rom the
following groups: retroviruses (HT13, NVVO, SFV1, HERVC); gypsy-
retrotransposons (GMGGM17, MDG1, MORG); copia-retrotransposonfCAT1,
CMC1, CST4, C1095)retroposongNDMO, NL13, NLOA, NTCO); andgroup Il
introns (ICDO, IAGO, ICSO, IPL0). GenBankaccessionnumber are L36905,
M60610, X54482, M10976, M77661, X01472, X59545, 727119, X53975,
X02599, M94164, M22874, L19088, X60177, M62862, X98606, U41288,
X71404, 248620, with the exceptionof the copia agent which is from the
Saccharomyces Genome Database.

2.3 Types of Models

Two types of models were tested.dénovo modelis generated by trainingn each
data set with internal sequence weighting to correct for sampling bpaswided by
SAM. Thenall twenty sequencearealignedto this model. A set of sub-class
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modelsare generatedvhenthe sequencesare differentially weighted as sub-classes
basedon the clustering of their pair-wise similarity scores.The LILS data set
contains five sub-classes. The five sub-class models were gerteyadétibrentially
weighting all sequencewvithin one sub-clasg4 sequences/5% of total weight),
relative to the other four sub-classes (16 sequencesp2B8tal weight) during the
training session. These weights are scaled to produce a sum of 20svedgghalto
the sequence weight sum used indb@ovo models. The end result is a setsob-
class models with amino acid probabilities at eastierepresentingboth the OSM
and MIRs (figure 1). The four sequences belongmgachsub-classare alignedto
their respectivemodels. Thesealignmentsarethen stackedtogetherusing an in-
house program to create the final multiple alignment.

De novo and sub-class models were run: 1) with and without model surgery; and
2) with and without priori knowledge of motif identityor location. Model surgery
is a feature of the SAM that allows for the conversion of one state to anothies, or
addition or deletion of states after training based on number of sequkatesoke
a particular stateA priori knowledgeof motif identity andlocationis providedby
the anchoring of the OSM within models, (figure 1).

A preliminary model,for usein the anchoringstrategy,is createdusing the
SAM program modelfromalign and the initial OSM alignment. The SAM
modelingsoftwarealso allows for designationof a humberof specialnhode types
within the model. These special nodes are immune to model surgery. Twatypes
the special nodes are used in the studies presented here totaerdd8M within a
model. Type A nodesareinvariantand cannotundergofurther training. Type K
nodes undergo transition training but not matchnserttraining. The coreamino
acid residues of the motif are assigned Typeofles,while the amino and carboxyl
residuesof the motif are designatedType K. This designationallows for the
transition training into and out of the Type A nodes representing the OSM.

In all of the initial models OSM anchoring is performed by designatiorypé
A and K nodes at the same positions in each model. Gamatasare then addedto
represent the MIR equal to the largest number of amino acid residues jmesactt
regionin the sequencealataset. The genericnodesare then trained by the SAM
buildmodel program.

Each model type was trained on the data set with two differentliimiaries: 1)
the amino acid frequencyof the training set, and 2) a 20-componentDirichlet
mixture as provided in the SAM package.
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Figure 1. Schematic representation of OSM anchoring and sub-class modeling strategy.

A) ldentification of the OSMn each sequence. B) The OSM is anchoredby designationas special
nodesat the samepositionin each model. C) The numberof generic nodesaddedto all sub-class
modelsbetweenthe OSM equalsthe largestnumberof residuesin each of the MIRs. D) HMM
modelingwithin and betweensub-classeso align the MIRs. E) Sub-classmodels with amino acid
probabilities at each node for the OSM and the MIRs aligned across sub-classes. F) Eligtipient
of the OSM and the MIRs. Romannumeralsrepresentthe OSM, and periodsrepresentamino acid
residues in the MIRs. Asterisks represent generic nodes. Dashes represent gaps.
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2.4 Model parameter settings

All modelswere run with the samerandom seedsand at the default parameter
settings except: Nmodels = 5, Nsurgery =5, del_jump_conf = 50, match_jump_conf
=50, ins_jump_conf= 50 and insconf = 100000. In the de novo models the
internal_weight is 2.In the sub-classificatiormodelsthis parameteiis setto zero

so that our differential weighing is notodified. Inclusion of the externalweights

file is done using the sequence_weightparameter. The Dirichelet library is
specified with the prior_library = recode2.20comp setting.

2.5 Methods for scoring HMM generated alignments

We have created an algorithm to score the multiple alignments generatedtdst the
models. Algorithms that haveuseda column entropy measureto find conserved
regions have proved successful. [Shenkin, etl8B1] Sinceentropycalculations
experiencehe smallestchangein the OSM and the greatestchangein the MIRs
columnsthey are unsuitablefor averagingover the entire alignmentto generatea
single score.Our algorithmis basedon a column stability function similar to an
entropycalculationthat is averagedver the entirealignmentlength. All match,
insert and delete statesare included in the calculation. The stability measure
algorithm is given by:

n
S=(X -(L/TM)(log(1.0+c-({/T))))/n

WheresS is the alignmentscore,n is the alignmentlength, L, is the countof the
largest group found at column i, T is the total number of sequencesn the
alignment, c is aonstantcurrentlysetto 0.05, log is the logarithm base2. The
constant,c, canbe any value greaterthan zero. It preventsthe stability function

from having a value of infinity with a full column count. It alatbows for scaling

of the stability values. At the current setting the column scoresoxemthe range

from 0.003 for a 0%olumn countto 3.0 for a 100% column count. The current
implementation of thelgorithm produceshreescoresM, M1, andM2, basedon

the largest group coumtf eachcolumn. The amino acid countsare currently based

on three sets based on two levels of Dayhoff matrix conservative substitution: 1) the
amino acid identities, (M); 2) ILMV, AG, ST, DE, NQ, C, FY, W, RK, H, P,

(M1); and3) ILMV, AGPST, DENQ, FYW, RKH, C, (M2). Eachmemberof a

group receivesa count of one. This scoring method, that we call a stability
measure, was designed to reflect the types of changes made by an expert in refining a
multiple alignment. Expert refinementsare introducedwhen obvious regions of
identify or similarity are not detectedby the alignmentmethodor when alternative



Pacific Symposium on Biocomputing 4:162-170 (1999)

positioning of insertions/deletionsvould eitherincreasethe similarity amongthe
MIRs or minimize mutationaleventsnecessaryo align one sequencdo another.
Our scoring method shows a positive correlatidth the OSM count scoringused
in our previous HMM construction studies. [unpublished data]

3 Results

All studieswere conductedas describedin the Material and Methods regarding
parametesettingsand prior libraries. In all studiesthe use of a 20-component
Dirichlet mixture producedbetteralignmentsas assessetly the stability measure.
[unpublished data and table 1] Thessultswere expecteddueto the small size of

the training set (20 sequences). [Browhal., 1993, Sjolander.et al., 1996] The

OSM was found in thele novo HMM generatednultiple alignmentsfor the range
tests of sequences with 80-99%, 60-99%, 40-95%, and 20-95% idehtisyMIRs

werealso alignedin thesealignments. [datanot shown] No further analysiswas

conducted on these data.

table 1
de novo, + surgery, de novo, + surgery,
-OSM anchor + OSM anchor
M M1 M2 M M1 M2
aafreq| 0.052 0.109 0.150 0.073 0.129 0.175
D 0.050 0.099 0.138 0.090 0.163 0.221
sub-class, + surgery, sub-class, + surgery,
- OSM anchor + OSM anchor
M M1 M2 M M1 M2
aafreq| 0.052 0.108 0.150 0.030 0.064 0.094
D 0.049 0.097 0.133 0.030 0.062 0.092
sub-class, - surgery, sub-class, - surgery,
- OSM anchor + OSM anchor
M M1 M2 M M1 M2
aafreq| 0.052 0.108 0.150 0.089 0.153 0.202
D 0.049 0.097 0.133 0.106 0.192 0.245
expert refined alignment
M M1 M2
0.127 0.216 0.274

Definitions: aa freq = amino acid frequency of training set as calculated by 8®&ND is
a 20-component Dirichlet mixturgrovidedin the SAM package.All other abbreviations
are defined within the text
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The LILS data(7-48% identity) providesa more challengingtest of HMM
construction. The generationa# novo models for the LILS datwith andwithout
OSM anchoringclearly indicatesthat by constrainingthe model in this manner
more sequence relationship is found (table 1).

The secondtest of LILS datadivided the training set into five sub-classess
describedin the Material and Methods. Sub-classmodels were generatedthat
allowed surgery,with and without OSM anchoring. Theseresultsindicate that
allowing surgeryin the MIRs defeatsthe keep node designationand shifts the
location of various motifs within the OSM betweensub-classmodels thereby
lowering the stability measure on the final alignment (table 1).

The third study on the sub-classed ILS data did not allow surgery. As
indicated in table 1 this approach providée higheststability measureandreflects
a better multiple alignment.

4 Conclusions and future studies

The motivation for these studies is the development @fudomatedmethodfor the
alignment of large numbersof highly divergent protein sequenceshat share
commonfunction and perhapscommonancestry. If the datausedto train HMMs
are not low identity and low similarity sequencesthen current HMM
implementationswork well. For LILS sequenceshowever,a more complex
approachto HMM construction is necessary. Earlier work described the
identification of the OSM as the first requirementfor multiple alignment.
[McClure, et al., 1994] Wéavedevisedandtesteda strategyof HMM generation
based on the anchoring of the OSM and sub-classification of the sequentesseln
studies sub-models are built to repreg@etsub-classes.The sub-classalignments
from these models are combined into a single multiple alignmEme.goal of this
approach is to maximizthe alignmentrepresentatiomf the additionalinformation
contained in the MIRs.

Although in previous work we assessed the quality of Hieratednultiple
alignments by the correct identification of the OSM, in thaseliesan independent
scoring criterion, the stability measure,was designedto comparethe multiple
alignments. The stability measure incorpordtesimportanceof the OSM andthe
MIRs in much the same way as a human expert.

By comparing the stability measurfem the alignmentsgeneratedy HMMs
constructed under various constraints it is evident that OSM anclanigub-class
modeling producesmore informative multiple alignmentsthan de novo models.
This is dueto increasedalignmentin the sub-classMIRs. The best multiple
alignment generated in all these studies, however, was igobdsas the alignment
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refined by a human expert , (table 1) where alignment of the MIRsémizedfor
all sequences .

Future studies will focus on improving the stability measure, further refinement
of the OSM anchoring and sub-class model strategy to improve the alignntkat of
MIRs. Oncewe havedetermineda robust approachfor modeling the MIRs, we
hope to collaborate in the extension of current HMM implementationsto
incorporate this method.
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