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This paper describes a computational framework for cell biological modeling and simulation
that is based on the mapping of experimental biochemical and electrophysiological data onto
experimental images. The framework is designed to enable the construction of complex
general models that encompass the general class of problems coupling reaction and diffusion.

1   Introduction

A general computational framework for modeling cell biological processes, the
“Virtual Cell”, is being developed at the University of Connecticut Health Center.
The Virtual Cell is intended to be a tool for experimentalists. Models are constructed
from biochemical and electrophysiological data mapped to appropriate subcellular
locations in images obtained from a microscope. Chemical kinetics, membrane
fluxes, and diffusion are thus coupled and the resultant equations are solved
numerically. The results are again mapped to experimental images so that the cell
biologist can fully utilize the familiar arsenal of image processing tools to analyze
the simulations.

The philosophy driving the “Virtual Cell” project requires a clear operational
definition of the term “model”. The idea is best understood as a restatement of the
scientific method. A model, in this language, is simply a collection of hypotheses
and facts that are brought together in an attempt to understand a phenomenon. The
choice of which hypotheses and facts to collect and the manner in which they are
assembled, themselves constitute additional hypotheses. A prediction based on the
model is, in one sense, most useful if it doesn’t match the experimental details of the
process - it then unequivocally tells us that the elements of the model are inaccurate
or incomplete. Although such negative results are not always publishable, they are a
tremendous aid in refining our understanding. If the prediction does match the
experiment, it never can guarantee the truth of the model, but should suggest other
experiments that can test the validity of critical elements; ideally, it should also
provide new predictions that can, in turn, be verified experimentally. The Virtual
Cell is itself not a model. It is intended as a computational framework and tool for
cell biologists to create models and to generate predictions from models via
simulations. To assure the reliability of such a tool, all the underlying math, physics,
and numerics must be thoroughly validated. To assure the utility and accessibility of
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such a tool to cell biologists, the results of such simulations must be presented in a
format that may be analyzed using procedures comparable to those used to analyze
the results of experiments.

In this paper we describe the current status of the design considerations for
model management and the user interface. Details of the mathematics and numerical
methods employed for simulations are not included but can be found in an earlier
publication1 and on our website: http://www2.uchc.edu/htbit/vcell.

2. Model Management

2.1  Background

Often theoreticians develop the simplest model that reproduces the phenomenon
under study2.  These may be quite elegant, but are often not very extensible to other
related phenomena.  Other modeling efforts characterize single physiological
mechanisms3,4, but these are often developed ad hoc rather than as part of a reusable
and consistent framework.

Our approach to modeling concentrates on the mechanisms as well as the
phenomena.  The goal of this approach is to provide a direct method of evaluating
single models of individual mechanisms in the context of several experiments.  This
approach enables the encapsulation of sufficient complexity that, after independent
validation, allows it to be used as a meaningful predictive tool.  In order to include
sufficient complexity without overwhelming the user, the models are specified in
their most natural form.  In the case of chemical reactions, the models are
represented by their stoichiometry, a series of reactants, products, modifiers (e.g.
enzymes) and their kinetics.

One of the obstacles to modeling is the lack of general purpose simulation and
analysis tools.  Each potential modeler must have resources in software development
and numerical methods at his disposal.  Each time the model or the computational
domain is altered, the program must be changed.  And in practice, the modeling of a
new phenomena requires a new simulation program to be written.  This is a time
consuming and error prone exercise, especially when developed without a proper
software methodology.

We are developing a general, well tested framework for modeling and
simulation for use by the modeling community.  The application of the underlying
equations to our framework with nearly arbitrary models and geometry is rigorously
investigated.  The numerical approach is then properly evaluated and tuned for
performance.  This methodology results in a proper basis for a general purpose
framework.  Our approach requires no user programming, rather the user specifies
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models using biologically relevant abstractions such as reactions, compartments,
molecular species, and experimental geometry.  This allows a very flexible
description of the physiological model and arbitrary geometry.  The framework
accommodates arbitrary geometry and automatically generates code to implement
the specified physiological model.

Another problem is the lack of a standard format for expressing those models.
Even implementing published models can be a non-trivial exercise.  Some of the
necessary details required for implementation can be missing or buried in the
references.  Often the models are obscured by geometrical assumptions used to
simplify the problem.  A standard modeling format is required to facilitate the
evaluation and integration of separate models.  This standard format should
separately specify physiological models and cellular geometry in an implementation
independent way.

We suggest that the abstract physiological models used with the Virtual Cell
framework can form the basis of such a standard.

2.2 Current Implementation

The current implementation of the cell model description1 involves the manipulation
of abstract modeling objects that reside in the Modeling Framework as Java objects.
These modeling objects can be edited, viewed, stored in a remote database, and
analyzed using the WWW-based user interface (see User Interface section).  These
objects are categorized as Models, Geometry, and Simulation Context objects.  This
adopts the naming convention used in the current Modeling Framework software.

2.2.1 Models

A Model object represents the physiological model of the cell system under study.
Each Model is defined as a collection of Species (e.g. calcium, ATP), Reactions
(e.g. enzyme kinetics, receptor binding, membrane fluxes), and Features (e.g. ER,
cytosol).

The Feature objects define compartments within the cells that are mutually
isolated by membranes.  Using this definition, the extracellular region is separated
from the cytosol (and hence the ER, nucleus, etc.) by the plasma membrane.  These
compartments contain Species and a collection of Reactions that describe the
biochemical behavior of that compartment.  Average geometric information, such as
surface to volume ratios for the appropriate Feature complete the necessary
information for a single point compartmental simulation.

The Species are objects that identify molecular species, and are classified as
being either Membrane Species or Volume Species.  The Membrane Species are
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described by a surface density for each feature that contains a membrane.  The
Volume Species are described by a concentration and a diffusion constant.

The Reactions are objects that represent complete descriptions of reaction
kinetics.  Reactions are collections of related Membrane Reaction Steps (e.g.
membrane receptor binding), Volume Reaction Steps (e.g. calcium buffering), and
Membrane Fluxes (e.g. flux through an ion channel).  The fluxes and reaction rates
are represented by arbitrary algebraic expressions.  These expression objects are
capable of basic algebraic simplification, partial differentiation, and binding to the
appropriate Parameters and Species, and numeric evaluation.

2.2.2 Geometry

The Geometry objects represent the cellular geometry (based on segmented images)
and can be mapped directly to the corresponding cellular features.  The geometry
can currently be specified as 2-D or 3-D segmented images with the appropriate
scaling information to properly define a simulation domain.

2.2.3 Simulation Context

The Simulation Context objects represent the context of a particular simulation as a
specific mapping of the Model objects to the Geometry objects.  This mapping
specifies the Species and Reactions present in each Feature within the corresponding
region in the Geometry.  With the addition of initial conditions and boundary
conditions, and the membrane jump conditions for each Species, a particular
simulation is completely specified.  The jump conditions represent the trans-
membrane fluxes as well as binding reactions with membrane bound species.  This
context specifies the generation of the ordinary and partial differential equations of
the system.  These equations are represented symbolically within the Modeling
Framework using expression objects.  The computational mesh (orthogonal grid) is
sampled from the Geometry.

2.2.4 Compartmental Simulations

For simulation of compartmental models (single point approximation), the ODEs
(Ordinary Differential Equations) representing the reaction kinetics are generated,
and passed to an interpreted ODE solver (within the client applet).

This system of equations is solved using a simple explicit integration scheme
(forward difference) which is first order accurate in time.  A higher order numerical
scheme will be integrated in the future.
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2.2.4 Spatial Simulations

For the solution of a complete spatial simulation, the PDEs (Partial Differential
Equations) that correspond to diffusive species, and ODEs for non-diffusive species
are generated.  These equations are sent to the remote Simulation Server where the
corresponding C++ code is automatically generated, compiled, and linked with the
Simulation Library.  The resulting executable is then run and the results are
collected and stored on the server.  The Simulation Data Server then coordinates
client access to the server-side simulation data for display and analysis.

The system of PDEs are mapped to a rectangular grid using a finite difference
scheme based on a control volume approach2.  The nonlinear source terms
representing reaction kinetics are evaluated explicitly (forward difference) and the
resulting linearized PDE is solved implicitly (backward difference).  Those
membranes separating spatially resolved compartments are treated as discontinuities
in the solution of the reaction-diffusion equations.  These discontinuities are defined
by flux jump conditions that incorporate trans-membrane fluxes, binding to
membrane bound species, and conservation of mass.  The boundary conditions are
defined in terms of a known flux (Neumann condition) or a known concentration
(Dirichlet condition).

3 User Interaction

3.1 Background

Some software applications in neuronal modeling, for example Neuron6 and
GENESIS7, are available with commercial quality user interfaces.  These packages
allow specification and optimization of models, control of simulation, and
interpretation of results.  They both include scripting capabilities as well as graphical
user interfaces.  This level of user interaction is desired for any general purpose
modeling and simulation framework.  However, these packages are primarily useful
for studies of neuronal signal conduction in systems of one or a network of neurons.
These packages take advantage of the symmetry and shape of neurons to simplify
the underlying equations and user specified models and reduce the solution to a one-
dimensional problem.

There are also mature efforts in Metabolic Pathway modeling such as GEPASI8.
This package allows a simple and intuitive interface for specifying reaction
stoichiometry and kinetics.  The kinetics are specified by selecting from a predefined
(but extensible) list of kinetic models (such as Michaelis/Menten) describing
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enzyme mediated production of metabolites.  These packages are focused on
biochemical pathways where the spatial aspects of the system are ignored.
However, for these simplified descriptions, they provide Metabolic Control Analysis
(sensitivity analysis tools), structural analysis (mass conservation identification), and
a local stability analysis.

In order to provide a simple interface to a general purpose modeling and
simulation capability, the problem must be broken up into manageable pieces.  In the
case of the virtual cell, these pieces consist of abstract physiological models, abstract
geometric description, and a simulation description that defines the solution method
and the conditions of that particular problem.  For such an interface to be consistent

and maintainable, it must map directly to the underlying software architecture.

3.2 Current Implementation

An intuitive user interface is essential to the usability of a complex application.  A
prototype user interface was developed to provide an early platform for modeling
and simulation, and for investigating user interface requirements.  The design goal

Figure 1: Distributed Architecture for the Virtual Cell Software.
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was to capture the minimum functionality required for practical use of the virtual
cell.

The current Virtual Cell application (figure 1) utilizes a distributed architecture.
The system is decomposed into a modeling application and system services.  The
modeling application is a WWW accessible Java applet and provides a graphical
user interface.  The system services are the Database Service, the Simulation
Control Service (which encapsulates the Simulation Library), and the Simulation
Data Service.  The architecture is designed such that the location of the user
interface and the corresponding backend services are transparent to the majority of
the application.  The typical configuration is a Java applet running in a WWW
browser, with the Database, Simulation Control, and Simulation Data services
executing on a remote machine (WWW server).  Alternatively, the software may be
executed as a standalone application on a local machine with the requirement that
the Java Runtime Environment and a C++ compiler are installed.

3.2.1 Physiological Modeling

The Feature Editor (figure 2) allows the specification of cellular features that
represent the concept of compartments within the cell model under study.  The basic
hierarchical structure of these features determines the case when one or more
features are enclosed by another feature.  The specification of average spatial
properties of an enclosed feature (surface to volume ratio and volume fraction of
enclosing feature) provides a complete description of a compartmental model.  This
is useful in calculating quick approximate solutions.

The Species Editor allows the user to specify the volume and membrane species
of a model.  The default initial concentration and diffusion rates are specified for
volume species within each feature.  The initial surface densities of the membrane
species are specified for each feature.  The Reaction Editor permits the user to
define reaction models.  A reaction model is composed of a series of simple reaction
steps including any combination of volume reaction, membrane reaction, and flux
reaction.
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3.2.2 Geometric Modeling

The Geometry Builder is a standalone application that permits the construction of
two or three-dimensional cellular geometric models based on a series of image files.
Due to the security restrictions of Java applets reading local file systems, the
Geometry Builder is capable of running as a signed applet (trusted by the browser)
or as a standalone application which does not have the same restrictions.

3.2.3 Model Analysis

The Compartmental Simulation (Preview) component executes a compartmental
(single point) simulation based on the defined physiological model and the
geometric assumptions entered in the Feature Editor (surface to volume ratios and

Figure 2 - Feature Editor
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volume fractions).  This results in a set of nonlinear ordinary differential equations
that typically are solved in seconds.  This allows an interactive, though manual,
modification of parameters and a quick determination of the effect over time.  Once
the simulation is complete, each species can be viewed easily.

The Equation Viewer displays the equations generated as a result of mapping
the physiological model to either a cellular geometry model (spatial simulation) or a
single point approximation (compartmental model).  The parameter values may be
substituted (and the expression simplified), or left in their symbolic representation.

3.2.4 Spatial Simulation

The Geometry/Mesh Editor allows some participation in the choice of spatial
resolution, thus considering the computational costs and the goodness of geometric
representation.  This interface directs the binding of regions of the segmented
geometry to the corresponding features within the physiological model.  An
orthogonal mesh is specified and displayed interactively.

The Initial/Boundary Condition Editor allows the specification of initial
conditions and boundary conditions for each of the species for each feature.  The
boundary conditions for each simulation border is specified independently for each
feature, this gives maximum flexibility.  For example, the concentrations may be
specified at simulation boundaries in the extracellular space to indicate a sink.  And
a zero molecular flux may be specified at a simulation boundary belonging to
cytosol to indicate symmetry of function with the missing portion of cytosol (the
implied mirror image).

The Simulation Controller permits the specification of the time step and end
times of the currently defined spatial simulation.  The Simulation Controller services
are then invoked, including automatic code generation and the initiation of a remote
simulation job.  It is worth noting that the time step will generally not be the users
responsibility, and will be constrained by the problem and the spatial discretization.

The Simulation DataSet Viewer (figure 3) displays the results of the current
spatial simulation.  The species concentrations are displayed superimposed on the
mesh.  The analysis capability includes graphing the spatial distribution of a species
as a line scan and graphing a time series at a single point.

3.2.5 Storage

The Database Access Form presents a rudimentary model and simulation storage
capability.  The current implementation allows whole physiological models,
geometric models, and simulation contexts to be stored and retrieved.  The
simulation context is stored in a way that includes the physiological and geometric
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models such that it encapsulates all of the information to reproduce and describe a
particular spatial simulation.  There is, however, no ability to querying the stored
models for specific attributes.  The models are currently stored intact using Java’s

Object Serialization capability.

4. Conclusion

The need for the Virtual Cell arises because the very complexity of cell biological
processes severely impedes the application of the scientific method. A pair of
separate factors that contribute to this problem are addressed by the Virtual Cell.

Figure 3 - Simulation Data Analysis
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First, the large number of interdependent chemical reactions and structural
components that combine to affect and regulate a typical cell biological process
forces one to seek the help of a computer to build a model. This issue is the subject
of an eloquent essay by Dennis Bray8.  We are now faced with an overwhelming
body of data describing the details of individual molecular events occurring inside
cells. As Bray puts it, “What are we to do with the enormous cornucopia of genes
and molecules we have found in living cells? How can we see the wood for the trees
and understand complex cellular processes..?” Brays solution: “Although we poor
mortals have difficulty manipulating seven things in our head at the same time, our
silicon protégés do not suffer this limitation. ...The data are accumulating and the
computers are humming. What we lack are the words, the grammar and the syntax
of the new language.”

The second factor recognizes that scientists trained in experimental cell biology
are not typically equipped with sufficient mathematical, physical or computational
expertise to generate quantitative predictions from models. Conversely, theoretical
biologists are often trained in the physical sciences and have difficulty
communicating with experimentalists (bifurcation diagrams, for example, will not
serve as a basis for a common language). By maintaining the physical laws and
numerical methods in separate modular layers, the Virtual Cell is at the same time
accessible to the experimental biologist and a powerful tool for the theorist. Also, by
maintaining a direct mapping to experimental biochemical, electrophysiological
and/or image data, it ensures that simulation results will be communicated in a
language that can be understood and applied by all biologists.
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