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To improve the accuracy of rapid homology searching it is common practice to �l-
ter all queries to mask low complexity regions prior to searching. We show in this
paper, through a large-scale study of querying the PIR database, that applying
popular �ltering techniques unselectively to all queries may reduce retrieval e�ec-
tiveness. We also show that masking queries with our new technique, cafe�lter,
which uses the overall distribution of motifs in a database, is at least as e�ective
as current popular query �ltering tools in large-scale tests.

1 Introduction

Most tools for fast searching of genomic databases use well-known string match-

ing techniques to compare a query sequence to each sequence in a genomic

database. An e�ective genomic sequence search may identify homologies be-

tween a query sequence and database sequences, lending support to a hypoth-

esis as to the function or structure of the query sequence. To indicate the

likelihood of the results of a search being indicative of homology, answers are

typically ranked in decreasing order of local similarity to the query.

To quantify similarity between sequences, considerable research has been

dedicated to the sensitivity and selectivity of algorithms through the appli-

cation of statistical theory. Such statistical similarity theory is based on the

model that the query and database sequences are drawn from identical dis-

tributions of amino-acid or nucleotide residues. However, this assumption is

frequently invalid as genomic nucleotide sequences often contain microsatel-

lites and other approximate tandem repeats, while amino-acid sequences are

often rich in proline, glycine, or other such amino-acids. Such local regions of

repetitive or periodic intervals are generally referred to as being regions of low

complexity.

Queries containing low complexity regions are often di�cult to evaluate

using rapid homology search systems. Indeed, the analysis of search results

with queries containing low complexity regions shows skewing in results where

long, unrelated sequences are ranked higher than short, homologous sequences.

Moreover, evaluating similarity measures for highly frequent, low complexity

regions is computationally intensive, since most stored sequences contain such
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regions and each matching region requires a computationally intensive heuris-

tic local alignment. Case studies of individual queries, where regions of low

compositional complexity are removed or masked, have shown bene�ts in re-

ducing query evaluation costs and improving e�ectiveness in retrieving relevant

answers.

In this paper we evaluate the e�ectiveness of general-purpose query �lter-

ing schemes for searching amino-acid databases and propose a new approach,

cafefilter. We show that, surprisingly, �ltering a large query set using the

popular query �ltering tools seg and xnu reduces the overall e�ectiveness

of �nding answers in a collection derived from the well-classi�ed PIR protein

database. Our novel approach, cafefilter, uses overall collection frequencies

to derive a set of common motifs that can be used to mask or �lter queries

prior to general-purpose searching. The advantage of using overall collection

frequencies is that frequent motifs that are common to both homologous and

unrelated sequences are �ltered. Cafefilter again works well in individual

case studies but, similarly to seg and xnu, reduces the e�ectiveness of search-

ing with our large query set.

Our results suggest that the common practice of �ltering all queries prior

to searching often reduces the e�ectiveness of searching. Indeed, we have found

that the default �ltering using seg in the new release of the blast search sys-

tem frequently reduces accuracy. Our conclusion is that query �ltering should

be used selectively on a query-by-query basis after evaluating and assessing

the results of a search with an un�ltered query sequence.

2 Techniques for Filtering Queries

Rapid homology searching is used to select and rank database sequences by the

similarity of high complexity regions to a given query. By identifying similar

regions between a query and database sequence, it is often possible to identify

homology and lend evidence to a hypothesis as to the chemical structure,

biochemical role, or evolutionary relationship of a query sequence. At present,

over 20,000 such homology searches each day are processed by the blast 1;2

servers at the US National Centre for Biotechnology Information (NCBI) 3.

As the result of a homology search with a query on a genomic database, a

set of responses is returned ranked in decreasing order of statistical similarity

to the query sequence. The signi�cance of alignments between high complexity

regions is typically estimated using statistical theory based on the assumption

that the query and answer sequences are drawn from the same distribution

of residues 4;5;6. However, the signi�cance of amino-acid sequence alignments

of low complexity regions which are, for example, glutamine-rich, glycine-rich,
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or proline-arginine-rich are poorly estimated by such statistics. Indeed, it

is frequently suggested that the alignment of these repetitive low complexity

regions skews query results and that alignment by position of low complexity

regions does not aid in identifying homologues 7;8;9;10.

Several tools have been proposed to improve the retrieval e�ectiveness of

rapid homology searches by masking or �ltering low complexity regions in query

or database sequences. Such approaches to �ltering include seg 10;11, xnu 12,

simple3413, censor14, and saps15. All methods except saps �lter nucleotide

queries, while xnu, seg, and saps also �lter amino-acid sequences. In general,

masking low complexity regions prior to searching replaces the regions with

IUPAC-ISBMB wildcard characters16 such as n in nucleotide sequences or x is

amino-acid sequences; n represents a valid substitution of any nucleotide and

x of any amino-acid residue.

We discuss in the next section the existing approaches to detecting redun-

dancy as a property of a single sequence. In Section 3 we discuss an existing

approach to redundancy detection as the property of a collection and our new

approach, cafefilter.

2.1 Detecting Low Complexity in Individual Sequences

To detect low complexity regions within a single sequence a dot-plot is often

made of a sequence and the plot visually inspected. A dot-plot is a matrix

where the sequence is listed in the �rst row and the �rst column of the matrix

and, if two residues are identical for a particular cell, a dot is plotted. Figure 1

shows a dot-plot of the around 500 residue protein sequence from GenBank

\U12707|Human Wiskott-Aldritch Syndrome Protein (WASP)". Two repet-

itive, low complexity regions can be seen in the �gure as signi�cant initial

match regions, or blotches, at o�sets x; y � 172 : : :197 and x; y � 340 : : :435.

Blotches typically consist of short-period repeats, that is, areas that may be

inferred to be of low complexity.

To translate the process of visually inspecting a dot-plot to an automated

process of detecting redundancy, Claverie and States 12 propose a tool, xnu,

to mask short-period repeats in amino-acid and nucleotide sequences. Xnu re-

moves low complexity regions through scoring the self-alignment of a sequence

with a computationally intensive local alignment technique commonly used for

homology searching 17. Xnu identi�es regions of high-scoring similarity and

outputs the query with such regions in a masked format for subsequent use

in searching. By replacing each residue with a masking wildcard character,

masked sequence regions are neglected in subsequent rapid homology search-

ing.
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Figure 1: Self-alignment of GenBank accession U12707, \HumanWiskott-Aldritch Syndrome
Protein (WASP)" using dotter. Redundant regions typically appear as \blotches", since
repetitive regions self-align well with small o�sets. In particular, two redundant regions can

be seen at o�sets 172-197 and 340-435.

A complementary technique for removing redundancy through content-

based �ltering of a sequence is seg 10;11, which proposes masking selected

�xed-length overlapping subsequences or intervals. Seg locates vectors of low

complexity, where each vector is a decreasing count of residue occurrences for

a reasonable interval length; a low complexity vector has a small number of

distinct residues. As an example, the nucleotide interval, for n = 8, atatatgg

has a complexity vector (3; 3; 2; 0), since a and t occur 3 times, g twice, and

c does not occur. The interval gcgcaagc has the same complexity vector,

(3; 3; 2; 0), since the vector is ordered by decreasing frequency of occurrence

and not by a �xed ordering of the nucleotides; the lowest complexity vector for

n = 8 is (8; 0; 0; 0). Two passes are used in seg to assess vectors and identify

candidate regions for masking.

An interesting question is \when should a query be �ltered prior to search-

ing?". The sensitive fasta18;19;20 search system assists in answering this ques-

tion by evaluating whether search results are skewed by the presence of low
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complexity regions in the query. It has been shown that results of searches

where a query and answers are drawn from the same distribution of residues

have an extreme value distribution when the frequency of each similarity score

is plotted against the score 6. Fasta produces a plot of the expected ideal ex-

treme value distribution and a plot of the actual distribution of scores observed.

By inspecting the fasta plot, fasta can be used to answer the question of

whether a query should be �ltered and re-evaluated.

Fasta, therefore, can be used to assess the reliability of answers to a given

query. A query can be �rst evaluated and a visual assessment of the actual and

expected distributions made. If the expected and actual distributions suggest

the presence of low complexity regions, the query can be �ltered and the query

re-evaluated. In contrast, the current version 2.0 of blast 1 �lters all queries

by default using seg.

In the next section we present details of a collection-frequency based ap-

proach to query �ltering, which was used in a previous version of blast, and

we propose a new approach, cafefilter.

3 Stopping based on collection interval frequencies

Earlier versions (1.x) of blast 2, in addition to the Karlin-Altschul statistical

techniques 6, optionally use a collection-frequency based approach to address

the problem of skewed results from redundant queries. Collection-frequency

techniques �lter queries based on the distribution of �xed-length subsequences,

or intervals, over the database, rather than �ltering regions based on the dis-

tribution of residues in the query sequence. The advantage of a collection-

frequency approach is that �ltered intervals are common to most database

sequences and therefore such intervals do not e�ectively discriminate between

answers.

In blast 1.x nucleotide database searching, a table of intervals of length

n = 8 occurring over 200 times in the database can be stored for nucleotide

database searching 2. An option then, when searching with blast 1:x, is to

mask likely low complexity query intervals by removing any that appear in

the table. This can be used to �lter terms from queries that are likely to

return a signi�cant number of false matches, a process referred to as cleaning

the database. Additionally, both seg and xnu are supported in blast 1.x as

non-default command-line query �lters.

With growth in genomic databases, the cleaning approach will reduce re-

trieval e�ectiveness. As, for example, GenBank increases in size, a �xed thresh-

old of 200 occurrences implies that the number of intervals cleaned will increase

at a proportional rate. Therefore, with an increase in database size is a propor-
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tional increase in clean-list size, resulting in less sensitive searching, a potential

decrease in matches, and a likely fall in retrieval e�ectiveness.

We propose a variation on the cleaning approach used in blast that ad-

dresses the problem of varying list size. Our approach, which we call cafe-

filter, forms a stop-list of intervals to be masked in a query. We �lter any

interval occurring in more than x% of the sequences, where smaller values of x

lead to larger stop-lists and fast query evaluation. This approach e�ectively re-

moves from queries intervals that are unlikely candidate terms to discriminate

between sequences relevant to a given query. Clearly, however, there is a point

at which retrieval e�ectiveness is a�ected by not evaluating su�cient query in-

tervals. Cafefilter forms part of the cafe indexed genomic search system,

which we have described in part elsewhere 21;22;23;24. We detail experiments

with cafefilter in the next section.

4 Test Collection and Results

4.1 Test Collection

To explore comparative retrieval e�ectiveness between existing �ltering ap-

proaches and cafefilter in large-scale searching, we use a subset of the PIR

database similar to that �rst used by Pearson 25 to evaluate the fasta tool.

A more recent variation used by Shpaer et al. 26 has been used to evaluate

the e�ectiveness of a broad range of tools, in particular an implementation of

Smith-Waterman local alignment 17 in hardware.

The PIR database consists of four smaller databases, PIR1 through PIR4.

Each amino-acid sequence is stored in one of the smaller databases, depending

on the state of classi�cation and annotation. Of interest in forming a char-

acterised collection for assessing retrieval e�ectiveness are sequences stored in

PIR1 and PIR2.

Sequences from the PIR1 and PIR2 subcollections of the PIR database

useda have been fully classi�ed and annotated and are generally assigned a se-

quential super family (SF) number. Of the 85,618 sequences (13,583 sequences

in PIR1 and 72,035 sequences in PIR2), 38,224 have been assigned one of the

3,781 SF numbers; most sequences in PIR2 are not classi�ed by SF number

but by SF name, by domain name, or are annotated but not classi�ed. The

classi�cation process is described in detail elsewhere 27.

Broadly using the guidelines of Shpaer et al.26, we used PIR1 and PIR2 to

compile a PIR test collection. We extracted all sequences that had an assigned

SF number, that is, all of PIR1 and around one-third of PIR2, to form a

aRelease 52.0, 31 March 1997.
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database of 38,224 sequences. The total size of the database was 12:7 � 106

residues, with a mean sequence length of 328. We refer to this collection as

pirsf.

In compiling a query set for retrieval e�ectiveness assessments using pirsf,

we used the �rst-occurring member sequence in the database from each SF.

However, we did not use as queries the 1,175 SFs represented that have only one

member; searching for a query sequence in the database does not illustrate the

detection of homology. Feedback from users of homology search tools suggests

that long amino-acid queries are extremely rare, and we have removed any

query longer than 500 residues. With the removal of single-member SF queries

and long queries, our query set was reduced by a factor of around two to 1,834

sequences.

The resultant query set and test collection has several advantages and

disadvantages. The primary advantage is that retrieval e�ectiveness for each

query can be measured by assessing the e�ect of a query �ltering technique on

ranking the other sequences that are members of the SF and the success of the

technique in discriminating between SF and non-SF sequences. A disadvantage

of using the PIR databases is the rigid classi�cation of sequences into SFs.

Although a minor concern is the erroneous classi�cation of a few sequences into

incorrect SFs, a more major consideration is the fact that SFs are sometimes

closely related. To illustrate, the complex protein domain \HisI bifunctional

enzyme" contains two simple protein domains, \HisI protein" and \Histidinol

dehydrogenase"27. This complex domain, along with a third simple domain, is

present in the sequence \HisI-hisD trifunctional enzyme", which is a member

of only SF 635.0. The same complex domain, without the third simple domain,

is also present in SF 636.0. Many sequences, classi�ed in di�erent SFs, may

contain subsets of the simple protein domains, combined with other simple

protein domains typical of other super families.

Detection of false positives through a homology search on the pirsf collec-

tion for a given query may sometimes be an example of sensitive detection of

weak inter-family similarities. This may result in penalising a technique that is

in fact more sensitive than another. However, we believe that, over the 1,834

queries, the pirsf search results give a reasonable indication of the relative

performance of di�erent �ltering techniques.

To quantify the relative performance or retrieval e�ectiveness of �ltering

techniques, we use the measures of recall and precision. Recall and precision

are frequently used to demonstrate the retrieval e�ectiveness of systems, par-

ticularly those used for English text retrieval; the application of these measures

to text retrieval is described by Witten et al. 28.
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Precision is a measure of the fraction of relevant answers retrieved at a

particular point, that is

P =
SF sequences retrieved

SF and non-SF answers retrieved

Recall, in contrast, measures the fraction of the relevant answers that have

been retrieved at a particular point, or

R =
SF sequences retrieved

Total size of SF

In most practical applications, the assessment of recall is impractical, since

it is not feasible to assess each record in the database for relevance to each

query. However, by using our pirsf approach it is possible to approximate

recall by considering only family members as relevant answers and non-family

members as irrelevant answers. This somewhat restrictive assumption allows

the practical calculation of recall values.

4.2 Results

Figure 2 shows the average precision at each of eleven recall levels for di�erent

query �ltering techniques. We searched the pirsf collection with our 1,834

query set and averaged the results for seg, xnu, and cafefilter. Each search

uses the latest release 2.0 of the blast search system 1. For comparison, we

also show the recall-precision of version 1.4.8 of blast; we discuss these blast

results later.

We show in Figure 2 cafefilter with a stop-list containing all intervals of

length n = 3 occurring in more than x = 7% of sequences; n = 3 is the default

interval length in blast and fasta for protein searching. The stop-list for

x = 7% contains 1,004 intervals. We have tested other values of x, including

x = 3 (3,946 intervals), x = 5 (2,095 intervals), x = 9 (428 intervals), x = 10

(270 intervals), and x = 15 (18 intervals). We do not present the results of

other stop-list sizes here, however we have found in the individual assessment

of results that x = 7% works well for both genomic nucleotide and amino-acid

query and database �ltering.

Surprisingly we have found that default query �ltering reduces retrieval

e�ectiveness. At low recall levels, that is, where the most statistically similar

members of each SF are retrieved, precision with xnu and seg is up to 2%

worse than without query �ltering. At higher recall levels, �ltering with seg

reduces precision by more than 5%. Retrieval e�ectiveness with cafefilter

is better than that of xnu and seg, but remains worse than e�ectiveness with

no query �ltering applied.
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Figure 2: Recall-precision in searching pirsf with the seg, xnu, and cafefilter query
�ltering schemes. The e�ect on recall-precision is shown in stopping all intervals of length
n = 3 that occur in more than x = 7% of sequences. No stopping (x = 100%) with blast

1.4.8 and blast 2.0 is shown for comparison. The collection, pirsf, is derived from the PIR
protein database and results are an average over 1,834 queries.

An advantage of query �ltering is that it decreases disk seek and retrieval

times, reduces ranking costs, and signi�cantly reduces computationally inten-

sive local alignment. As an example, with a cafefilter stop-list size of

x = 7% the average elapsed query evaluation time in searching pirsf with

our cafe search engine is reduced by over 15% from 1.53 seconds to 1.29 sec-

onds. In searching nucleotide sequences in GenBank with a nucleotide query

set, this e�ect is similar with query times also reduced by more than 15%;

because of space limitations we do not present detailed results here.
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Retrieval E�ectiveness of Blast 1.4.8 and 2.0

Figure 2 also shows a comparison of the retrieval e�ectiveness of blast 1.4.8

and blast 2.0 with no query �ltering applied. In contrast to the �ndings of

Altschul et al. 1, we have found that the new version of blast is less e�ective

in searching pirsf than the previous version. We believe that the reduced

retrieval e�ectiveness can be attributed to new heuristics in blast 2.0 that are

used to reduce the overall blast query costs. A summary of the di�erences in

the two blast versions is as follows.

To reduce the query evaluation costs of exhaustively searching large ge-

nomic databases such as GenBank, the �rst version of blast2 permits only the

alignment of sequences with intervals common to a query of a minimum length

of n. Moreover, this �rst version does not permit gap insertions or deletions

in subsequent local alignments.

The second version of blast has removed the restriction of disallowing in-

sertions and deletions by permitting banded local alignment; banded alignment

allows limited insertions and deletions, permitting the detection of weaker evo-

lutionary relationships with a small increase in computational cost. However,

to permit the system to be in general faster than the �rst version, Altschul et

al. have further restricted the frequency of local alignments by requiring two

common intervals prior to each banded alignment.

Our results suggest that in version 2.0 of blast the improved sensitivity

through allowing banded alignment is outweighed by the reduced sensitivity

in introducing a more stringent condition for attempting alignments.

5 Conclusions

Previous studies of �ltering techniques have focused on the retrieval e�ective-

ness of individual queries7;9;10. In contrast, we have presented average retrieval

e�ectiveness results of seg, xnu, and a new scheme cafefilter in searching a

collection derived from the PIR 29 database. Surprisingly, we have found that

default �ltering of all queries with each technique reduces retrieval e�ective-

ness. Our results suggest that a query should be assessed �rst before applying

�ltering, for example, through querying with the un�ltered query and assessing

the resultant distribution of similarity scores.

Our new approach to query �ltering, cafefilter, �lters queries using

a stop-list of frequently occurring �xed-length subsequences in a collection.

Other popular approaches use query sequence statistics to detect low com-

plexity regions for masking. We have found that cafefilter|despite its

simplicity|performs better than existing approaches in large-scale search ex-
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periments, but still reduces e�ectiveness compared to searching with the orig-

inal, un�ltered queries.

There are several possible extensions to this study. First, better large-scale

retrieval e�ectiveness assessments may be possible when future functional do-

main classi�cation information is provided in the PIR database 27. Second, it

is likely that special-purpose cafefilter stop-lists may be more e�ective in

�ltering particular queries; for example, it is possible to derive a stop-list from

a database of sequences of a particular type, such as a database of repetitive

or speci�c amino-acid sequences. Third, a study and characterisation of in-

dividual �ltered search results may lead to further improvements in �ltering

techniques. Last, a more detailed assessment of the e�ectiveness of large-scale

query �ltering is required in searching genomic nucleotide databases.
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