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Abstract

Five descriptive models of risky decision making are tested in this article, including four quantitative mod-
els and one heuristic account. Seven studies with 1802 participants were conducted to compare accuracy of
predictions to new tests of first order stochastic dominance. Although the heuristic model was a contender in
previous studies, it can be rejected by the present data, which show that incidence of violations varies sys-
tematically with the probability distribution in the gambles. The majority continues to violate stochastic dom-
inance even when two of three branches have higher consequences in the dominant gamble, and they per-
sist in mixed gambles even when probability to win is higher and probability to lose is lower in the domi-
nant gamble. The transfer of attention exchange model (TAX) was the most accurate model for predicting the
results.
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1. Introduction

Birnbaum (1997, p. 94) created a method for producing significant majority violations of
stochastic dominance. According to either his rank affected multiplicative weights (RAM)
or transfer of attention exchange (TAX) models, people should violate stochastic dominance
in choices such as the following: From which urn would you prefer to draw a marble at
random, if the color of marble drawn determines your prize?

A: 90 red marbles to win $96 B: 85 green marbles to win $96
05 blue marbles to win $14 05 black marbles to win $90
05 white marbles to win $12 10 yellow marbles to win $12

When the probability of winning prize x or greater given gamble A is greater than or
equal to the probability to win x or more in gamble B, for all x , and if this probability is
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strictly higher for at least one value of x , we say that gamble A stochastically dominates
gamble B. In this example, A dominates B. The probability to win $96 or more is .90 in A,
and only .85 in B; the probability to win $90 or more is the same, the probability to win $14
or more is higher in A than B; and the probability to win $12 or more is the same in both
gambles.

Birnbaum (1997) noted that his models, as fit to data of Tversky and Kahneman (1992)
predicted that people should choose B over A. He devised this test as a way to compare
his class of older “configural weight” models against the class of rank dependent utility
(RDU) and cumulative prospect theories (CPT), which allow no violations of stochastic
dominance (Quiggin, 1993; Tversky and Kahneman, 1992), apart from those produced by
“chance” or “error.” Configural weight models allow weight to depend on rank (Birnbaum,
1974; Birnbaum and Stegner, 1979); but they differ from RDU in that these older models
imply violations of stochastic dominance in specific circumstances.

Birnbaum and Navarrete (1998) tested this prediction. About 70% of 100 undergraduates
chose B in this choice and others based on the same recipe. Subsequent studies confirmed
that significantly more than 50% of undergraduates violate stochastic dominance in choices
like this (Birnbaum, 2004a, 2004b; Birnbaum, Patton, and Lott, 1999; Birnbaum, 1999b;
Birnbaum and Martin, 2003). The rate of violation is lower in more highly educated people,
but it is still substantial (about 50%) among doctorates (Birnbaum, 1999b). According to
the configural weight models, the violations are caused by failure of a simpler property,
coalescing, described in Section 1.1.

The present series of studies compares four quantitative models, RAM, TAX, lower gains
decomposition utility (GDU) of Marley and Luce (2001), and Viscusi’s (1989) prospec-
tive reference theory (PRT) with a “heuristic” model, the consequence counting heuristic.
According to this heuristic, the decision-maker counts consequences on the branches, and
chooses the gamble with the greater number of branches having higher consequences. Note
that B and A both have branches leading to prizes of $96 and $12, but B has a branch to win
$90, whereas A has a branch to win only $14. If the decision maker ignored probabilities,
and counted the number of branches with higher consequences in each gamble, thenBmight
seem better than A, even though A dominates B.

The rest of this paper is organized as follows. Section 1.1 describes simple behavioral
properties that underlie stochastic dominance, Section 2 presents the five models to be
compared, and Section 3 shows how models fit to previous data can be used to predict
results of new manipulations. Sections 4–7 describe five new studies of stochastic dominance
in choices between gambles with non-negative consequences. These studies systematically
manipulate features of choices testing stochastic dominance. In Section 8, choices that tested
CPT and EU in the first five studies are analyzed. In Section 9, TAX, RAM, GDU, and PRT
are fit by estimating parameters from the combined data. Section 10 reports studies 6 and 7,
which test stochastic dominance in five-branch mixed gambles. These studies pit Payne’s
(2005) probability to win or lose against branch-splitting. Section 11 is the discussion,
which concludes that empirical results systematically violate CPT and the heuristic model
and that they provide no support for Payne’s (2005) argument. Among the models that can
account for violations of stochastic dominance, TAX was most accurate with the fewest
free parameters.
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1.1. The roots of stochastic dominance

Let G0, = ($96, .9; $12, .1) represent a two-branch gamble with a probability of .9 to win
$96 and a probability of .1 to win $12. The gamble G1, = ($96, .9; $12, .05; $12, .05)
represents a three-branch gamble with branches of .9 to win $96, .05 to win $12, and .05 to
win $12. Although these gambles are the same in CPT, they have different values in RAM,
TAX, GDU and PRT.

It is useful to decompose stochastic dominance into thee simpler premises (Birnbaum and
Navarrete, 1998). If people satisfy transitivity, coalescing, and consequence monotonicity,
then they will not violate first-order Stochastic Dominance.

Transitivity is the premise that A � B and B � C ⇒ A � C .

Coalescing is the assumption that if a gamble has two (probability-consequence) branches
yielding the identical consequence, those branches can be combined by adding their prob-
abilities without affecting the utility. For example, if G = ($100, .2; $100, .2; $0, .6), then
G ∼ G ′ = ($100, .4; $0, .6), where ∼ denotes indifference. GDU satisfies upper coalesc-
ing, G = (x, p; x, q; y, 1 − p − q) ∼ G ′ = (x, p + q; y, 1 − p − q), where x > y > 0,
as illustrated in the above example, but it violates lower coalescing which implies that
G ′′ = (x, p; y, 1 − p) ∼ G ′′′ = (x, p; y, 1 − p − q; y, q), where x > y > 0.

Violations of coalescing combined with transitivity are termed event-splitting effects
(Humphrey, 1995; Luce, 1998; Birnbaum, 1999a, 1999b; Starmer, 2000; Starmer and
Sugden, 1993). Kahneman and Tversky (1979) assumed an editing rule of “combination,”
prior to evaluation of gambles (see also Kahneman, 2003) which implies coalescing, and
coalescing is implied by the rank dependent utility representation in CPT (Birnbaum and
Navarrete, 1998).

Consequence monotonicity is the assumption that if one consequence in a gamble is
improved, holding everything else constant, the gamble should be improved. For example,
F = ($96, .9; $14, .10) should be preferred to G = ($96, .9; $12, .10), because $14 is
preferred to $12.

Stochastic Dominance is the relation between non-identical gambles, such that P(x >

t |G) ≥ P(x > t |F) for all t . This relation is also known as “First-order Stochastic Domi-
nance” and it should not be confused with other relations described as types of “stochastic
dominance.1 ”

The assertion that choices satisfy (first-order) stochastic dominance means that if G
dominates F , then G � F . We need to decide whether observed violations are due to
“chance or errors” or are “real.” A very lenient standard for satisfaction (stringent for
rejection) has been used in empirical tests; namely, if G dominates F , then the probability
of choosing F over G should be less than or equal to 1/2. This lenient standard makes a
very conservative test; nevertheless, even by this conservative test, stochastic dominance

1For example, Levy and Levy (2002) criticized CPT on the basis of a relation described as “stochastic domi-
nance,” but Wakker (2002) defended CPT by showing that it predicted violations of the relation tested by Levy
and Levy. However, CPT, rank dependent utility, and rank- and sign-dependent utility must satisfy first-order
stochastic dominance (Birnbaum and Navarrete, 1998).
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has been rejected in a number of studies. A less conservative test uses a “true and error”
model fit to replicated data to estimate the rate of “true” violation (Birnbaum, 2004b).

Birnbaum (1997) constructed the following recipe in which his RAM and TAX models
should violate stochastic dominance: Start with binary gamble, G = (x, p; y, 1− p), where
x > x− > y+ > y > 0. Split the upper branch of G [i.e., (x, p)] into (x, p − r ) and (x, r ),
and reduce the consequence on the splinter slightly, creating G− = (x, p−r ; x−, r ; y, 1−p);
finally, split the lower branch of G and increase the consequence on the splinter slightly,
G+ = (x, p; y+, q; y, 1 − p − q). RAM and TAX violate coalescing; splitting the upper
branch of G to create G− improves it, and the splitting of the lower branch of G to create
G+ makes that gamble worse. The first example of this paper illustrates this recipe with
x = $96, x− = $90, y+ = $14, y = $12; and p = 0.9, r = q = 0.05.

Transitivity, coalescing, and consequence monotonicity imply satisfaction of stochastic
dominance in this test (Birnbaum and Navarrete, 1998). Because people show systematic
violations, at least one of these three assumptions must be empirically false. Because the
class of RDU and CPT models assume or imply these three principles, they cannot explain
systematic violations of stochastic dominance (Birnbaum and Navarrete, 1998).

1.2. Theoretical importance of violations of stochastic dominance

Systematic violations of first-order stochastic dominance refute a large class of descrip-
tive models including rank-dependent utility (RDU) theory (Diecidue and Wakker, 2001;
Quiggin, 1985; 1993), rank and sign dependent utility (RSDU) theory (Luce, 2000; Luce and
Fishburn, 1991; 1995), cumulative prospect (CPT) theory (Gonzalez and Wu, 1999; Starmer
and Sugden, 1989; Tversky and Kahneman, 1992; Tversky and Wakker, 1995; Wakker and
Tversky, 1993; Wu and Gonzalez, 1996), lottery dependent utility theory (Becker and Sarin,
1987), aspiration level theory (Lopes and Oden, 1999; Payne, 2005), and generalized utility
theory (Machina, 1982). See Weber (1994), Starmer (2000), Luce (2000), and Luce and
Marley (2005) for reviews.

RAM, TAX, GDU, and PRT obey transitivity and consequence monotonicity, but they
violate coalescing, and therefore they predict violations of stochastic dominance in Birn-
baum’s recipe. A fifth model, the consequence counting heuristic, will also be tested. One
of the strategies that will be used is to compare models using parameters estimated from
previous data to predict new results. Models will also be compared based on estimation of
parameters from the data.

2. Five models of risky decision making

2.1. Rank affected multiplicative (RAM) model

The RAM model for gambles, G = (x1, p1; x2, p2; . . . ; xn, pn); x1 > x2 > · · · > xn > 0,
can be written as follows:

RAM(G) =
∑n

i=1 a(i, n)s(pi )u(xi )
∑n

i=1 a(i, n)s(pi )
(1)
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where RAM(G) is the utility of gamble G, a(i, n) are the rank-affected branch weights,
s(p) is a function of p, and u(x) is the utility of consequence x . The RAM model takes its
name from the separable (multiplicative) relationship between functions of the probability
of a branch and the rank of the branch’s consequence. Note that if s(p) = p and a(i, n) =
1 ∀ i, n, RAM reduces to EU.

In the domain of pocket cash (0 < x < $150) RAM can be fit with u(x) = xβ , where
β = 1. It is important to keep in mind, however, that in RAM (and TAX), the assumption
of linear utility does not imply risk neutrality. Even with small cash prizes, a majority of
undergraduates typically exhibits risk aversion, which refers to systematic preference for
sure cash over gambles with the same or higher expected values. In both RAM and TAX
models, it is the greater weight of branches leading to lower consequences that accounts
for risk aversion. For undergraduates, the RAM weights can be approximated as equal to
their ranks; i.e., a(i, n) = i . For example, in a two-branch gamble, the branch leading to
the highest consequence has a weight of 1, the lower branch has a weight of 2. With these
parameters, the gamble F = ($100, 0.5; $0, 0.5) has a certainty equivalent value of
$33.33, (i.e., F ∼ $33.33). Thus, RAM predicts that people will exhibit risk aversion by
choosing $40 for sure rather than gamble F , even though the gamble’s expected value is
$50.

To approximate data of Tversky and Kahneman (1992), let s(p) = pγ , where γ = .6.
The “prior” RAM model refers to Equation (1) with these parameters: β = 1; γ =
0.6; a(i, n) = i ∀ i, n. The term, “prior” indicates that the parameters have been estimated
from previous data, rather than fit to the data at hand. For binary gambles, G = (x, p; 0, 1−
p), prior RAM, like CPT, implies that certainty equivalents will be an inverse-S function
of probability: RAM(G) = u(x)pγ /[pγ + 2(1 − p)γ ]. Like CPT, this model implies risk-
seeking for small p. For example, G = ($100, 0.05; $0, 0.95) ∼ $7.87, which exceeds the
expected value of G, $5.00.

Unlike CPT, however, this model violates coalescing, and that is why RAM violates
stochastic dominance in Birnbaum’s (1997) recipe. For example, let G0 = ($96, 0.9; $12,

0.1). Prior RAM predicts that this gamble has certainty equivalent = 0.651 · $96 + 0.349 ·
$12 = $66.72. Splitting the lower branch ($12, 0.1) increases the total relative weight of the
lower splinters G ′ = ($96, 0.9; $12, 0.05; $12, 0.05) ∼ 0.531·$96+0.188·$12+0.281·
$12 = $56.62. Note that the relative weight of $12 is now 0.469 instead of 0.349. Splitting
the upper branch, however, we have G ′′ = ($96, 0.85; $96, 0.05; $12, 0.1) ∼ 0.455 ·
$96 + 0.166 · $96 + 0.378 · $12 = $64.22. The effect of splitting outweighs small changes
in the consequence on the middle splinter, so we have, G− = ($96, 0.85; $90, 0.05; $12,

0.1) ∼ $63.23 > G+ = ($96, 0.9; $14, 0.05; $12, 0.05) ∼ $56.99. Thus, RAM
predicted the violation of stochastic dominance in Birnbaum and Navarrete (1998).

It is important to keep in mind that rank weights in RAM (and TAX) are a function of
ranks of consequences on the discrete branches. For example, in a three-branch gamble,
there are exactly three ranks, 1, 2, and 3, for branches with the highest, middle, and lowest-
consequences, respectively, independent of branch probabilities. With weights set equal to
their ranks, the lowest consequence has 3 times the weight of the highest consequence and
the middle consequence has twice the weight of the highest consequence, if the probabilities
of the three branches were equal.
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2.2. Transfer of attention exchange (TAX) model

In the transfer of attention exchange model, weights of branches of a gamble are dependent
on branch probabilities; however, instead of each branch having a separable rank weight as
in RAM, branches compete for attention in TAX. These transfers of attention are represented
by transfers of weight from branch to branch. For people who are risk averse, attention is
drawn from branches leading to higher consequences and transferred to branches leading to
lower consequences. The “special” TAX model for G = (x1, p1; x2, p2; . . . ; xn, pn); x1 >

x2 > · · · > xn > 0 assumes that all weight transfers for a given number of branches are
the same proportion of (transformed) branch probability:

TAX(G) =
∑n

i=1

[
t(pi ) + δ

n+1

∑i−1
j=1 t(p j ) − δ

n+1

∑n
j=i+1 t(pi )

]
u(xi )

∑n
i=1 t(pi )

(2)

In this case, it is assumed that δ ≥ 0.2

To understand Equation (2), it helps to examine separately the three terms in the nu-
merator affecting weight. First, apart from configural transfers of weight, branch weights
depend on branch probabilities. If the configural weight parameter, δ, is 0, then the formula
simplifies, and weight of a branch is a function of branch probability, t(p), divided by the
total transformed probability of all branches. When δ = 0 and t(p) = p, the model reduces
to EU.

Second, when δ > 0, the weight of each branch is increased by the second term, which
is a proportion of the weight of branches with higher-valued consequences. Third, each
branch’s weight is reduced by transferring a portion of its weight to all branches having
lower consequences. Note that in the third term, probability is a constant, so this term can
also be written, δt(pi )

n+1

∑n
j=i+1 1 = δt(pi )(n−i)

n+1 .
TAX can be fit with u(x) = x for cash in the domain of pocket money (0 < x < $150).

As in the case of RAM, this utility function does not guarantee risk neutrality. If δ > 0,
TAX predicts risk aversion. With t(p) = p.7, and δ = 1, TAX approximates the data of
Tversky and Kahneman (1992). When δ = 1, it means that in a two-branch gamble, 1/3 of
the probability weight of the branch with the higher valued consequence is transferred to the
lower-valued branch. Thus, F = ($100, 0.5; $0, 0.5) ∼ $33.33, so people are predicted
to be risk averse for 50-50 gambles. These parameters also imply risk-seeking for gambles
with small probabilities to win [e.g., G = ($100, 0.05; $0, 0.95) ∼ $7.53 > $5.00].

Prior TAX implies violations of coalescing and therefore violations of stochastic dom-
inance in special choices (Birnbaum, 1997, 2004a). For example, G+ = ($96, 0.9; $14,

0.05; $12, 0.05) ∼ $45.77 < $63.10 ∼ G− = ($96, 0.85; $90, 0.05; $12, 0.1),
violating dominance. In this case, the relative weights in G+ are 0.395, 0.276, and 0.328
for highest, middle, and lowest branches respectively; and in G− they are 0.367, 0.259,

2This model is equivalent to that in Birnbaum and Navarette (1998); however, the branches have been ordered
here from best to worse, to conform to the convention used in CPT, GDU, and other models. Consequently, δ > 0
in this formulation corresponds to δ < 0 in Birnbaum and Navarrrete (1998), and other previous articles that used
the opposite convention.
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and 0.373, respectively. Note that the total relative weight of the probability of 0.9 in the
dominant gamble is 0.395, but the sum of weights of splinters with the same decumulative
probability in G− is 0.367 + 0.259 = 0.626. Splitting the upper branch of a gamble makes
it better, and splitting the lower branch makes it worse.

2.3. Gains decomposition utility

Marley and Luce (2001) presented a lower gains decomposition utility (GDU) model in
which each gamble can be decomposed into a series of binary gambles to win the lowest
consequence or to win a gamble on higher consequences. Binary gambles in this GDU
model are represented as follows:

GDU(x, p; y) = W (p)u(x) + [1 − W (p)]u(y) (3)

where x > y > 0. To calculate values of three-branch gambles, the gains decomposition
rule (Luce, 2000, pp. 200–202) is applied as follows:

GDU(G) = W (p + q)GDU(x, p/(p + q); y) + [1 − W (p + q)]u(z) (4)

Expression 4 can be iterated to make predictions for gambles with more than three branches.
To fit the model, let u(x) = xβ , and approximate the weights by the expression developed

by Prelec (1998) and by Luce (2000):

W (p) = exp[−γ (− ln p)δ] (5)

This GDU model is similar to TAX for binary gambles when β = 1, γ = 1.382, and
δ = 0.542. The “prior” GDU model refers to these assumptions and parameter values.3

2.4. Prospective reference theory

Prospective reference theory (Viscusi, 1989) can be written as follows:

PRT(G) = γ

n∑

i=1

pi u(xi )+(1 − γ )
n∑

i=1

u(xi )/n (6)

3The GDU model tested here uses the same assumptions as in Luce (2000, pp. 200–202). A more general form is
axiomatized in Marley and Luce (2001). Marley and Luce (2005) and Luce and Marley (2005) derive relationships
among special cases of a generic rank weighted utility model that includes special TAX, GDU, CPT, and PRT as
special cases. They axiomatized this class of models and showed that it is equivalent to the generic TAX model,
though the special TAX model has not yet been axiomatized. They are currently working with models that use gains
decomposition but which do not satisfy Expression 3. These newer models violate idempotence, the assumption
that a gamble that always yields the same prize is indifferent to that prize; i.e., G = (x, p; x, 1 − p) ∼ x , which
is implied by Expression 3. The newer models can be tested by investigation of idempotence and its implications,
which is not done here. All of the models investigated here satisfy idempotence.
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Here the PRT utility of a gamble is a weighted average of its EU and a simple average of
the utility of its consequences. This model will be fit with the assumption that u(x) = xβ .

In order to calculate “prior” predictions, parameters were selected so that this model
matches prior TAX for two gambles. Note that in binary gambles with p = 1/2, γ drops
out of the equation. That is, for G = (x, 0.5; y, 0.5), PRT(G) = γ [u(x) + u(y)]/2 +
(1 − γ )[u(x) + u(y)]/2, so PRT(G) = [u(x) + u(y)]/2. We can therefore select β such that
F = ($100, 0.5; $0, 0.5) ∼ $33.33, which implies [100β + 0β]/2 = 33.33β ; therefore,
β = 0.631. Onceβ is fixed, we can selectγ such that G = ($100, 0.05; $0, 0.95) ∼ $7.53,
which implies γ = 0.676. With these parameters, PRT matches TAX for two binary gambles
and like TAX, it implies violations of stochastic dominance in Birnbaum’s recipe.

PRT is a special case of RAM in which a(i, n) = 1 ∀ i, n, and where s(p) = γ p +
(1 − γ )/n. PRT is also a special case of TAX in which δ = 0 and t(p) = γ p + (1 − γ )/n.
It thus differs from RAM and TAX in that its weights are unaffected by rank and because
it uses a linear probability weighting function instead of the power functions used in those
models. Whereas the utilities of binary gambles of the form, H = (x, p; 0, 1 − p), are
inverse-S functions of p in CPT, RAM, TAX, and GDU, this relationship is positively
accelerated in PRT when u(x) = xβ if β < 1.

2.5. Consequence counting heuristic

The consequence counting heuristic assumes that people choose between gambles with
equal numbers of branches by selecting the gamble with the greater number of branches
whose consequences are higher than corresponding consequences on the ranked branches
of the other gamble. This heuristic implies that people choose G− over G+ because the
gambles are equal in their best and worst consequences but differ in the middle branch,
where G− has the higher consequence.

3. Predicting violations of stochastic dominance

Consider choices constructed from the following recipe: G− = ($96, p, $90, .05; $12,

.95 − p) versus G+ = ($96, .90, $14, .05; $12, .05), which was used in Studies 1 and 2.
Using the equations, one can calculate utilities for the gambles for the prior models, and
ask, for what value of p is U (G−) = U (G+)? In other words, for what value of p will half
of the choices satisfy stochastic dominance?

To convert utility differences into choice probabilities, the following logistic function
was used, which has one free parameter:

P(A, B) = 1

1 + exp{−α[U (A) − U (B)]} (7)

where α is the parameter relating utility differences to choice proportions. This model
implies that if U (A) − U (B) > 0 then the probability of choosing A over B exceeds 1/2. In
this paper, the value of α is chosen so that each model predicts a choice percentage of 70%
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for Birnbaum’s (1997) original recipe (p = 0.85), as found by Birnbaum and Navarrete
(1998). According to these parameters, prior TAX model predicts majority violations when
p ≥ 0.5; prior RAM predicts majority violations when p ≥ .78, prior PRT requires p ≥ 0.6,
and prior GDU requires p ≥ 0.8. Therefore, these models can be compared based on the
accuracy of their predictions for the effects of manipulating p.

4. Studies 1 and 2: Manipulation of probability

Studies 1 and 2 were designed to determine which of these models does the best job of
predicting the incidence of violations as a function of how probabilities are split between
branches. For example, consider the following choice:

A: 90 red marbles to win $96 B: 75 green marbles to win $96
05 blue marbles to win $14 05 black marbles to win $90
05 white marbles to win $12 20 yellow marbles to win $12

According to the prior TAX, there should be 64% violations of stochastic dominance
whereas RAM predicts “only” 39% violations in this case. According to the counting
heuristic, violations of stochastic dominance should be independent of how probabilities
are split, so there should be no effect of p. Predictions of EU, RDU, or CPT would all be
less than 50%, since these models satisfy stochastic dominance.

4.1. Method of studies 1–2

Participants made 20 or 21 choices between pairs of gambles in Studies 1 and 2. They viewed
materials via the Internet, and made each choice by clicking a button beside the gamble they
preferred. They were told that 3 lucky participants would be selected to play one of their
chosen gambles, with cash prizes as high as $110, so they should choose carefully. Prizes
were awarded as promised. The probability mechanism was described as urns containing
100 otherwise identical marbles, from which one marble would be drawn at random, and
the color of the selected marble would determine the prize.

There were 330 participants recruited via the Web and from the psychology department’s
“subject pool” at California State University, Fullerton; there were 98 and 232 in studies 1
and 2.

The seven tests of stochastic dominance are listed in Table 1. Study 2 added Choice #21,
not used in Study 1.

There were four “warm-up,” choices and 10 “filler” choices. These 14 extra choices were
intended to break up the pattern of trials and perhaps prevent participants from adopting
a special strategy for this experiment, if every choice had involved stochastic dominance.
Fillers were the same as corresponding trials in Birnbaum (1999b), except formatted in
terms of the marbles. Complete materials of all studies and raw data can be viewed at the
following URL: http://psych.fullerton.edu/mbirnbaum/archive.htm
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Table 1. Percentage of violations of stochastic dominance in studies 1 and 2.

Choice
Total Study 1 Study 2

No. G+ G− n = 330 n = 98 n = 232

5a 90 red marbles 85 red marbles to win $96 74∗ 81∗ 72∗
to win $96

05 blue marbles 05 blue marbles to win $90
to win $14

05 white marbles 10 white marbles to win $12
to win $12

18 90 black marbles 85 red marbles to win $97 70∗ 72∗ 69∗
to win $97

05 yellow marbles 05 blue marbles to win $91
to win $15

05 purple marbles 10 white marbles to win $13
to win $13

13 90 black marbles 75 red marbles to win $97 56∗ 56 55
to win $97

05 yellow marbles 05 blue marbles to win $91
to win $15

05 purple marbles 20 white marbles to win $13
to win $13

11a 90 red marbles 65 red marbles to win $96 50 49 50
to win $96

05 blue marbles 05 blue marbles to win $90
to win $14

05 white marbles 30 white marbles to win $12
to win $12

7 90 black marbles 55 red marbles to win $97 50 51 49
to win $97

05 yellow marbles 05 blue marbles to win $91
to win $15

05 purple marbles 40 white marbles to win $13
to win $13

15a 90 red marbles 45 red marbles to win $96 42* 46 40∗
to win $96

05 blue marbles 05 blue marbles to win $90
to win $14

05 white marbles 50 white marbles to win $12
to win $12

21a 90 red marbles 25 red marbles to win $96 35∗ 35∗
to win $96

05 blue marbles 05 blue marbles to win $90
to win $14

05 white marbles 70 white marbles to win $12
to win $12

aChoices marked a denote cases where the dominant gamble was presented in the first position. Asterisks show
percentages significantly different from 50%. Bold entries show probabilities manipulated in studies 1–2.
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Figure 1. Empirical percentage of violations of stochastic dominance as a function of the probability to win
$96 in the dominated gamble, in choices: ($96, .9; $14, .05; $12, .05) versus ($96, .95 – r ; $90, .05; $12, r ), as
a function of .95 – r . Predicted curves show fit of prior models, calibrated to coincide at 70% violations when
probability to win $96 is .85 in the dominated gamble.

4.2. Results of studies 1–2

Table 1 shows the percentage of violations of stochastic dominance in each choice. If people
ignored probability, the incidence of violations would have been the same from row to row.
Instead, the percentage of violations systematically changes from 74.2% to 34.6%. This
large and significant decrease refutes the consequence counting heuristic.

For n = 232 (Study 2), the binomial distribution with p = 1/2 has a mean of 50% and
a standard deviation of 3.28%; therefore percentages outside the interval from 43.4% to
56.6% deviate significantly from 50%. The term “significant” and asterisks (*) in Table 1
indicate results outside this 95% confidence interval. In Study 2, the percentage choosing
the dominated gamble changed from significantly more than 50% (first two rows) to sig-
nificantly less than 50% (last two rows) as the probability to win the highest consequence
in the dominated gamble is decreased from 0.85 to 0.25.

The binomial test of correlated proportions is a more sensitive test of within-subject
changes in choice proportions. Differences in percentages in Table 1 are significant by this
test.4

4By the test of correlated proportions, the proportion of violations in Study 2 changes significantly between
Choices 5 and 13 (z = 3.8∗) and between Choices 18 and 13 (z = 3.5∗). Choice 18 was also significantly different
from Choice 7 (z = 4.6∗), as were Choices 5 and 11 (z = 5.0∗), Choices 5 and 15 (z = 6.81∗), and Choices
11 and 21 (z = 4.4∗). Combining Studies 1 and 2, even the modest difference between Choices 11 and 13 was
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Predictions of prior models are shown in Figure 1, along with the observed data. All were
calibrated to agree in the prediction of 70% for the rightmost case in Figure 1 (p = 0.85 on
the abscissa). The prior TAX and PRT models are more accurate than prior RAM or GDU
in predicting where the percentage of violations crosses 50% on the ordinate.

5. Study 3: Probability monotonicity

Study 3 investigated another variation of Birnbaum’s (1997) recipe, first tested by Mar-
tin (1998), and summarized in Birnbaum and Martin (2003). This variation redistributes
the .9 probability to win $96 and $90 in the dominated gamble, as in the following
example:

A: 90 red marbles to win $96 B: 15 red marbles to win $96
05 blue marbles to win $14 75 blue marbles to win $90
05 white marbles to win $12 10 white marbles to win $12

In this variation, the highest consequence in the dominated gamble has transferred prob-
ability to the middle branch, but the sum of probabilities of the two highest branches is
constant.

Probability monotonicity holds that if probability is transferred from a branch with a
lower consequence to a higher valued branch, holding everything else constant, it should
improve the gamble. Probability monotonicity follows from transitivity, coalescing, re-
stricted branch independence, and consequence monotonicity. Based on their prior param-
eters, RAM, TAX, PRT, and GDU disagree on predictions for this manipulation, which is
tested in the third experiment. In this case, prior RAM implies a substantial violation of
probability monotonicity and the other three models imply small effects. RAM makes this
prediction because the shifted probability from the highest to middle branch receives the
greater weight of 2 (for the middle branch) as opposed to the weight of 1 it received in the
highest branch. This effect is strong enough to outweigh the small change in the value of the
consequence. As in Studies 1–2, the heuristic model predicts no effect of redistribution of
probability.

Instances of this manipulation were tested by Martin (1998), who found a greater change
than predicted by prior TAX, as noted by Birnbaum and Martin (2003, p. 97). Study 3
extends this effect in a parametric variation, to compare the performance of the models for
this manipulation.

The method in Study 3 is basically the same as in Studies 1 and 2, except for 7 tri-
als designed to test probability monotonicity, listed in Table 2. There were 428 partic-
ipants who made 21 choices, including the same 14 warm-ups and “filler” trials as in
Study 2.

significant (z = 2.23∗), and the proportion of violations in Choice 13 (55.5%) is significantly greater than 50%
(z = 1.98∗). Significant changes from row to row with the same consequences (e.g., choices 5, 11, 15, and 21)
show that people do respond to the probability distribution in this type of choice. Choices 18, 13, and 7 lead to the
same conclusion.
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Table 2. Percentage of violations of stochastic dominance in Study 3.

Choice
Data

No. G+ G− n = 428

5 90 red marbles to win $96 85 red marbles to win $96 74∗
05 blue marbles to win $14 05 blue marbles to win $90
05 white marbles to win $12 10 white marbles to win $12

18a 90 black marbles to win $97 85 red marbles to win $97 65∗
05 yellow marbles to win $15 05 blue marbles to win $91
05 purple marbles to win $13 10 white marbles to win $13

13a 90 black marbles to win $97 65 red marbles to win $97 61∗
05 yellow marbles to win $15 25 blue marbles to win $91
05 purple marbles to win $13 10 white marbles to win $13

15 90 red marbles to win $96 55 red marbles to win $96 61∗
05 blue marbles to win $14 35 blue marbles to win $90
05 white marbles to win $12 10 white marbles to win $12

7a 90 black marbles to win $97 35 red marbles to win $97 57∗
05 yellow marbles to win $15 55 blue marbles to win $91
05 purple marbles to win $13 10 white marbles to win $13

21 90 red marbles to win $96 25 red marbles to win $96 53
05 blue marbles to win $14 65 blue marbles to win $90
05 white marbles to win $12 10 white marbles to win $12

11 90 red marbles to win $96 15 red marbles to win $96 60∗
05 blue marbles to win $14 75 blue marbles to win $90
05 white marbles to win $12 10 white marbles to win $12

a In choices marked a, the dominant gamble was in the second position. Bold entries show probabilities (numbers
of marbles out of 100) manipulated in Study 3. All choice percentages are significantly greater than 50% except
for choice 21.

Choice proportions from Study 3 are plotted in Figure 2 as a function of the probability
to win $96 in the dominated gamble, G−. Predictions of prior models are shown as solid
or dashed lines. The effect is greater than predicted by the prior TAX model and opposite
predictions of prior RAM. Unlike previous findings, this manipulation did not reverse the
modal preference, so the effect of the manipulation was less than that reported in Birnbaum
and Martin (2003). Perhaps the smaller effect was produced by use of a greater relative
proportion of trials of this type here.

The large effect of probability again contradicts the heuristic model. Study 4 manipulates
consequences, with probabilities fixed, to see if changing consequences has a greater effect
than predicted by quantitative models, which might indicate some partial use of the heuristic.

6. Study 4: Manipulation of two consequences

If people follow a heuristic of counting the number of branches that favor one gamble over
another, then perhaps the following manipulation would produce a greater change in choice
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Figure 2. Violations of stochastic dominance, plotted as a function of the probability to win $96 in the dominated
gamble, in choices: G+ = ($96, .9; $14, .05; $12, .05) versus G− = ($96, .90−r; $90,r; $12, .1), as a function
probability to win $96 in G−. Here, prior RAM violates probability monotonicity, contrary to the data.

proportions than predicted by quantitative models that ignore this feature.

A: 90 red marbles to win $96 B ′′: 85 red marbles to win $94
05 blue marbles to win $14 05 blue marbles to win $90
05 white marbles to win $12 10 white marbles to win $10

In Studies 1–3, there were two branches with equal consequences and the middle branch
favored the dominated gamble. However, in the choice between A and B ′′, Gamble A now
has two branches with higher consequences than the corresponding prizes in B ′′, and B ′′

has only one. If people follow a heuristic that attends to this count, then the percentage
of violations of stochastic dominance should be markedly reduced compared to the choice
between A and B. RAM, TAX, PRT, and GDU predict only a small reduction in the value of
B ′′.

This study also manipulated the size of the middle branch of G–. This consequence took
on the values of $90, $70, $40, or $20. The purpose of this manipulation was to see if the
magnitude of the effect exceeds that predicted by the models, which might be evidence that
the heuristic could provide something “extra” to improve the models.

The method was the same as in previous studies, except for the 7 trials presented in
Table 3. There were 319 new participants.

The effects of changing consequences on two branches in G− to make them worse than
those of G+ had very small effects on the choice proportions, not significantly different
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Table 3. Violations of stochastic dominance in Study 4.

Choice Prior Predictions
Data

No. G+ G− n = 319 TAX RAM GDU PRT

21 90 red to win $96 85 red to win $96 66∗ 70 70 70 70
05 blue to win $14 05 blue to win $90
05 white to win $12 10 white to win $12

7a 90 black to win $97 85 red to win $97 73∗ 70 70 70 70
05 yellow to win $15 05 blue to win $91
05 purple to win $13 10 white to win $13

5 90 red to win $96 85 red to win $94 65∗ 68 65 65 68
05 blue to win $14 05 blue to win $90
05 white to win $12 10 white to win $10

18a 90 black to win $97 85 red to win $95 68∗ 68 65 65 68
05 yellow to win $15 05 blue to win $91
05 purple to win $13 10 white to win $11

15 90 red to win $96 85 red to win $96 70∗ 64 60 60 67
05 blue to win $14 05 blue to win $70
05 white to win $12 10 white to win $12

13a 90 black to win $97 85 red to win $97 68∗ 55 43 44 62
05 yellow to win $15 05 blue to win $41
05 purple to win $13 10 white to win $13

11 90 red to win $96 85 red to win $96 53 49 32 33 57
05 blue to win $14 05 blue to win $20
05 white to win $12 10 white to win $12

aIn choices marked a, the dominant gamble, G+, was presented in the second position. All percentages are
significantly greater than 50%, except for choice 11. Bold values show consequences manipulated in Study 4.
Predicted percentages shown in italics show cases where prior models fail to predict modal choices and the
difference exceeds 8%.

from the changes predicted by prior quantitative models (compare choices 21, 7, 5, and 18
in Table 3). In addition, the change due to manipulation of the middle branch (choices 21,
7, 15, 13, and 11) was even less than that predicted by TAX, RAM, or GDU. For example,
when the middle branch was $20, TAX, PRT, RAM and GDU predict 49%, 57%, 32% and
33% violations of stochastic dominance, respectively, compared with an observed rate of
53%. The idea of the consequence counting heuristic is that people pay too much attention
to the values of consequences, so once again, empirical data provide no support for the idea
that the heuristic adds anything to the quantitative models.

7. Study 5: Manipulation of three consequences

Study 4 showed that changes in one or two of the consequences on the branches had
effects similar to those predicted by TAX. Study 5 manipulates all three consequences in
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G−, reducing them to see if the prior models can predict the point where the majority
of participants switches from violating to satisfying stochastic dominance. For example,
consider:

A: 90 black marbles to win $97 B ′′′: 85 red marbles to win $70
05 yellow marbles to win $15 05 blue marbles to win $60
05 purple marbles to win $13 10 white marbles to win $2

According to prior TAX, 44% of participants should prefer B ′′′ to A, whereas prior PRT,
RAM and GDU predicts that only 38%, 11%, or 11% should violate stochastic dominance
here, respectively.

The method of Study 5 was the same as in Studies 2–4, except for the 7 choices in Table 4.
There were 411 new participants.

Results are shown in Table 4 along with predictions of prior models. All models pre-
dict decreasing violations as the consequences of G− are reduced. The data show only

Table 4. Violations of stochastic dominance in Study 5.

Choice Prior Predictions
data

No. G+ G− n = 411 TAX RAM GDU PRT

5 90 red to win $96 85 red to win $96 70∗ 70 70 70 70
05 blue to win $14 05 blue to win $90
05 white to win $12 10 white to win $12

21a 90 black to win $97 85 red to win $97 69∗ 70 70 70 70
05 yellow to win $15 05 blue to win $91
05 purple to win $13 10 white to win $13

18 90 red to win $96 85 red to win $90 48 64 51 52 62
05 blue to win $14 05 blue to win $84
05 white to win $12 10 white to win $6

7a 90 black to win $97 85 red to win $90 57∗ 63 50 51 62
05 yellow to win $15 05 blue to win $80
05 purple to win $13 10 white to win $10

11 90 red to win $96 85 red to win $85 47 58 36 37 56
05 blue to win $14 05 blue to win $75
05 white to win $12 10 white to win $4

15a 90 black to win $97 85 red to win $80 42∗ 53 25 26 50
05 yellow to win $15 05 blue to win $70
05 purple to win $13 10 white to win $5

13a 90 black to win $97 85 red to win $70 31∗ 44 11 11 38
05 yellow to win $15 05 blue to win $60
05 purple to win $13 10 white to win $2

aChoices marked a had G+ in the second position. Bold entries show values manipulated in Study 5. Asterisks
denote choice percentages significantly different from 50%. Predicted percentages shown in italics show cases
where the prior models fail to predict the modal choice and the discrepancy exceeds 8%.
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48% violations when all three consequences were reduced by $6 (choice 18), but 57%
violations when the reductions were $7, $11, and $3 from the highest, middle, and low-
est branches, respectively (choice 7 in Table 4). This result is significantly greater than
50%, slightly lower than the prediction of 63% by prior TAX and PRT, and higher than
the prediction of 50% by RAM. The observed data for other cases also fall intermediate
among predictions of TAX, PRT, RAM and GDU. The data again provide no evidence
that people pay more attention to the consequences than implied by the prior quantitative
models.

8. Analysis of filler trials

Studies 1–5 each had 14 choices in common. Eight of these “filler” trials provide tests of
CPT and EU, and three choices assessed risk aversion with p = 0.01, 0.5, and 0.99; these
11 choices are listed in Table 5. Results were very nearly the same in all five studies, so
data in Table 5 are combined over all 1488 participants.

As shown in Birnbaum and Navarrete (1998), CPT implies two properties called upper
and lower cumulative independence. In choice 10, we see that 70% chose R′ � S′, so
the percentage who choose R′′′ � S′′′ in choice 9 should be at least 70% according upper
cumulative independence; however, only 31% made this choice. Both choice percentages are
significantly different from 50% violating CPT, RDU, and EU. Choices 12 and 14 provide
another test of upper cumulative independence, with the same conclusion. Percentages in
choices 8 and 6 violate lower cumulative independence, as do the results in choices 20 and
17.5

With gambles defined as in Footnote 5, restricted branch independence requires that
S � R ⇔ S′ � R′. CPT with any weakly inverse-S shaped probability weighting function
implies that violations (of branch independence) should be of the form, S ≺ R and S′ � R′.
However, the data show significantly more violations of the opposite type than of the type
that would be consistent with this prediction of CPT. Note that the percentage choosing
the risky gamble in choice 10 exceeds that in choice 6, and the same pattern is observed in
choices 12 and 17.

Comparing prior models in Table 5, TAX and PRT each have one failure to predict the
majority choice (shown in bold font), whereas RAM and GDU each have three. The PRT

5Upper and lower cumulative independence are implied by any RDU or CPT model; they have been refuted
previously (Birnbaum and Navarrete, 1998). Upper cumulative independence assumes S′ = (z′, r ; x, p; y, q) ≺
R′ = (z′, r ; x ′, p; y′, q) ⇒ S′′′ = (x ′, r ; y, q + p) ≺ R′′′ = (x ′, p+r ; y′, q), where z′ > x ′ > x > y > y′ > z >

0. According to CPT the percentage who choose R′′′in Choice 9 should be greater than or equal to the percentage
who choose R′ in Choice 10, contrary to the data in Table 5. In studies 1–5, the percentage who choose the risky
gamble R′ in Choice 10 significantly exceeded 50% and the percentage who choose the risky gamble R′′′ in Choice
9 was significantly less than 50%. Choices 12 and 14 also violate this property. Lower cumulative independence
holds that, S = (x, p; y, q, z, r ) � R = (x ′, p; y′, q; z, r ) ⇒ S′′ = (x, p + q; y′, r ) � R′′ = (x ′, p; y′, q + r ).
However, results for choices 6, 8, 17, and 20 show that more people switch from choosing the “safe” gamble,
S, to the “risky” gamble, R′′ than make the opposite switch, despite the improvement in the “safe” gamble.
As shown by Birnbaum (1997), lower and upper cumulative independence follow from transitivity, coalescing,
consequence monotonicity, and comonotonic restricted branch independence. For more detail on these tests and
branch independence, see Birnbaum and Navarrete (1998).
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Table 5. Tests of upper and lower cumulative independence, branch independence, and risk aversion (these
“filler” trials were common to all five studies). Data are percentages of all 1488 participants who chose the second
gamble, shown on the right.

Predictions of Prior Models
Data

No. Type Choice 1488 TAX RAM GDU PRT

10 S′ vs. R′ 10 to win $40 10 to win $10 70 56 57 58 65
10 to win $44 10 to win $98
80 to win $110 80 to win $110

9 S′′′ vs. R′′′ 20 to win $40 10 to win $10 31 38 38 41 42
80 to win $98 90 to win $98

12 R′ vs. S′ 05 to win $12 05 to win $48 39 49 56 51 65
05 to win $96 05 to win $52
90 to win $106 90 to win $106

14 R′′′ vs. S′′′ 05 to win $12 10 to win $48 73 65 65 63 60
95 to win $96 90 to win $96

6 S vs. R 80 to win $2 80 to win $2 58 49 49 48 60
10 to win $40 10 to win $10
10 to win $44 10 to win $98

8 S′′ vs. R′′ 80 to win $10 90 to win $10 69 55 64 64 61
20 to win $44 10 to win $98

17 R vs. S 90 to win $3 90 to win $3 51 52 55 54 60
05 to win $12 05 to win $48
05 to win $96 05 to win $52

20 R′′ vs. S′′ 95 to win $12 90 to win $12 35 48 44 43 42
05 to win $96 10 to win $52

2 RA 50 to win $0 50 to win $35 70 56 66 69 60
50 to win $100 50 to win $45

16 RA 100 to win $3 99 to win $ 0 32 49 50 54 60
01 to win $100

19 RA 100 to win $96 01 to win $0 29 17 27 29 27
99 to win $100

Choice types are described in Footnote 5, RA = test of risk attitudes. For n = 1488, a 95% confidence interval
is ± 2.6%. All choice percentages significantly differ from 50% except choice 17. Percentages in italics show
failures of prior models to predict modal choices, where the discrepancy is greater than 8%.

model fails to predict the violation of branch independence in choices 12 and 17, whereas
TAX predicts a violation of branch independence (choices 6 and 10) that did not produce a
reversal of modal choices.

9. Model fitting

Table 6 compares the fit of parameterized models. For example, “prior” TAX is labeled
TAX(0), the “0” indicating that no parameters were estimated from the new data. Parameters
were fit to minimize the sum of squared deviations between predicted and obtained choice
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Table 6. A comparison of fit of models to combined data (percentages in Tables 1–5).

Sum of
squared Serious RAM WTS

Model errors errors Alpha Beta Gamma Delta (high, med, low)

RAM(5) 2466 2 1.357 0.492 0.488 (1), 0.762, 0.338

TAX(3) 4868 1 0.845 0.533 0.436 (0)

PRT(3) 6831 2 1.162 0.420 0.616

RAM(4) 6938 3 0.063 (1) 0.534 (1), 2.17, 1.64

RAM(3) 7145 2 0.063 (1) (0.6) (1), 2.32, 1.37

TAX(2) 7544 1 0.059 (1) (0.7) 0.750

GDU(4) 7919 6 0.019 1.267 1.831 0.408

TAX(0) 8031 5 0.049 (1) (0.7) (1)

RAM(2) 8375 4 0.062 (1) 0.453 (1), (2), (3)

PRT(0) 9696 5 0.384 0.631 0.676

CPT(4) 12000 20 5.787 0.103 0.209 4.222

GDU(0) 12052 6 0.130 (1) (1.382) (0.542)

PRT(2) 13813 4 0.031 (1) 0.498

RAM(0) 14408 6 0.136 (1) (0.6) (1), (2), (3)

CPT(1) 17592 23 0.039 (0.88) (0.61) (0.72)

Notes: A “serious error” is a case where the model failed to predict the majority choice, and the difference
between predicted and obtained choice percentages is greater than or equal to 8%. There were 32 choices
between 3-branch gambles and 7 choices between 2-branch gambles, making 39 choice percentages to
be fit with up to 5 parameters. Models and parameters are described in Section 2. Values in parentheses
are fixed.

percentages in Tables 1 to 5, where discrepancies in Table 5 received four times the weight of
those in the other tables (they are based on all 1488 participants). Cases where a model failed
to predict the modal choice and the discrepancy was greater than 8% are termed “serious
errors.” Parameters shown in parentheses were fixed. With three estimated parameters, TAX
was the most accurate, followed by PRT, RAM and GDU, with CPT failing badly. RAM(5)
provided the lowest sum of squares, but this superiority required a greater number of free
parameters than the competitors.

Considering the number of estimated parameters, number of serious errors, and sum of
squared discrepancies, TAX(2), with δ = .748, is perhaps the best representation of the
data. The smaller value of δ indicates that these data evidence less risk aversion than did
previous data used to estimate the prior model. Asymptotic estimates of standard errors of
the free parameters, α and δ , are 0.036 and 0.178, respectively. Bootstrapped estimates are
slightly smaller. TAX(3) also provided a good fit to the data, with the configural weight
parameter fixed, δ = 0, and with free β = 0.533. Similarly, PRT(3), which is a special case
of TAX, also provides a reasonable fit. Asymptotic estimates of standard errors for PRT
parameters are 0.186, 0.036, and 0.043 for α, β, and γ ; bootstrapped estimates are almost
twice as large.



282 BIRNBAUM

TAX(3) still outperformed PRT(3) even without its configural weight parameter (i.e.,
even with δ = 0). Recall that PRT is a special case of TAX with δ = 0, so these two models
differ only in their specified probability functions. The slight advantage of TAX over PRT
with the same number of parameters is apparently due to the use in TAX of a nonlinear
function for probability weighting whereas PRT uses a linear function. Neither TAX(3) nor
PRT(3) would be able to account for violations of restricted branch independence.

10. Studies 6 and 7: Probability to win or lose

Studies 6 and 7 tested a conjecture by Payne (2005) that the important variable in risky
decision making is the probability to win or lose in mixed gambles. In Payne’s (2005) study,
however, overall probability to win was confounded with the number of branches leading
to negative consequences. For example, Payne (2005) asked people to choose between:

G1 = ($85, 0.3; $65, 0.05; −$25, 0.25; −$55, 0.15; −$65, 0.25)

G2 = ($85, 0.3; $65, 0.05; $0, 0.25; −$55, 0.15; −$90, 0.25),

Payne reported that 59% chose G2, which has a probability of 0.60 to yield a non-negative
consequence, whereas G1 has a probability of only 0.35 to do this. But G1 has three
probability-consequence branches leading to negative consequences and G2 has only two
branches leading to negative consequences. These variables, probability to win and number
of branches leading to non-negative consequences, were also confounded in Payne’s second
study.

Therefore, Payne’s results may be due to violations of coalescing rather than to probability
to win or lose. The following choice pits these two theoretical interpretations against each
other:

G3 = ($100, 0.35; $0, .37; −$95, .04; −$97, .04; −$100, 0.20)

G4 = ($100, .10; $99, 0.10; $96, 0.10; $0, 0.40; −$100, 0.30)

Here, probability to win a positive consequence in G3 is 0.35 and the probability to get a
negative consequence is 0.28; whereas, in G4, there is only a 0.30 probability to win and
a higher probability to lose, 0.30. Pitted against probability to win or lose, however, we
see that G3 has three branches leading to negative consequences against only one in G4,
and that G4 has three branches leading to positive consequences compared to only one in
G3. But G3 dominates G4 by first order stochastic dominance. If probability to win or lose
is important, people ought to satisfy stochastic dominance in this choice and choose G3;
however, if splitting is important, they should choose G4.

Payne’s interpretation, CPT, the model of Lopes and Oden (1999), expected utility, ex-
pected value, and stochastic dominance all imply that people should choose G3. Prior TAX,
however, predicts the opposite. To apply TAX to mixed gambles, it was assumed that utility
of money is proportional to money (u(x) = x with −$100 ≤ x ≤ $100), and that the
same prior TAX parameters apply to mixed gambles as to strictly positive ones. This TAX
model predicts that people will choose G4, which has more branches leading to positive
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consequences and fewer leading to negative ones, because G3 and G4 have cash equivalent
values of −$55.8, and −$14.7, respectively, so G4 should be preferred to G3.

In Study 6, the choice between G3 and G4 was included as the only test of its type among
20 other choices between mixed gambles, using procedures similar to those of Studies 1–5
with 114 undergraduates. Study 7 (with 200 different undergraduates) used two additional
variations of this choice included among 18 other choices. The probability mechanism was
described as drawing a ticket randomly from an urn containing 100 tickets. The two key trials
were choices #4 and 21, as listed in the following URL, which contains complete instructions
and materials: http://psych.fullerton.edu/mbirnbaum/psych466/exps/gls 2-branch.htm

In Study 6, it was found that 63% chose G4, consistent with TAX. Study 7 found 66.5%
and 65.5% violated dominance by choosing the gamble with the smaller probability to win
but the lower number of negative branches, respectively. All three percentages are signifi-
cantly greater than 50%, showing that people systematically preferred the dominated gam-
ble. In Study 7, 103 people chose the dominated gamble on both choices, compared to only
39 who chose the dominant gamble with the higher probability to win both times (z = 5.37).

These results suggest that Payne’s (2005) results were likely due to the splitting manip-
ulation that was confounded in his study, rather than to probability to win or lose. They
also show that violations of stochastic dominance are not limited to gambles with positive
consequences, but persist in mixed gambles, even when probability to win or lose is used
to “help” stochastic dominance.

11. Discussion

Each of studies 1–5 provided two replications of the basic test of stochastic dominance
that had been proposed as a test of CPT. Consistent with previous results, the percentages
of violation in studies 1–5 are all close to 70%, the incidence reported by Birnbaum and
Navarrete (1998) in a lab study. Apparently one can find good consistency in Web studies,
once procedures for recruiting and testing participants are standardized, and decent sized
samples are obtained.

Although CPT was correct in all 7 predictions for binary gambles (where CPT agrees
with TAX), CPT cannot account for systematic violations of stochastic dominance. Out of
32 choices between three-branch gambles in Tables 1–5, the CPT model of Tversky and
Kahneman (1992) made 23 erroneous predictions of the modal choice, and it was wrong in
all three tests with mixed gambles in Studies 6–7. Considering the evidence presented here
as well as the growing mass of other evidence contradicting CPT (Birnbaum, 1999b, 2004a,
2004b, 2005; Birnbaum and Navarrete, 1998; Wu, 1994; Wu and Markle, submitted); I think
it is time to set CPT aside and move on to evaluate models that can describe the empirical
phenomena of risky decision making.

These studies used five manipulations, two that varied how probability was distributed,
two that manipulated branch consequences, and one that pitted probability to win against
branch splitting. The effects of the manipulations in Studies 1–5 were not consistent with a
heuristic of counting the number of branch consequences in one gamble that exceed corre-
sponding consequences on branches of the other gamble. This heuristic erroneously implies
no effect of probability in Studies 1–3. It also implies reversals that did not materialize in
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Studies 4–5, when the dominated gamble had two lower valued branches and only one
higher-valued branch than the dominating gamble. In studies 4 and 5, the effects of chang-
ing the values of consequences was not greater than effects predicted by quantitative models.
So, no evidence emerged to support the idea that people use such a heuristic.

Heurisitics and biases are sometimes used as post hoc “excuses,” which allow a theorist to
ignore violations. They provide names for phenomena that give the illusion of understanding,
and create the illusion that except for this “bias”, the results would have conformed to
the theory. For example, a defender of CPT might have said that violations of stochastic
dominance do not refute CPT because they are due to a “counting heuristic,” and are
therefore to be treated as a blemish on the theory (that can be covered by make up), rather
than as a fatal wound.

Some heuristic models seem “straw men” because they focus on some simple feature of
a choice and ignore other relevant information. In the case of the counting heuristic, the
heuristic does not attend to probabilities. Although such heuristics, like the editing rules of
prospect theory (Kahneman and Tversky, 1979) or Payne’s (2005) probability to win, seem
implausible once they are stated as scientific hypotheses and refuted, it is useful, nevertheless
to test and refute such simple models; lest they otherwise continue to haunt the field.6

Four models that predict violations of stochastic dominance were compared. Prior TAX
and PRT outperformed prior RAM and GDU in Studies 1–2, where RAM and GDU predicted
lower incidences of violations than were observed. In Study 3, RAM predicted a violation
of probability monotonicity that failed to materialize, and here the other three models were
more accurate. Although TAX, PRT, and GDU predict the correct direction of the effect
in Study 3, the magnitude of the observed effect was larger than predicted by any of these
prior models.

This result in Study 3 might indicate a problem with all of these models. Certainly
by estimating parameters from the data, the fit of these models can be improved. How-
ever, the fact that the basic violation percentages (70% choosing A over B) are so consis-
tent from study to study suggests that the people tested here are not that different from
those tested previously. More convincing and informative than model fitting would be the
creation of new “paradoxes” from any systematic error in a model, where the new para-
doxes expose contradictions in the theory that cannot be avoided by changing functions or
parameters.

In RAM, TAX, GDU, or PRT models, it is violations of coalescing that allow these models
to predict violations of stochastic dominance. The manipulation of splitting or coalescing
of branches has been shown to both create and nearly eliminate violations of stochastic
dominance (Birnbaum, 1999b, 2004a, 2004b). Other manipulations intended to eliminate
or reduce the incidence of violations, however, have not been very effective, despite a wide
search for procedures in which stochastic dominance would be satisfied (Birnbaum, 2004b).
For example, in a recent study, I asked participants to make a series of choices and write
their reasons for each of six choices. One of the choices was the same as the first example

6Another counting heuristic that seems plausible when all consequences are equally likely is the median model.
In this model, the participant evaluates a gamble by the consequence that has an equal number of branches with
higher or lower consequences. But this model was tested and rejected as an explanation of violations of branch
independence (Birnbaum and McIntosh, 1996).
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in this paper. The incidence of violations of stochastic dominance was not reduced by this
exercise, contrary to the idea that being asked to justify choices might help people notice
and satisfy dominance.

PRT was nearly as accurate as TAX for these data. However, PRT cannot account for
systematic violations of restricted branch independence, which have been observed in a
number of studies (Birnbaum, 2004a, 2004b; Birnbaum and Navarrete, 1998). The idem-
potent lower GDU model tested here cannot account for violations of upper coalescing or
violations of upper tail independence (Wu, 1994). Newer forms of GDU (Ng, Luce, and
Marley, 2005) that extend the models of Meginniss (1976), and which violate idempotence,
remain to be tested in future studies (see Footnote 3).

As noted by Fishburn (1978), models that violate idempotence can be made to violate a
seemingly “transparent” recipe for stochastic dominance. Idempotence is the assumption
that G = (x, p1; x, p2; . . . ; x, pn) ∼ x . Suppose idempotence is violated as follows: G � x .
If so, then we can select a value x ′ = x + ε for some small value of ε > 0 such that
G � x ′, violating stochastic dominance. In other words, people should prefer a gamble
whose outcomes are all equal to x over a sure thing with a strictly higher consequence,
x ′. Kahneman and Tversky (1979) noted that their original prospect theory would violate
dominance in this way, which they thought implausible, so they postulated that people detect
and conform to dominance during an editing phase that precedes evaluation of the gambles.

None of the models compared here (TAX, RAM, GDU, or PRT) violate idempotence, so
they do not violate transparent dominance in Fishburn’s recipe. A goal for future research
comparing these models with the class of non-idempotent models will be to devise tests
that are perhaps less transparent than that of Fishburn’s recipe.

In sum, results show that violations of first-order stochastic dominance are robust and
that they cannot be explained by a heuristic that ignores branch probabilities. Given the
same number of parameters, the TAX model is more accurate than PRT, RAM, or GDU
in predicting violations and satisfactions of stochastic dominance. Unlike RAM, the TAX
model does not imply large violations of probability monotonicity in Study 3, though it does
not always satisfy this property. Unlike idempotent lower GDU, TAX violates both upper
and lower coalescing. Whereas in PRT, weights are independent of rank, TAX has rank-
affected weights, so it accounts for violations of restricted branch independence. In fact,
TAX attributes risk aversion and violations of branch independence to the same mechanism.
This aspect of TAX gives it the advantage of an extra parameter over PRT, which is a special
case of both TAX and RAM.
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