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Social Signal Detection by
Probabilistic Sampling DNN Training

Gabor Gosztolya, Tamas Grosz, and Laszlé Téth, Member, IEEE

Abstract—When our task is to detect social signals such as laughter and filler events in an audio recording, the most straightforward
way is to apply a Hidden Markov Model — or a Hidden Markov Model/Deep Neural Network (HMM/DNN) hybrid, which is considered
state-of-the-art nowadays. In this hybrid model, the DNN component is trained on frame-level samples of the classes we are looking
for. In such event detection tasks, however, the training labels are seriously imbalanced, as typically only a small fraction of the training
data corresponds to these social signals, while the bulk of the utterances consists of speech segments or silence. A strong imbalance
of the training classes is known to cause difficulties during DNN training. To alleviate these problems, here we apply the technique
called probabilistic sampling, which seeks to balance the class distribution. Probabilistic sampling is a mathematically well-founded
combination of upsampling and downsampling, which was found to outperform both of these simple resampling approaches. With this
strategy, we managed to achieve a 7-8% relative error reduction both at the segment level and frame level, and we efficiently reduced

the DNN training times as well.

Index Terms—Deep neural networks, instance sampling, social signals, laughter detection.

1 INTRODUCTION

WITHIN speech technology, an emerging area is pa-
ralinguistic phenomenon detection, which seeks to

locate non-linguistic events (conflict, laughter events, etc.)
in speech. One task belonging to this area is the detection
of social signals, from which perhaps laughter and filler
events (vocalizations like “um”, “eh”, “er” etc.) are the most
important. Many experiments were performed with the goal
of detecting laughter (e.g. [1], [2], [3]), and the detection of
filler events has also become popular recently (e.g. [4], [5],
(61, [71, (81, [9D).

Most of the earlier studies focused on the frame level
(e.g. [5], [10], [11]). However, a more realistic approach
is to detect occurrences of the given phenomena. To
do this, one may simply borrow techniques from Auto-
matic Speech Recognition (ASR), such as applying a Hid-
den Markov Model (HMM) to combine the local (frame-
level) likelihood estimates of a Gaussian Mixture Model
(GMM) into segment-level occurrence hypotheses. Nowa-
days in ASR, with the invention of Deep Neural Networks
(DNNs), HMM/GMMs have been replaced by the so-called
HMM/DNN hybrids as state-of-the-art [12], and this tech-
nique may be readily applied in this task as well.

To construct a HMM/DNN-based event detector, we
train our DNNs on frame-level samples of the classes we
are looking for (e.g. laughter) and background events (e.g.
speech, silence, background noise). However, social signals
are relatively rare phenomena in spontaneous speech, typ-
ically taking up only a small fraction of speech time [13].
This means that we have to train our DNNs on a data
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set where the distribution of examples belonging to the
different classes are heavily imbalanced. Neural networks
are known to be sensitive to (a strong) class imbalance
(see e.g. [14]), and DNNs are no exception. Fortunately, in
ASR the distribution of the phones are not so imbalanced
that it would cause noticeable training difficulties. Also, we
usually apply context-dependent state tying (see e.g. [15],
[16], [17]), which also tends to reduce the difference in the
number of examples belonging to the different states (i.e.
classes). However, in the case of social signal detection the
imbalance of the classes is much more dramatic, and it needs
to be handled carefully.

The simplest solution to help balance the distribution of
training samples associated with the different classes is to
re-sample the input data. In its simplest form it means that
we simply discard training data from the more frequent
classes (filtering or dowmn-sampling approach [18]), which
clearly decreases the variability of the training data, and
this may result in a loss of accuracy.

Of course, re-sampling is not the only way to balance
the class distribution of the training data. Another choice,
being very popular in image processing, is that of data
augmentation; that is, generating further training examples
from the existing ones. In image processing, this typically
means rotating, mirroring and resizing images, and changes
in the colours [19], [20], [21]. In ASR, some studies suggest
that speeding up or slowing down utterances slightly [22],
adding noise to the speech signal [23] or utilizing vocal
tract length perturbation [24], [25] are useful methods to
increase the size of training sets in low-resource scenarios.
Notice, however, that while generating new images can
easily be applied for balancing class distribution, in speech
processing, where each utterance tends to contain thousands
of training examples associated with several classes, it is not
so straightforward to realize. The ASR studies listed above
all focused on creating more training examples in general,
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and not just for specific classes.

The data augmentation approaches mentioned so far
all operate before feature extraction, i.e. they create “new”
images or speech recordings. Another type of data aug-
mentation methods operate in the “feature space” instead
of this “data space”: they create synthetic examples based
on the feature vectors of existing training examples. Perhaps
the most popular such algorithm is the Synthetic Minority
Over-sampling Technique (SMOTE, [26]), which takes the
linear combination of k nearest neighbours of a randomly
chosen example in the feature space.

These methods, despite being more task-independent
than the former ones, appear to be quite hard to apply in
ASR (or in the detection of laughter or filler events). The
reason for this is that it is common practice to train the
acoustic DNNs on a sliding window of feature vectors to
improve performance. As the consecutive feature vectors of
an utterance are typically stored after each other in the mem-
ory, using the feature vectors of the neighbouring frames
imposes no additional memory requirement. However, if we
generate further synthetic examples via SMOTE (or some
similar method), we have to handle the neighbouring fea-
ture vectors as well. If we leave them as they are, our newly
generated examples will differ from the original ones only in
a fraction of their feature values. However, to use SMOTE
for generating new feature values for the “neighbouring”
frames as well would expand our memory requirements
(e.g. using 7 frames at each side leads us to use 15 times
as much memory), since the generated “neighbours” cannot
be re-used for other training examples.

For these reasons, in this study, to detect laughter and
filler events in English mobile phone conversations, we will
not apply data augmentation, but focus on training data
re-sampling. Instead of the simple approaches of down-
and upsampling (i.e. use the examples of the rarer classes
less and more frequently, respectively), we will utilize a
more sophisticated technique called probabilistic sampling,
which is a mathematically well-founded combination of the
two approaches. We will also present an efficient way of
implementing this sampling strategy, which meets the needs
of speech processing.

The structure of this paper is as follows. First, we will
introduce probabilistic sampling, give an implementation
approach which efficiently reduces the randomness present
during DNN training, and discuss how applying proba-
bilistic sampling affects the application of DNNs in Hidden
Markov Models. Then we will describe the experimental set-
up: the database used, the DNN parameters, the language
model used, explain the way the meta-parameters were fine-
tuned, and discuss the evaluation metrics used. Afterwards
we will present and analyze our results, where besides
event detection accuracy, we examine how the application
of probabilistic sampling affected the training times of our
DNN-based acoustic models, and also look at how the
output likelihood values changed.

2 PROBABILISTIC SAMPLING

Like most machine learning algorithms, neural nets are sen-
sitive to class imbalances, and tend to behave inaccurately
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on classes having only a few examples. The simplest solu-
tion to help balance the class distribution is to downsample
the more frequent classes, but it results in data loss, and
hence may also result in a drop in accuracy. A more refined
solution is to upsample the rarer classes: we utilize the ex-
amples from these classes more frequently during training.
A mathematically well-formulated re-sampling strategy is
the training scheme called probabilistic sampling [27], [28].
This procedure selects the next training sample following a
two-step sampling scheme: first we select a class according
to some probability distribution, then we randomly pick a
training sample that belongs to this class. For the first step,
we assign the following probability to each class:

P(cg) = )\% + (1 — X)Prior(ck), 1)

where Prior(cy) is the prior probability of class cx, K is the
number of classes and A € [0,1] is a parameter. For A\ =
0, the above formula returns the original class distribution,
so probabilistic sampling will behave just as conventional
sampling does. For A = 1, we get a uniform distribution
over the classes, so we get totally balanced samples with
respect to class frequency. Selecting a A value between 0 and
1 allows us to interpolate between the two distributions.
(For the sake of simplicity, for each iteration we select the
same number of samples as there are in the training set.)

Database sampling is quite rarely applied either in ASR
or in similar areas. We should mention the in-depth study of
Garcia-Moral et al. [29], who discarded examples belonging
to the more common classes. Although this made the ANN
training process much faster, they also experienced a slight
drop in accuracy. Téth and Kocsor applied this probabilistic
sampling approach to a very small speech recognition task
in 2005 [28], and they were able to improve the recognition
accuracy. More recently, Grész et al. applied probabilistic
sampling in the training of DNN acoustic models with
context-dependent targets. With this strategy they obtained
significant reductions in the word error rate in two large-
vocabulary speech recognition tasks [30]. These studies fo-
cused on speech recognition, where the class imbalance is
relatively small; still the probabilistic sampling technique
resulted in performance gains. When the task is social signal
detection, where the class imbalance is usually much larger,
we can reasonably expect that applying this technique will
result in significant improvements in the scores.

2.1 Efficient Implementation for Speech Processing

Notice that the basic version of the probabilistic sampling
scheme introduces randomness in the sampling process
at two distinct points: first we randomly pick a class, and
then we randomly pick a training sample of the given class.
Although usually we have millions of training frames, for
some events of interest the number of training examples is
much more limited. If we follow this scheme, it may happen
that some examples are not used at all during training.

In standard ANN training, the typical data random-
ization process consists of shuffling the data vectors in
a random order before training. This process guarantees
that all the training samples get processed. This gave us
the idea of implementing probabilistic sampling as follows.
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Fig. 1. The basic scheme of the proposed probabilistic sampling implementation approach. The pointers to the frame-level feature vectors are stored
in a linked list data structure separately for each class, allowing the efficient location of the next training sample of each class and easy access
to the neighbouring frame-level feature vectors. The dashed circles show the pointers to the next training instance for each class employed during

training.

In our approach, first we set up separate linked list data
structures [31] for each class. These linked lists store pointers
to each frame-level feature vector associated with the given
class (see Figure 1). Then we shuffle the nodes of each linked
list (i.e. the training examples). Before starting the first
training iteration, we also set pointers to the first example
of each class.

During training, first we randomly select a class, follow-
ing the multinomial distribution of Eq. (1). Then, however,
instead of randomly picking a sample within the class, we
use the training sample (i.e. frame) indicated by the pointer
of the given class, and advance the pointer to the next
sample. (If this was the last sample of the actual class, we
set our pointer to the first one.) This way we can guarantee
that, for each class, all of its training samples will be used
with roughly the same frequency, avoiding the possibility of
not using or underusing certain samples. Notice that with
this approach we need only two pointers for each example
(one pointing to the address of the actual feature vector, and
one referring to the next node of the linked list), which is
negligible, compared to the size of the training data.

Another important aspect of various frame-level speech
tasks is that nowadays it is standard practice to train
frame-level classifiers on a sliding window of neighbouring
frames instead of using only the feature vector of a single
frame. That is, instead of using the x; observation vector
associated with the tth frame, we use the 2k + 1-frame
long 2¢—p,...,x¢,..., Ty concatenated feature vector to
classify the tth frame. If we had opted for simply sorting
the feature vectors by their class labels, we would have had
to store the feature values belonging to the neighbouring
frames as well, which would multiply the memory require-

ments of DNN training. However, by storing only a pointer
referring to the location of the feature vector of the given
frame, we can easily access the feature vectors of both the
preceding and the subsequent neighbouring frames.

2.2 Application in a HMM/ANN Hybrid

A standard Hidden Markov Model requires frame-level
estimates of the class-conditional likelihood p(z:|cy) for the
given observation vector x;, which are provided by a gen-
erative method like Gaussian Mixture Models (GMMs) [32].
When we replace GMMs by neural networks, which esti-
mate P(cg|z¢), the p(z¢|ck) values expected by the HMM
can be got using Bayes’ theorem. So, in a HMM/ANN
hybrid, we divide the posterior estimates produced by
the ANN (or DNN) by the priors of the classes, i.e. by
Prior(ci). This will give the required likelihood values
within a scaling factor, which can be ignored as it has no
influence on the subsequent search process.

In contrast, Téth and Kocsor showed that when we train
the neural network using a uniform class distribution (being
equivalent to using probabilistic sampling with A = 1),
the networks will estimate directly the class-conditional
p(x¢|cx) values within a scaling factor [28]. This means that
when we integrate our classifiers trained with A = 1 into
a HMM/ANN hybrid, we should omit the division of the
network outputs by the class priors.

Theoretically we should either use A = 0 and divide
by the class priors, or use A = 1 and not divide by the
priors. However, in practice the probability estimates are
not precise. While with standard sampling (A = 0) ANNs
tend to underestimate the probability of the rarer classes,
chances are that they will be overestimated in the case of
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TABLE 1
The distribution of laughter and filler events in the SSPNet Vocalization Corpus
Total Count Total Duration (sec) Total Duration (%)
Set Utterances | Laughter Fillers Utterances | Laughter Fillers Laughter Fillers
Training 1583 649 1710 17358 593 850 3.4% 4.9%
Development 500 225 556 5478 258 294 4.7% 5.4%
Test 680 284 722 7444 240 355 3.2% 4.8%
Total 2763 1158 2988 30280 1091 1499 3.6% 5.0%

uniform sampling (A = 1). Téth and Kocsor [28] achieved
the best performance with A values strictly between 0 and 1,
and we also recommend finding the best value for the given
task experimentally.

In this study we propose another likelihood normaliza-
tion strategy. The explanation presented in [28] tells us why
(theoretically) we have to divide the output likelihoods by
the original class priors when we train DNNs with A = 0,
and why we should avoid any division in the case of A = 1.
Experimentally, however, intermediate A values were found
to be optimal. With these intermediate A values, actually a
third class distribution is used during training. This means
that we should in fact divide the output likelihood estimates
of a DNN by the prior probabilities of the classes given
by the P(c) values calculated using Eq. (1). As the third
option, we also tested this approach for both A = 0 and
A =1, as well as for intermediate A values.

3 EXPERIMENTAL SETUP
3.1 The SSPNet Vocalization Corpus

We performed our experiments on the SSPNet Vocaliza-
tion Corpus [4], which consists of 2763 short audio clips
extracted from telephone conversations, containing 2988
laughter and 1158 filler events (see Table 1). In this corpus
just 3.6% of the duration corresponds to laughter, and 5.0%
consists of filler events; the remaining 91.6% consists of
miscellaneous speech (51.2%) and silence (40.2%). Unfor-
tunately, in the public annotation only the laughter and
filler events are marked, so in our experiments each frame
was labeled as one of three classes: “laughter”, “filler”
or “garbage” (meaning both silence and non-filler non-
laughter speech). We will follow the standard split of the
dataset into a training, development and test set, introduced
at the Interspeech Computational Paralinguistics Challenge
(ComParE) in 2013 [10]. From the total of 2763 clips, 1583
were assigned to the training set, 500 clips to the develop-
ment set, and 680 clips to the test set.

3.2 Evaluation Metrics

For tasks like social signal detection, where the distribution
of classes is significantly biased, classification accuracy is
only of limited use. Also, although on this dataset and
in social signal detection in general it is common to rely
on the Area-Under-the-Curve (AUC) score of the frame-
level posteriors for the classes of interest (now laughter and
filler events) (e.g. [5], [10], [33], [34]), it was shown recently
(see [35]) that frame-level AUC is an unreliable metric
for this task. Besides raising several theoretical objections,

Gosztolya showed experimentally that the AUC values can
be significantly improved by applying a simple smoothing
over time on the output likelihoods (a technique applied in
several studies, e.g. [5], [11], [33], [34], [36], [37]), but this
transformation makes the scores unsuitable for a Hidden
Markov Model.

Because of this, we decided to apply a HMM to perform
event occurrence detection, and calculated accuracy metrics
based on these occurrences. We applied the standard infor-
mation retrieval metrics of precision, recall and F-measure
(or Fy-score) [38]. We combined the scores of the two so-
cial signals by macro-averaging: we averaged the precision
and recall scores of the two phenomena in an unweighted
manner, and calculated I from these average values.

Another open question is how we should calculate the
number of true positives, false positives and false nega-
tives. One way to do this is that, after applying the Hidden
Markov Model, we compare the resulting event occurrence
hypotheses with the manual annotation frame-by-frame.
This approach was followed by e.g. Salamin et al. [4]. There
are similar evaluation approaches available for the task of
speaker diarization as well (see e.g. [39], [40]).

However, frames are in fact an intermediate step re-
quired only for technical reasons, and they are used rela-
tively rarely in actual evaluations. In ASR only the phoneme
(word) sequence recognized is compared with the ground
truth transcript, and the time-alignment is completely ig-
nored. The reason for this is partly that it is impossible
to objectively position phoneme boundaries within a 10ms
precision, which is the typical frame-shift: due to the con-
tinuous movement of the vocal chords and the mouth, we
can expect no clear-cut boundary between two consecutive
phonemes. Even from the aspect of user expectations, lo-
cating an event occurrence with slight differences at the
starting and ending positions still obviously counts as a
perfect match. The requirement of frame-level precision is
avoided if we rate the performance at the segment level,
where slight differences in time alignment are tolerated.

To decide whether two occurrences of events (i.e. a
laughter occurrence hypothesis returned by the HMM and
one labelled by a human annotator) match, there is no
de facto standard in the literature. For example, Gosztolya
required only that the two occurrences refer to the same
kind of event (i.e. in our case laughter or filler) and that their
time intervals intersect [35]. Pokorny et al. [41] also matched
the occurrences by checking whether their time intervals
intersected, allowing several event occurrence hypotheses
to match one manually annotated occurrence. In the NIST
standard for Spoken Term Detection evaluation [42], the
centre of the two occurrences have to fall close to each other
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(i.e. within a threshold). In this study we combined the two
approaches: we required that the two occurrences intersect,
while their centre also had to be close to each other (within
500ms, as in the NIST STD standard [42]).

We performed our experiments by measuring F; both
at the segment level and at the frame level. As the optimal
meta-parameters (language model weight and A) may differ
for the two (evaluation) approaches, we found them inde-
pendently for the two kinds of metrics applied.

3.3 HMM State Transition Probabilities

Our HMM/DNN hybrid set-up for vocalization occurrence
detection consisted of only three states, each one repre-
senting a different acoustic event (i.e. laughter, filler and
garbage). In this set-up, the state transition probabilities
of the HMM practically correspond to a language model.
Following the study of Salamin et al. [4], we constructed a
frame-level state bi-gram, calculated from statistics of the
training set. The probability values of the transitions were
calculated on the training set, while we used the develop-
ment set to find the optimal language model weight. As the
last step, evaluation on the test set was performed using this
language model weight.

3.4 DNN Parameters

We employed DNNs with 5 hidden layers, each containing
256 rectified neurons, based on the results of preliminary
tests, while we applied the softmax function in the output
layer. We used our custom DNN implementation, which
achieved the best accuracy known to us on the TIMIT
database with a phonetic error rate of 16.5% on the core test
set [43]. We tested three feature sets; the first one was the
standard 39-sized MFCC + A + AA feature set, frequently
used both in phoneme classification (e.g. [44], [45]) and in
laughter detection (e.g. [1], [46], [47]). As DNNs tend to
perform better on more primitive features (see e.g. [12]),
we also calculated 40 raw mel filter bank energies along
with energy and their first and second order derivatives
(123 values overall; FBANK feature set). Both sets were
extracted using the HTK tool [48]. The third feature set
was the one provided for the ComParE 2013 Challenge [10].
It consisted of the 39-sized MFCC + A + AA feature
vector with voicing probability, HNR, Fj and zero-crossing
rate, and their derivatives. To these 47 features their mean
and standard derivative in a 9-frame neighbourhood were
added, resulting in a total of 141 features [10]. Previous
studies (e.g. [11], [33], [36]) found this feature set to be quite
useful for detecting laughter and filler events; we extracted
these attributes with the openSMILE tool [49].

We performed our experiments on a PC with Intel i5
CPU operating at 3.2 GHz and having 8GB of RAM. To
speed up DNN training, we opted for using a GPU (a
GeForce GTX 570 device from the NVIDIA Corporation),
which is standard practice nowadays.

It is known that DNN training is a stochastic procedure
due to random weight initialization. Probabilistic sampling
introduces a further random factor by randomly choosing
the class of the next training example following the multi-
nomial distribution in Eq. (1). To counter this effect, for
each meta-parameter setting (feature set, and the X value

5

for probabilistic sampling) we trained five DNN models;
we primarily rated the tested methods on their average
performance, but we also list the best and worst scores.

3.5 Probabilistic Sampling

We evaluated the probabilistic sampling technique by vary-
ing the value of )\ in the range [0, 1] with a step size of 0.1.
We will list the accuracy scores measured on the test set, but
we chose the value of A based on the results obtained on the
development set. As we cannot know in advance whether
we should divide the DNN output likelihoods by the class
priors, avoid this re-scaling, or use the formula of Eq. (1)
as priors, we decided to test all three approaches for all A
values. Note that in order to do this we did not have to train
any additional DNNS, as this transformation affects only the
output likelihood scores.

4 RESULTS
4.1 Baseline scores

We treated standard sampling (i.e. using each training sam-
ple once in each epoch) as our baseline; however, first we
have to determine the optimal number of neighbouring
frame-level vectors used. We found the optimal parameter
value by grid search; we tested sliding windows that had
lengths of 1, 5, 9, ..., 65 frames. Since these DNNs were
trained using all instances once in each epoch (i.e. A = 0),
the output likelihood scores were divided by the original
class priors before utilizing them in the Hidden Markov
Model. The utility of this transformation was also reinforced
by our preliminary tests.

The minimum, maximum, and mean F} scores obtained
this way are shown in Fig. 2. It can be seen that concatenat-
ing the feature vectors of the neighbouring frames indeed
helps classification. We chose the sliding windows with
a length of 21, 29 and 33, MFCC, FBANK and ComParE
feature sets, respectively. Lowest mean scores were achieved
via MFCC, while models trained with FBANK and Com-
ParE had roughly the same performance, ComParE pro-
ducing slightly higher average values. Taking the minimum
and maximum values into consideration as well, we can see
that the variation of scores is practically independent of the
number of neighbours used or the feature set. In general,
however, the segment-level F; scores tend to vary more
than the frame-level scores; in our opinion this is because
the key difference between the models trained is reflected in
the detection or miss of shorter occurrences. These appear
in the frame-level performance values only slightly, but they
affect the segment-level F; scores more, since at this level
an occurrence lasting only a couple of frames is just as
important as one being over one second long (which, in our
experience, is not unrealistic for a laughter event).

Table 2 contains the precision, recall and F-measure
scores measured for the best sliding window sizes (21,
29 and 33, MFCC, FBANK and ComParE feature sets, re-
spectively). The frame-level scores are higher than those
reported by Salamin et al. [4], which is probably because
we used DNNs for frame-level likelihood estimation, which
can be considered as state-of-the-art, while Salamin et al.
used Gaussian Processes. (Note that, despite the fact that
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Fig. 2. Segment-level and frame-level macro-averaged F}-scores obtained using standard backpropagation DNN training on the three feature sets
applied, as a function of the number of neighbouring frame vectors used during training. The error bars denote minimum and maximum F}; scores.

TABLE 2
Optimal number of neighbouring frames used during training and the corresponding segment- and frame-level precision, recall and F; scores for
both the development and test sets (which will serve as our baseline)

Data No. of Laughter Filler Combined
Evaluation Subset | Feature Set frames Prec. | Rec. | Fy Prec. | Rec. | Fy Fy
MECC 21 68.8% 64.7% 66.6% 80.1% 75.9% 77.9% 72.3%
Dev. FBANK 29 75.6% 63.4% 69.0% 82.0% 72.0% 76.7% 72.8%
Segment-level ComParE 33 70.6% 69.3% 69.9% 81.6% 73.2% 77.1% 73.5%
MECC 21 49.2% 57.8% 53.1% 65.8% 66.0% 65.9% 59.6%
Test FBANK 29 62.9% 57.3% 60.0% 69.2% 62.2% 65.5% 62.7%
ComParE 33 58.0% 62.4% 60.1% 66.3% 67.1% 66.7% 63.4%
MECC 21 67.8% 74.8% 71.1% 67.5% 75.6% 71.3% 71.2%
Dev. FBANK 29 69.5% 78.7% 73.8% 66.6% 75.3% 70.7% 72.2%
ComParE 33 70.2% 76.3% 73.0% 70.7% 70.5% 70.6% 71.9%
Frame-level HMM/GPR [4] — 65.0% 66.0% 65.0% 49.0% 73.0% 59.0% 62.6%
MECC 21 43.7% 70.9% 54.0% 52.8% 63.3% 57.6% 56.1%
Test FBANK 29 51.9% 72.3% 60.4% 53.8% 62.4% 57.8% 59.2%
ComParE 33 54.6% 70.4% 61.4% 54.3% 62.6% 58.1% 59.8%

the SSPNet Vocalization corpus is freely available, we found
no other study that employed a Hidden Markov Model on
it.) Overall, the accuracy scores obtained for laughter events
are quite similar to those got for filler events. At the segment
level we can see that precision is usually higher than recall,
while we got the opposite at the frame level. We can also
see that the segment-level scores obtained are higher for
filler events than those for laughter, while this is not so
when we compute the accuracy metrics at the frame level.
The reason for this is probably that laughter occurrences
are usually much longer than filler events. Indeed, in this

1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

corpus, laughter occurrences have an average duration of
942ms, while this is only 502ms for fillers (see Table 1). This
difference means that there are three times as many filler
event occurrences (segments) as there are laughter events.
However, the number of laughter and filler frames do not
differ to such a high extent, and this may lead to a more
balanced performance at the frame level.

4.2 Results With Probabilistic Sampling

The average F' scores achieved by probabilistic sampling on
the development set can be seen in Fig. 3; baseline values
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(c) Division by the actual priors used during training (i.e. Eq. (1))

Fig. 3. Mean macro-averaged F scores as a function of A on the development set, at the segment level (left) and frame level (right), when omitting
division by the class priors (top), performing division by the original class priors (middle) and by the actual class priors used during training (bottom).

are shown as A = 0. We can see that models trained on
the MFCC feature set performed the worst. Regarding the
FBANK and ComParE feature sets, while with the baseline
setting (i.e. using full instance sampling) ComParE turned
out to be the better one, when we applied probabilistic
sampling we got our best scores usually by relying on the
FBANK feature vectors. The scores obtained for the latter
two feature sets are quite similar, though, so in our opinion
any of these two could be used for efficient vocalization
localization.

The effect of the three posterior correction strategies
tested (i.e. whether we divide the DNN output likelihoods
by some class prior values) is also apparent in Fig. 3. When
we performed the Viterbi search by relying on the raw
likelihoods (see Fig. 3a), the region 0.4 < X < 0.6 proved
to be best both for the segment-level and for the frame-
level scores. As expected, A values close to 1 proved to be
better than those near 0, perhaps with the exception of the
ComParE feature set evaluated at the segment level.

When dividing by the original class priors (see Fig. 3b),

DNNs trained with A = 0.1 or A = 0.2 had the highest
F scores both at the segment level and at the frame level.
While for some feature sets there is a drop of accuracy in
the region [0.4,0.6], in general lower A values are better
than higher ones. When we transformed the DNN outputs
by dividing them by the actual class priors used during
training (see Fig. 3c), we can observe a transition between
the two previous cases: for A > 0.7 values, the resulting
scores are very close to those obtained via the first strategy;
for values A < 0.2 the scores are close to the second
one; while the region in the middle displays a continuous
transition between the two. Since A values above 0.6 usually
proved suboptimal even in the case of using the original
DNN output likelihoods, this strategy did not work well in
this region either. For 0.1 < A < 0.5, however, it performed
consistently better than when we divided by the original
class priors, leading to the highest scores overall.

Tables 3 and 4 list the precision, recall and F-measure
values obtained on the test set with the optimal A value
fine-tuned on the development set, segment and frame-
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TABLE 3
Optimal segment-level F; and the corresponding precision and recall scores on the test set for the two sampling techniques tested

Feature Sampling Div. Laughter Filler Combined Opt.
set method priors Prec. | Rec. | Prec. | Rec. | Fy Fy | p A
no 53.1% 66.0% 58.6% 62.0% 68.5% 65.1% 62.0% =0.03 0.6
Probabilistic yes 51.7% 64.1% 57.0% 64.3% 67.3% 65.7% 61.5% =0.03 0.2
MFCC actual 55.7% 67.4% 61.0% 65.4% 66.1% 65.6% 63.5% < 0.01 0.3
Downsampling no 51.7% 63.6% 57.0% 62.1% 67.7% 64.7% 60.9% =0.03 —
Full (baseline) yes 49.2% 57.8% 53.1% 65.8% 66.0% 65.9% 59.6% — —
no 64.5% 65.6% 65.0% 67.3% 65.5% 66.3% 65.7% < 0.01 0.5
Probabilistic yes 57.8% 67.1% 61.9% 67.0% 67.3% 67.0% 64.6% | =0.03 0.1
FBANK actual 64.4% 64.1% 64.2% 68.9% 63.8% 66.2% 65.3% = 0.02 0.2
Downsampling no 51.7% 63.9% 57.2% 64.6% 67.4% 65.9% 61.7% — —
Full (baseline) yes 62.9% 57.3% 60.0% 69.2% 62.2% 65.5% 62.7% — —
no 59.7% 65.7% 62.3% 69.1% 60.5% 64.4% 63.7% =0.84 0.3
Probabilistic yes 54.9% 70.0% 61.3% 67.3% 65.2% 66.2% 64.1% =0.69 0.1
ComParE actual 58.1% 69.9% 63.1% 68.2% 65.2% 66.6% 65.2% < 0.01 0.2
Downsampling no 54.2% 66.9% 59.8% 67.1% 66.1% 66.5% 63.4% — —
Full (baseline) yes 58.0% | 62.4% | 60.1% || 66.3% | 67.1% | 66.7% | 63.4% — —
TABLE 4

Optimal frame-level F; and the corresponding precision and recall scores on the test set for the two sampling techniques tested

Feature Sampling Div. Laughter Filler Combined Opt.
set method priors Prec. | Rec. | Fy Prec. | Rec. | Fy Fy | P A
no 62.5% 56.2% 59.0% 58.3% 58.1% 58.1% 58.6% < 0.01 0.6

Probabilistic yes 53.6% 67.2% 59.6% 56.8% 60.9% 58.8% 59.3% < 0.01 0.1

MEFCC actual 60.5% 62.2% 61.3% 56.5% 61.5% 58.8% 60.1% < 0.01 0.2
Downsampling no 46.8% 72.0% 56.7% 48.1% 64.2% 55.0% 55.9% — —

Full (baseline) yes 43.7% 70.9% 54.0% 52.8% 63.3% 57.6% 56.1% — —

no 71.7% 55.0% 62.3% 59.6% 58.2% 58.9% 60.8% =0.03 0.5

Probabilistic yes 58.0% 71.6% 64.0% 58.9% 61.8% 60.3% 62.3% < 0.01 0.1

FBANK actual 63.2% 66.4% 64.7% 60.1% 59.6% 59.8% 62.3% < 0.01 0.2
Downsampling no 48.6% 73.5% 58.5% 47.9% 64.9% 55.1% 56.8% — —

Full (baseline) yes 51.9% 72.3% 60.4% 53.8% 62.4% 57.8% 59.2% — —

no 66.9% 54.9% 60.2% 62.5% 53.7% 57.7% 59.0% — 0.3

Probabilistic yes 54.5% 74.1% 62.4% 58.5% 61.0% 59.7% 61.5% =0.02 0.1

ComParE actual 60.1% 68.0% 63.4% 60.2% 60.4% 60.2% 62.0% < 0.01 0.1
Downsampling no 49.2% 75.4% 59.5% 52.5% 64.8% 58.0% 58.9% — —

Full (baseline) yes 54.6% 70.4% 61.4% 54.3% 62.6% 58.1% 59.8% — —

level scores, respectively. (The best scores are shown in
bold.) We also indicated the statistical significance (p) of the
improvements (if any) by using a Mann-Whitney U test [50].
We can see that on the test set, depending on the feature
set, the segment-level scores increased by 2.6-3.9% absolute,
while the frame-level scores rose by 2.2-4.0% compared
to the corresponding baseline values. These gains mean a
relative error reduction score of between 5-10% and 5-9% at
the segment level and frame level, respectively; the highest
scores achieved by utilizing probabilistic sampling (using
the FBANK feature set and dividing the output likelihoods
by the actual class priors used during training) brought a
7% and a 8% relative error reduction over the baseline. It
is interesting to note that most of the improvement came
from detecting the laughter events, while the metric values
associated with the filler events improved only slightly

(or sometimes not at all). Recall (see Table 1) that only
3.4% of the training frames were laughter events, while
fillers accounted for 50% more than that (4.9%), hence it
is quite understandable that probabilistic sampling helped
the detection of the former event types more.

For comparison, we also tested the simple sampling
approach of downsampling. We realized downsampling by
randomly discarding samples from the “garbage” class to
make its frequency match that of filler frames. We got
the best results by avoiding the division of the obtained
posterior values by the class priors (see tables 3 and 4). Still,
the performance of downsampling practically matched that
of the baseline, i.e. full database sampling at the segment
level, while at the level of frames this strategy even led to
somewhat worse F; values. In our opinion this indicates
the downsampling approach is just too simple to improve

1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2871450, IEEE

Transactions on Affective Computing

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

96
| [Nigeid]
EEIFBANK

04 [IcomParE

AUC (%)

90

88 =
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

No. of neighbours

AUC (%)

92
IlvFcCc
EEIFBANK

% [IcomParE

88

86

13 17 21 25 29 33 37 41 45 49 53 57 61 65
No. of neighbours

1 5 9

Fig. 4. Averaged AUC values obtained using standard backpropagation DNN training as a function of the number of neighbouring frame vectors
used during training, on the development set (left) and on the test set (right).

TABLE 5
The obtained AUC scores using standard backpropagation DNN training for both the development and test sets, and some notable results
published in the literature on this dataset

No. of Development Test
Approach Feature Set frames Lau. | Fil. | Avg. Lau. | Fil. | Avg.
MFCC 21 91.6% 94.8% 93.2% 89.7% 87.6% 88.7%
DNN (optimal F1) FBANK 29 93.3% 95.4% 94.4% 90.6% 88.1% 89.3%
ComParE 33 92.7% 95.5% 94.1% 91.0% 87.7% 89.4%
MFCC 53 92.6% 95.3% 94.0% 90.2% 86.3% 88.3%
DNN (optimal AUC) FBANK 53 94.2% 96.1% 95.2% 91.0% 87.7% 89.4%
ComParE 53 93.3% 96.0% 94.6% 91.4% 88.0% 89.7%
ComParE baseline (Schuller et al. [10]) 86.2% 89.0% 87.6% 82.9% 83.6% 83.3%
DNN downsampling (Gupta et al. [5]) 90.1% 90.1% 90.1% — — —
DNN + smoothing + masking (Gupta et al. [5]) 95.1% 94.7% 94.9% 93.3% 89.7% 91.5%
DNN + DNN (Brueckner and Schuller [34]) 98.1% 96.5% 97.3% 94.9% 89.9% 92.4%
BLSTM (Brueckner and Schuller [36]) — — 97.0% — — 93.0%
DNN + GA smoothing (Gosztolya [51]) 97.5% | 96.7% | 97.1% 96.0% 90.1% | 93.1%
DNN + BLSTM smoothing (Brueckner and Schuller [36]) — — 97.2% — — 94.0%

performance in this task, probably because it reduced the
variance of the “garbage” class to a great extent.

Overall, the application of probabilistic sampling gave
a significant improvement both at the segment and at the
frame levels. (The improvements were found to be sig-
nificant at the level p < 0.01 in all but one case, the
only exception being the segment-level I values using the
FBANK feature set with p = 0.0159.) Instead of the extreme
values of A = 0 and A = 1, corresponding to the original
and the uniform class distributions, optimal performance
was always achieved with intermediate A values. A possible
reason is that, since we do not generate further examples of
the rarer classes for training, we have to use our samples
more frequently. Because of this, we actually use examples
belonging to the more frequent classes less frequently (ac-
tually, not all samples are used for each iteration), which
decreases the variance of such classes. By changing the A
parameter value, we can establish a trade-off between the
two extremes, which seems to work quite well in practice.

5 REesuLTs UsING AUC

Although we primarily measure the accuracy of DNN mod-
els trained by calculating segment and frame-level precision,
recall and F} values after using a Hidden Markov Model, as

we find this approach more meaningful, next we will also
present the frame-level AUC scores obtained for reference.

5.1 Baseline Scores

Fig. 4 shows the AUC values obtained on the development
and on the test set as a function of the number of neighbour-
ing frame vectors used for all three feature sets tested. We
can see that on the development set, the AUC values show
an increasing trend even when we use over 50 neighbouring
frames, while on the test set the scores stop increasing after
about 20 frames, or in the case of the MFCC features they
even start to decrease. The reason for this cannot be any
form of overfitting, since no meta-parameter setting has
yet been applied on the development set; in our opinion,
this behaviour suggests there is a mismatch between the
development and test sets of this particular database.

Table 5 lists the AUC scores of the DNN models trained
via standard backpropagation and full database sampling.
We can see that if we chose the number of neighbouring
frame vectors based on the optimal F value on the devel-
opment set (i.e. following Fig. 2 and Table 2), we ended
up using fewer neighbouring frame vectors (between 21
and 33) than when we chose the size of neighbourhood
based on the optimal AUC value on the development set,
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Fig. 5. Averaged AUC scores on the development set (left) and on the test set (right) as a function of A.

TABLE 6
Average AUC scores obtained on the development and test sets for all three feature sets tested
Development Test Optimal

Feature Set | Sampling Approach | Choice of X Lau. | Fil. | Avg. Lau. | Fil. | Avg. A
e Optimal Fy 92.5% 94.6% 93.6% 90.1% 88.4% 89.3% 0.2

Probabilistic .
MECC Optimal AUC 93.1% 94.4% 93.7% 90.3% 88.6% 89.4% 0.1
Downsampling — 91.2% | 93.5% | 92.4% 88.6% | 86.9% | 87.7% —
Full (baseline) — 91.6% 94.8% 93.2% 89.7% 87.6% 88.7% —
e Optimal Fy 94.0% 95.7% 94.9% 91.2% 88.6% 89.9% 0.2

Probabilistic .
FBANK Optimal AUC 94.4% 95.6% 95.0% 91.5% 88.7% 90.1% 0.1
Downsampling — 93.0% 95.0% 94.0% 90.3% 87.6% 89.0% —
Full (baseline) — 93.3% 95.4% 94.4% 90.6% 88.1% 89.3% —
e Optimal Fy 93.9% 95.8% 94.8% 91.8% 88.1% 90.0% 0.1

Probabilistic .
Optimal AUC 93.9% 95.8% 94.8% 91.8% 88.1% 90.0% 0.1

ComParE

Downsampling — 93.2% 95.7% 94.5% 91.2% 88.0% 89.6% —
Full (baseline) — 92.7% 95.5% 94.1% 91.0% 87.7% 89.4% —

where it was 53 for each feature set. The AUC scores, get a slight improvement over the baseline value by using
however, appear to be quite similar: around 92-96% on the A = 0.1 for both the development and the test sets.
development set and around 86-91% on the test set.

Table 5 also shows some notable AUC values published
in the literature for this particular dataset. There are two
studies which reported AUC scores obtained without any Table 6 lists the best AUC scores obtained on both the de-
kind of posterior smoothing: both the ComParE baseline, Velopment and on the test sets for the sampling approaches
where Schuller et al. used SVM for frame-level vocalization —tested. For comparison, we also showed the AUC scores
classification [10] and the DNN downsampling approach ©btained via DNN training by downsampling and by full
used by Gupta et al. [5] led to worse scores than our database sampling. For probabilistic sampling we listed the
standard DNNs. (Note, however, that these studies did cases where AUC was the highest on the development set,
not use any neighbouring feature vectors during classifier ~and also for those A meta-parameters where we got the high-
training.) It is also clear, however, that posterior smoothing st F1 scores on the frame level (see Table 4). We can see that
can improve the AUC values by a significant amount; in  training our DNN models via downsampling actually made
the other papers listed, the authors employed some kind of the resulting AUC values worse, compared to the case of full
smoothing over time on the raw posterior values (time series ~database sampling; the only exception was the case of the
smoothing and masking [5], [11], smoothing via a second ComParE feature set, where we got a slight improvement
DNN [34], weighted average times series filter optimized (0.2% absolute) . Probabilistic sampling, however, improved

via genetic algorithms [51] or smoothing via a recurrent the scores by a slight amount, increasing the AUC scores by
neural network [36]). 0.6-0.8% absolute, being equivalent to a 6-8% relative error

reduction. There were only slight differences among the two

. L . cases of selecting A based on the F; or AUC scores achieved

5.2 Results With Probabilistic Sampling on the development set. Still, these scores lag behind those

Figure 5 shows the AUC values achieved on the develop- listed in Table 5 which employed some posterior smoothing

ment and on the test sets using probabilistic sampling, as a technique. We would like to emphasize, however, that we

function of the A\ meta-parameter value. We can see that for find measuring the performance of a neural network by

A < 0.4, the AUC scores are roughly the same, but thereis a  utilizing a Hidden Markov Model a more reliable approach
visible drop for larger A values. For all three feature sets, we  for this particular task.

1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2871450, IEEE
Transactions on Affective Computing

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

25 25
| [Vizee = IlvFcc
@ [ FBANK S [EEIFBANK
G 20| [JcomParE :;20 [IcompParE
8 )
o £
5 15 515
: c
2 =
o 10 T 10
(@)] -—
S [0
[0} (o))
> 5 © 5
< o
>
=3
0 0
0 01 02 03 04 05 06 07 08 09 1
A

Fig. 6. Average number of training epochs (left) and wall-clock training times (right) as a function of .

TABLE 7
Number of average training epochs and average training times (seconds) as a function of the X values found optimal, and the amount of DNN
training speed-up

Feature | Sampling Div. Segment-level optimality Frame-level optimality
set method priors A | Epoch | Impr. | sec. | Impr. A | Epoch | Impr. | sec. | Impr.
no 0.6 7.2 42% | 258 38% 0.6 7.2 42% | 258 38%
MFCC Probabilistic yes 0.2 8.6 31% | 308 26% 0.1 9.4 24% | 336 19%
actual 0.3 8.6 31% | 308 26% 0.2 8.6 31% | 308 26%
Full (baseline) yes — 12.4 — 414 — — 12.4 — 414 —
no 0.5 15.8 -1% | 1008 -13% 0.5 15.8 -1% | 1008 -13%
FBANK Probabilistic yes 0.1 12.2 2% | 772 13% 0.1 12.2 2% | 772 13%
actual 0.2 11.6 26% | 741 17% 0.2 11.6 26% | 741 17%
Full (baseline) yes — 15.6 — 888 — — 15.6 — 888 —
no 0.3 6.4 56% | 410 33% 0.3 6.4 56% | 410 33%
Probabilistic yes 0.1 8.6 25% | 553 9% 0.1 8.6 25% | 553 9%
ComParE
actual 0.2 7.2 37% | 461 24% 0.1 8.6 25% | 553 9%
Full (baseline) yes — 11.4 — 607 — — 11.4 — 607 —

6 DNN TRAINING TIMES

Probabilistic sampling can in theory influence the time spent
on DNN model training as well, as using the samples of
the rarer classes more frequently could lead to a quicker
convergence. Our DNNs are actually trained in a way which
exploits this: the accuracy of the networks is measured
after each training iteration on a hold-out set, and we cease
training when the accuracy score does not improve within a
certain number of consecutive iterations (newbob learn rate
scheduling [52]). When performing probabilistic sampling,
we use the same number of training samples for each
iteration (epoch) as there are present in the whole training
dataset. Therefore, we can simply express DNN training
times by the number of training iterations, as long as we
keep our DNN structure fixed. Another option is to measure
the (wall-clock) time spent on the whole training process
(including I/O operations, etc.); we will present both values.

The left hand side of Fig. 6 shows the average, minimal
and maximal number of training iterations for the different
feature sets and \ values, while the right hand side shows
the measured training wall-clock times. It is clear that for
0.1 < XA < 0.4, DNN training required fewer iterations than
full database sampling to achieve full convergence, which
justifies our assumptions. For larger A values, however, the
number of training epochs exceeds the baseline value. In our
opinion this is caused by a further random factor introduced

into DNN training: that of randomly selecting the class
of the next training sample. The two figures also reveals
that our approach of probabilistic sampling implementation
indeed adds only a slight overhead to the training process.

Table 7 shows the average number of training iterations
for the different feature sets and optimal A values, and the
amount of training speed-up obtained. The 11.4-15.6 epochs
required by full database sampling became 6.4-12.2 epochs,
reducing the number of training iterations by 22-56% and
resulting in a DNN training speed-up of 9-38%. The only
exception was the case of the FBANK feature set, where
using the DNN output likelihoods directly in the HMM led
to an optimal A value of 0.5, but the corresponding F} scores
measured were not so high in this case. For the )\ values
which brought the highest accuracy scores, we needed on
average 22-26% fewer training iterations, leading to a 9-
17% cut in the actual DNN training times. This means that
besides improving the performance, we were also able to
train our DNNs faster by using the probabilistic sampling
approach, provided that we know the optimal A value in
advance. Of course, since for all three feature sets and both
evaluation metrics the optimal A lay in the range [0.1,0.3],
we do not necessarily have to try out all possible values.
Another way of reducing training times might be to only
adapt the baseline DNN model (i.e. train it further) by
probabilistic sampling, but this lies out of the scope of our
present study.
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Fig. 7. Mean and standard deviation of the DNN posterior values as a function of X for frames corresponding the given event, frames in the 5 and
10 frame neighbourhood, and for the other frames. The graphs show the values got on the development set using the FBANK feature set.

7 POSTERIOR ESTIMATE STATISTICS

Probabilistic sampling, being an upsampling technique,
uses the examples of the rarer classes more frequently in
order to increase the corresponding DNN posterior esti-
mates. However, many factors affect the amount of this gain
(e.g. learning rate, training epochs, the class distribution,
and feature set). Next we will examine the distribution of
the posterior scores, concentrating on probabilistic sampling
and the effect of the \ parameter.

Fig. 7 shows the mean and standard deviation of the
posterior estimates for the three classes on the development
set; the baseline is again shown as A = 0. (The figures only
show the statistics for the models trained on the FBANK
feature set; models trained on the other two feature sets
behaved similarly.) Instead of calculating global values, we
took into account the manually annotated frame-level labels
during evaluation. Due to reasons given in Section 3.2, we
cannot expect a clear-cut boundary at the beginning and
the end of an occurrence for the output likelihoods either,
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but there is probably some kind of a transition present
instead. Therefore, besides showing the mean and standard
deviation values for the frames associated with the given
phenomenon (i.e. laughter, filler or garbage) in the manual
annotation, we also calculated them for the 5-frame and
10-frame neighbourhood, as well as for all the remaining
frames.

The first thing to notice is that the mean of the posterior
estimates for the class “garbage” is pretty high compared to
those of the two other classes. However, for the laughter
events the mean score hardly ever exceeds 0.5, even for
frames which in fact contain laughter. Although this might
be due to the bias present in the class distribution, we just
used probabilistic sampling in order to counter this; still,
even for A = 1 we cannot see much of an improvement. In
our opinion this might be due to the different laughter types,
and the heterogenous nature of laughter. That is, laughter
often contains parts of speech and breath intake [53], [54],
which are hard to distinguish from normal speech.

In the five and ten frame neighbourhoods, the posterior
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scores are around 0.2 on average for both of the events we
are looking for. This indeed shows a relatively long and soft
transition in the likelihood scores, especially compared to
the average likelihoods for the other frames. Note that these
values lie in the range [0.4,0.7] for the garbage class, mean-
ing that the posterior score of this class may be dominant
even when a laughter or filler event has already begun. Of
course, as this class also has the highest a priori probability,
applying Bayes’ theorem before utilizing these scores in a
HMM can mostly counter this effect.

Overall, the DNN output scores associated with the two
phenomena we are looking for show a clear trend as a
function of the A\ parameter of probabilistic sampling: in
the range 0 < A < 0.5 the posterior estimates increase,
then there is a drop (for laughter) or they stagnate (for filler
events). Examining the standard deviations of the scores,
however, we can see that there is a large increase at the
point A = 0.5 (also for the frames in the neighbourhood of
the annotated occurrences), and they keep on increasing for
A > 0.5. This, in our opinion, explains why lower A values
turned out to be optimal: while the mean posterior scores
within and near an occurrence are higher than what was
produced by the baseline models, their standard deviation is
not higher; or, in the case of filler events, only slightly so. In
contrast, for larger \ parameter values the likelihood scores
are generally higher, but they are also less reliable, which
is reflected by both the standard deviation scores shown in
Fig. 7 and by the F; scores shown in Fig. 3.

8 CONCLUSIONS

In this study, we sought to balance the distribution of DNN
training data in social signal detection in speech. We chose
the technique called probabilistic sampling, which makes
adjusting the class distribution of the samples between the
original distribution and a uniform distribution possible
with the help of a parameter. We also proposed an effi-
cient way for implementing this algorithm. Our experiments
showed that this approach is more effective than DNN train-
ing using either traditional full database sampling or down-
sampling: following the probabilistic sampling strategy we
were able to achieve improvements between 5 and 10% both
in the F; scores and in the AUC values on the test set of
a public database containing spontaneous English mobile
phone conversations. We also showed that this sampling
technique can aid DNN training regardless of the feature set
used, as we got improvements for three different standard
frame-level feature sets. We also experienced a drop in DNN
training times in the range 24-67%, provided that we know
the optimal parameter value of probabilistic sampling in
advance. Probabilistic sampling allows us to further speed
up training DNN acoustic models by just adapting a pre-
trained DNN via probabilistic sampling; this, however, is
clearly the subject of future research.
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