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Remote sensing land surface temperature for meteorology
and climatology: a review
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ABSTRACT: The last decade has seen a considerable increase in the amount and availability of remotely sensed data.
This paper reviews the satellites, sensors and studies relevant to land surface temperature measurements in the context of
meteorology and climatology. The focus is on using the thermal infrared part of the electromagnetic spectrum for useful
measurements of land surface temperature, which can be beneficial for a number of uses, for example urban heat island
measurements. Copyright  2011 Royal Meteorological Society
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1. Introduction

Remote sensing is defined as ‘the science and art of
obtaining information about an object, area, or phe-
nomenon through the analysis of data acquired by a
device that is not in contact with the object, area or
phenomenon under investigation’ (Lillesand et al., 2004).
The general term originated in the 1960s at a similar
time to the launch of the first meteorological satellite,
the Television InfraRed Observation Satellite (TIROS-
1). Usage is growing within the fields of meteorology
and climatology, and works in unison with the use of
Geographical Information Systems (GIS) (Chapman and
Thornes, 2003; Dyras et al., 2005) for spatial analysis.
Techniques can provide increased spatial coverage when
compared to weather station data (Mendelsohn et al.,
2007) and the instantaneous observations, global cover-
age and improving quality of remotely sensed information
is proving increasingly useful (Jin and Shepherd, 2005).
Remote sensing offers the ability to work at a number of
scales, from local/citywide (Tomlinson et al., in press),
national (Imhoff et al., 2010) and worldwide (Jin, 2004).
Regardless of the scale of the study, remote sensing offers
an opportunity to provide a consistent and repeatable
methodology, suited equally to both quick pilot studies
as well as long term monitoring campaigns. Although the
initial cost of remote sensing platforms is high, the ease
of data availability to end researchers, combined with the
often extensive temporal and spatial coverage available,
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offers a marked improvement to traditional fieldwork
campaign studies.

This review looks at remote sensing as a tool for
meteorology and climatology, with a particular focus
on using remotely sensed data to calculate land surface
temperature (LST). In this field, the urban heat island
(UHI) is a well-documented phenomenon (see reviews
by Arnfield (2003), Rizwan et al. (2008) and Stewart
(2010)) whereby the climate is unintentionally modi-
fied, causing urban areas to be warmer than surrounding
rural areas. The UHI was first investigated through satel-
lite techniques in the 1970s (Matson et al., 1978; Price,
1979), but the field is constantly advancing as new devel-
opments in technology (increases in sensor resolution,
satellite availability, global coverage, verification meth-
ods) and increased understanding of scientific processes
come together. Exploration of the UHI effect via satel-
lite techniques is the primary focus of this review and
specific studies will be discussed under relevant sen-
sor headings. Other uses, such as calculating cooling
degree-days (Stathopoulou et al., 2006) or monitoring
heatwaves (Dousset et al., 2010), the impact of urban
development on runoff (Herb et al., 2008) and soil sur-
face moisture (Petropoulos et al., 2009) have also been
successfully demonstrated. Remotely sensed data can be
a useful resource for the modelling community; helping
to define input data such as short wave net radiation for
land surface models (Kim and Liang, 2010), or increasing
the utility of surface energy balance (Senay et al., 2007)
and other climate models (Jin et al., 2007). A number
of reviews exist in this general area. For example, see
Kidd et al. (2009) for an excellent general overview of
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Figure 1. The electromagnetic spectrum arranged by wavelength. Thermal infrared highlighted in bold. Adapted from Lillesand et al. (2004).

satellite meteorology and climatology at the start of the
twenty-first century. With respect to LST, other reviews
have covered satellite remote sensing of the UHI (Gallo
et al., 1995), the physics, methods and theoretical limi-
tations of LST retrieval (Dash et al., 2001) and Thermal
InfraRed (TIR) remote sensing (Prata, 1994; Voogt and
Oke, 2003; Weng, 2009). This review differs from other
articles as it details multiple sources of data (including
timing and availability). It is written with a meteorologist
in mind rather than a remote sensing expert so as such it
purposefully does not detail software (either commercial
or open source) or in-depth techniques required to use
the datasets described.

2. Derivation of land surface temperature

This section outlines the theory behind deriving LST
from remote sensing techniques, and covers some fun-
damental details that need to be understood if data are to
be used accurately and usefully for sensing the weather. If
more detailed information is required, the physics behind
deriving LST is explained in more detail in Dash et al.
(2002). Several textbooks are also available (e.g. Lille-
sand et al., 2004). Alternatively, the specification docu-
ments of individual sensors or platforms can be inspected
(see links in Table II).

A fundamental requirement for remote sensing is
the detection of electromagnetic radiation (EMR) by
sensors on a remote sensing platform. This is useful
as different objects emit EMR in different ways, so
the spectral response can be analysed. Within the EMR
spectrum (Figure 1), the wavelength of most use for LST
measurements is the thermal infrared (TIR), between 8
and 15 µm. However, one exception to this is passive
microwave which has been used for LST measurement in
China (Chen et al., 2010), USA (McFarland et al., 1990),
Canadian sub-arctic (Fily, 2003) and indeed globally
(Peterson et al., 2000; Williams et al., 2000). Passive
microwave measurements tend to be limited in the sense
that they typically offer a very coarse resolution (in the
tens of kilometres). For this reason, this review will focus
on TIR sensors, which are more commonly used and offer
higher resolution data.

Satellite TIR sensors receive EMR which can be quan-
tified in the form of measurements of Top Of Atmosphere

(TOA) radiances. This includes upwelling radiance emit-
ted from the ground, upwelling radiance from the atmo-
sphere, and the downwelling radiance emitted by the
atmosphere and reflected from the ground. During the
day there is both emission and reflection of EMR, but
during the night sensed EMR is restricted to only emis-
sion. The inverse of Planck’s law (the energy emitted by
a surface is directly related to its temperature) is used
to derive blackbody/brightness temperatures from TOA
radiances. TOA radiances are then converted to LST by
correcting for three main effects; atmospheric attenuation,
angular effects and spectral emissivity values at the sur-
face. Atmospheric attenuation (absorption, reflection or
refraction and scattering) will alter the EMR as it passes
through the atmosphere, resulting in differences between
TOA radiances and LST. Within TIR wavelengths, most
attenuation is due to water vapour and aerosols. Angu-
lar effects are a product of the variety in viewing angles
resulting in wavelength shifting which must be compen-
sated for when estimating radiances (Dash et al., 2002).
Spectral emissivity refers to the relative ability of a sur-
face to emit radiation and can be highly variable due
to the heterogeneity of land, and is influenced by sur-
face cover, vegetation cover and soil moisture. Quan-
tification of emissivity is achieved by considering the
ratio of energy emitted by a surface with respect to
the energy emitted by a black body at the same tem-
perature. However, calculations are complicated because
natural surfaces do not behave like a black body and thus
need correction using typical emissivity values (Table I).
These corrections are done through complex algorithms,
alongside extensive validation and verification, resulting
in a final product that can be used by a meteorologist.

Orbital satellite remote sensing methods are limited
by image acquisition time which is set by the orbital
characteristics of the relevant satellite and means that
readings at specific times cannot be obtained or requested
unless they match the orbit. Geostationary satellites,
which stay in the same position relative to the Earth, offer
a greatly increased temporal resolution at the expense of
reducing spatial resolution and coverage area. Examples
of sensors on geostationary platforms covered in this
review include GOES and SEVERI sensors. However,
not all images may be accurate, as high zenith angles
result in a lengthened atmospheric path that can result
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Table I. Typical emissivity values of common materials (Lille-
sand et al., 2004).

Material Typical average emissivity
(over 8–14 µm)

Wet snow 0.98–0.99
Healthy green vegetation 0.96–0.99
Wet soil 0.95–0.98
Brick 0.93–0.94
Wood 0.93–0.94
Dry vegetation 0.88–0.94
Dry snow 0.85–0.90
Glass 0.77–0.81
Aluminium foil 0.03–0.07

in less accurate images (Streutker, 2003). Many images
come with additional metadata (such as quality control
scientific data sets) that can help recognize this problem.
It is also worth noting that not all images are readily
available, despite orbital paths. Archives may be corrupt,
or the satellite may have been offline or manoeuvering in
such a way that meant observations were not collected.
Hence, if a study has a specific temporal requirement
it can therefore be useful to check multiple potential
sources. Choice of image timing is also important. For
example, Rigo et al. (2006) found that MODIS LST was
more accurate at night compared to the daytime, and the
AATSR target accuracy is 2.5 K for daytime, increasing
to 1 K at night time (Noyes et al., 2007). Similarly,
Hartz et al. (2006) found night time ASTER images
could better observe neighbourhood climatic conditions.
Limitations of resolution are being investigated, and
algorithms have been developed to sharpen thermal
images to increase the resolution (Dominguez et al.,
2011). A serious limitation of TIR satellite remote
sensing techniques is the requirement for clear skies in
order to derive accurate readings. Hence, cloud cover
can be a serious problem. Dependent on the research
requirements, composite images from multiple passes can
often be created in order to construct an image without
cloud cover limitations (Neteler, 2010), or algorithms can
be used to estimate pixels (Jin and Dickinson, 2000).
Alternatively, modelling or passive microwave remote
sensing could be used (Wan, 2008) if increased coverage
is required. An effect of this is that seasonal differences
can influence image availability (increased cloud cover)
and accuracy (increased rainfall causing wet surfaces
leading to unreliable LST measurements), for example
winter study periods can be more difficult (Rajasekar and
Weng, 2008).

Two main algorithmic approaches are used for conver-
sions, the radiative transfer equation (RTE) and the gener-
alized split window technique (GSW). These techniques
are explained in detail elsewhere (Dash et al., 2001;
Weng, 2009) and as such are not covered in detail here.
The GSW technique in the 11 and 12 µm channels is
used by AATSR, AVHRR, MODIS and SEVIRI products,
and in simple terms uses adjacent channels with different

properties to calculate atmospheric attenuation. Nine dif-
ferent split window algorithms have been evaluated (Yu
et al., 2008), concluding that accuracies are dependent on
having reliable a priori emissivity data. This is one diffi-
culty with remotely sensed imagery covering large areas:
assumptions of average emissivity across a heterogeneous
area. It is important to note that single channel products
such as Landsat TM/ETM+ cannot use a GSW technique,
and are therefore generally considered less accurate as
they will not be correcting for atmospheric attenuation at
the time of overpass, although under certain conditions
single window methods can provide a reasonable estimate
of LST (Platt and Prata, 1993).

The differences between satellite derived LST and
ground measured air temperature is one area that is
still not fully understood, and is the subject of ongo-
ing work. Reviews (Arnfield, 2003; Weng, 2009) cite
research that details both similarities between air and
LST (Nichol, 1994) and differences (Weller and Thornes,
2001). Related work includes comparing LST and air
temperatures over large areas and multiple ecosystems
in Africa (Vancutsem et al., 2010) and using MODIS
LST data to estimate air temperature in China (Yan et al.,
2009).

3. Satellites and LST sensors

There is a number of different satellite remote sensing
platforms with multiple sensors in the TIR spectrum,
giving the modern meteorologist a number of poten-
tially useful datasets to measure LST. Datasets are avail-
able for different time periods, at different resolutions,
with varying accuracy, therefore this section outlines
the various datasets available, ordered by launch date
(Figure 2). Currently operating satellites are also sum-
marized in Table II. Some comparisons between datasets
exist, for example between MODIS and ASTER (Pu
et al., 2006) and these are discussed as appropriate. This
review will focus on satellite based sensors, as they
offer global coverage and good availability. Airborne sen-
sors (e.g. ATLAS (Gluch et al., 2006) or AHS (Sobrino
et al., 2006)) can offer greater spatial and thermal res-
olution, but generally airborne data are only available
for small areas and at significant cost to the end user.
Similarly this paper does not detail private or commer-
cial satellites, as these are generally not as accessible for
researchers.

3.1. AVHRR

The Advanced Very High Resolution Radiometer
(AVHRR) sensor has been on a number of National
Oceanic and Atmospheric Administration (NOAA) satel-
lites and is currently operational on NOAA-15,-16,-17,-
18 and 19, offering at least daily coverage, but restricted
to daytime images. The spatial resolution is ∼1.1 km and
LST is derived from TIR channels 4 (10.3–11.3 µm)
and 5 (11.5–12.5 µm), with a global dataset provided

Copyright  2011 Royal Meteorological Society Meteorol. Appl. 18: 296–306 (2011)
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through the sun-synchronous orbit. Data are available
from the NOAA Comprehensive Large Array Stew-
ardship System (http://www.nsof.class.noaa.gov/saa/) and
the High Resolution Picture Transmission software
(http://www.satsignal.eu/software/hrpt.htm) can be useful
for analysis. MetOP, the EUMETSAT satellite platform,
also has an AVHRR sensor with an orbital repeat time
of 29 days. Comparative studies of AVHRR algorithms
exist which offer more details (Ottle and Vidal-Madjar,
1992; Vázquez et al., 1997).

A strength of the AVHRR sensor is that there is a rela-
tively long historical record of data, and correspondingly
a significant body of research that has used the sensor
for many different uses. A notable use of AVHRR data
has been in the creation of an 18 year (1981–1998) diur-
nal LST dataset (Jin, 2004) at 8 km resolution globally
for snow free land surfaces. It gives monthly diurnally-
averaged, minimum and maximum skin temperatures.
This long term record is not possible with most other
sensors as the historical data are not available, as the
satellites and sensors were not developed or in space.
Matson et al. (1978) used VHRR (the forerunner to
AVHRR) data for UHI analysis of the US, detecting
over 50, and LST investigations in Northern Italy used
AVHRR (Ulivieri and Cannizzaro, 1985). Other studies
using AVHRR include Gallo et al. (1993) who investi-
gated the surface temperature and vegetation index for
37 cities in the United States, particularly noting the
consistent nature of the data when studying UHI. Lee
(1993) used AVHRR to study the UHI in South Korea
and more recently AVHRR data have been used to study
the growth of the UHI in Houston, Texas, USA between
1985–1987 and 1999–2001, with the results showing
a growth in magnitude of 35%, and a growth in area
between 38 and 88% depending on method (Streutker,
2003). Stathopoulou and Cartalis (2009) used AVHRR
data from Greece and applied downscaling techniques
to increase the output resolution (1 km >120 m), help-
ing to address the inevitable balancing between spa-
tial and temporal resolution. A significant weakness of
AVHRR includes the lack of availability of night time
images.

3.2. Landsat

The Landsat series of satellites are probably the most
well known, with the longest record of Earth observa-
tions from space. The Thematic Mapper (TM) on Land-
sat 4 and 5 had a visible resolution of 30 m and a
TIR resolution of 120 m (band 6, 10.4–12.5 µm). Land-
sat 4 and 5 are no longer continually collecting data,
but Landsat 7’s Enhanced Thematic Mapper (ETM+)
collects thermal data at a 60 m resolution (also band
6, 10.4–12.5 µm). Landsat 7 has a near polar Sun-
synchronous orbit with a revisit time of 16 days, mean-
ing that a given point on Earth should be imaged at
approximately the same local time (∼1000 h) every
16 days. The ETM+ offers some of the highest res-
olution thermal resolution measurements from space,
and data are available freely from the U.S. Geo-
logical Survey (USGS) (http://earthexplorer.usgs.gov/or
http://glovis.usgs.gov), however data from 2003 onwards
are impaired due to failure of the scan line corrector. This
results in only ∼80% of each scene being captured. The
Landsat data archive has only been freely available since
2008, therefore the number of studies has increased in
recent years. A disadvantage of data from Landsat is that
they are not collected at night, and the thermal calibration
is limited. More details on the Landsat project is avail-
able (http://pubs.usgs.gov/fs/2010/3026) and the Landsat
Data Continuity Mission (LCDM) aims to continue the
long term Landsat record.

In the USA, Aniello et al. (1995) used Landsat TM
data to help map micro UHIs (hot spots within a city)
in Dallas, Texas, USA by combining both the thermal
band (6) and extracted tree cover data from an unsuper-
vised classification. One satellite image was used and the
results showed that micro UHIs were highest in the centre
and were generally resulting from a lack of tree cover.
Weng et al. (2004) use Landsat ETM+ to link LST to
Normalized Difference Vegetation Index (NDVI) in Indi-
anapolis, USA which resulted in results linking LST to
different land cover types and Xian and Crane (2006)
use both Landsat TM and ETM+ to explore the thermal
characteristics of urban areas in Tampa Bay and Florida,
USA finding that land use and land cover fundamentally

Copyright  2011 Royal Meteorological Society Meteorol. Appl. 18: 296–306 (2011)
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Table II. Current LST capable sensors and satellite information.

Sensor Satellite Spatial
resolution

Orbital
frequency

TIR spectral
bands (µm)

Image
acquisition

(local
time)

Data
available

since

Website

Landsat Landsat 60 ma 16 days (6) 10.4–12.5 ∼1000 1999b http://pubs.usgs.gov/fs/
ETM+ 7 2010/3026/

http://landsat.gsfc.nasa.gov/
MODIS Aqua ∼1 km Twice daily (31) 10.78–11.28 ∼1330 2002 http://modis.gsfc.nasa.gov/

(32) 11.77–12.27 ∼0130 https://lpdaac.usgs.gov/lpdaac/
products/modis overview

MODIS Terra ∼1 km Twice daily (31) 10.78–11.28 ∼1030 2000 http://modis.gsfc.nasa.gov/
(32) 11.77–12.27 ∼2230 2000 https://lpdaac.usgs.gov/lpdaac/

products/modis overview
ASTER Terra 90 m Twice daily (10) 8.125–8.475 Request 1999 http://asterweb.jpl.nasa.gov/

(11) 8.475–8.825 only index.asp
(12) 8.925–9.275
(13) 10.25–10.95
(14) 10.95–11.65

AVHRR Multiple ∼1.1 km Twice daily (4) 10.3–11.3 d 1979 http://noaasis.noaa.gov/
NOAA (5) 11.5–12.5c NOAASIS/ml/avhrr.html

http://eros.usgs.gov/#/Find
Data/Products and Data
Available/AVHRR

AVHRR MetOP ∼1.1 km 29 days (4) 10.3–11.3 ∼0930 2006 http://www.esa.int/esaLP/ESA7
(5) 11.5–12.5 USVTYWC LPmetop 0.html

AATSR Envisat ∼1 km 35 days 11 ∼1000 2004e http://envisat.esa.int/
12 instruments/aatsr/

SEVIRI Meteosat-8 ∼3 km Geostationary 10.8 Every 2005 http://landsaf.meteo.pt/
12 15 min

GOES GOES ∼4 km Geostationary (4) 10.2–11.2 Every 3 h 1974 http://goespoes.gsfc.nasa.gov/
Imager networkf (5) 11.5–12.5 (full disc) goes/index.html

a Collected at 60 m but resampled to 30 m.
b Landsat 7 ETM+ data from 1999, TM data from Landsat 4 and 5 available since 1982 at 120 m spatial resolution.
c AVHRR/3 characteristics.
d AVHRR is carried on >10 NOAA satellites; see http://ivm.cr.usgs.gov/tables.php for full orbital details of each.
e LST product currently available since 2004. Planned application to historical data will result in data from 1991 onwards.
f Status of network available: http://www.oso.noaa.gov/goesstatus/.

affect the thermal results. Weng (2003) used three Land-
sat TM images (from 1989, 1996 and 1997) to study
the UHI in Guangzhou, China alongside fractal analysis
with the result that showed two significant heat islands
existed in the city. Further work has been done in China
(Chen et al., 2006; Li et al., 2009), including combining
Landsat ETM+ with computational fluid dynamic (CFD)
modelling in Wuhan, China (Li and Yu, 2008). The com-
bination of remote sensing and modelling was found to
be mutually complementary. In Europe, Stathopoulou and
Cartalis (2007) used Landsat ETM+ data to explore the
daytime UHI across the major cities in Greece using a
method that incorporates the CORINE land cover classifi-
cation to superimpose land cover based emissivity values
to create a mean surface temperature by land cover.

Resampling (generally using the nearest neighbour
algorithm) the thermal band to lower resolutions (e.g.
30 m to match the visible spectrum) is a common tech-
nique (Weng, 2003; Weng et al., 2004; Xian and Crane,
2006; Cao et al., 2010) in order to simplify analysis.

Landsat has a great strength in terms of spatial resolu-
tion, however its 16 day revisit time and lack of night
time image acquisition is limiting at the temporal scale.
Stathopoulou and Cartalis (2007) discusses how future
studies may focus on a time series of images as the
UHI strongly depends on synoptic weather conditions.
The spatial resolution of 60 m on Landsat ETM+ does
allow individual hotspots to be picked out (Aniello et al.,
1995; Stathopoulou and Cartalis, 2007) and work is still
using the ETM+ sensor (Boudhar et al., 2011).

3.3. GOES

The Geostationary Operational Environmental Satellite
(GOES) system is a network of geostationary satellites
(status available: http://www.oso.noaa.gov/goesstatus/)
carrying the GOES Imager, a multispectral instrument
offering two channels in the TIR (10.2–11.2 and
11.5–12.5 µm) with an at nadir resolution of ∼4 km.
GOES related studies discuss algorithm development for

Copyright  2011 Royal Meteorological Society Meteorol. Appl. 18: 296–306 (2011)
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dual thermal channel sensors (e.g. on GOES-8 and -
10) (Sun, 2003) and single thermal channel sensors (e.g.
GOES M-Q) (Sun et al., 2004). An evaluation of GOES
LST retrievals over the USA is given by Pinker et al.
(2009). An illustration of an advantage of geostationary
satellites is shown by Sun et al. (2006), which measures
the diurnal temperature range across the USA, possible
due to the high temporal availability of data. An inter-
esting study links MODIS data as a calibration source
for GOES data, resulting in a 1 km LST dataset at half-
hourly temporal resolution and a measured accuracy bet-
ter than 2 °C (Inamdar et al., 2008).

3.4. MODIS

The MODerate resolution Imaging Spectroradiometer
(MODIS) sensor is carried on both NASA’s Aqua
and Terra satellites that have near polar orbits result-
ing in two images per satellite per day. Image acqui-
sition on Aqua is ∼1330 and 0130 h and Terra is
∼1030 and 2230 h, all local time. This is a high tem-
poral resolution, and the spatial resolution is ∼1 km.
Data are available from the USGS Land Processes Dis-
tributed Active Archive Center (https://lpdaac.usgs.gov/)
and useful LST products include MYD11A1 (Aqua)
and MOD11A1 (Terra) which are the daily LST and
emissivity at 1 km. Other products include 8 day 1 km
data (M*D11A2) and others. These LST products pri-
marily use TIR bands 31 (10.78–11.28 µm) and 32
(11.77–12.27 µm) combined with split window algo-
rithms (Wan and Dozier, 1996) which multiple studies
have tested (Wan, 2002, 2008; Wan et al., 2004; Coll
et al., 2005) with results suggesting accuracies greater
than 1 K over homogeneous surfaces. A useful tool
for processing data in ESRI ArcMap is the Marine
Geospace Ecology Tools (MGET) plugin (Roberts et al.,
2010), or the standalone MODIS Reprojection Tool
(https://lpdaac.usgs.gov/lpdaac/tools/modis reprojection
tool).

There is a number of studies that use MODIS LST
data within the urban climatology fields. Within Europe,
Pongrácz et al. (2010) explored the UHI of nine central
European cities and find that the most intense UHI
occurs during daytime in the summer. The summer UHI
of Birmingham has been analysed (Tomlinson et al., in
press) and work has looked at the 10 most populated cities
of Hungary (Pongrácz et al., 2006). Studies in Bucharest
used MODIS to calculate the UHI in summer months
(Cheval and Dumitrescu, 2009) and under heatwave
conditions (Cheval et al., 2009). Globally, Hung et al.
(2006) quantified the UHI in eight Asian mega-cities
using MODIS data, Jin et al. (2005) analysed various
cities including Beijing and New York, and Imhoff
et al. (2010) used MODIS data averaged over 3 years
to calculate UHIs across the United States.

MODIS data have been used extensively outside the
UHI field. Other surface measurements include observing
the impacts of agriculture on rural surface temperatures
in North America (Ge, 2010) and measuring water

temperature and heat flux over a hydroelectric reservoir
in Brazil (Alcântara et al., 2010). Atmospheric studies
estimate aerosol optical depth (an important influence
on the radiation budget) in America, Canada, China and
Africa (Liang et al., 2006), and help detect clear sky, low
level temperature inversions in the polar regions (Liu and
Key, 2003). In cooler areas, MODIS has been used for
frost risk assessment in Bolivia (Pouteau et al., 2010)
and permafrost monitoring in Siberia (Langer et al.,
2010). Outside of the meteorology domain, MODIS data
have been used to help epidemiological studies of tick-
borne diseases (Neteler, 2005) and more. A strength of
the MODIS sensor is the compromise between regular
image acquisition and reasonable spatial resolution, in
comparison to other sensors that offer higher spatial
resolution but lower temporal resolution (e.g. Landsat),
or higher temporal resolution but lower spatial resolution
(e.g. SEVIRI).

3.5. ASTER

The Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) operates at a very high reso-
lution (90 m), and calculates surface temperature (AST08
product – http://asterweb.jpl.nasa.gov/content/03 data/01
Data Products/SurfaceTemperature.pdf) using the Tem-

perature Emissivity Separation (TES) algorithm (Gille-
spie and Rokugawa, 1998). ASTER has five TIR bands,
and full technical details are available in Yamaguchi et al.
(1998). ASTER is based on the NASA Terra satellite plat-
form, but is fundamentally different from other sensors
discussed in this review in that it is request only, with fees
payable for data. Hence, data are only acquired if a spe-
cific request has been detailed and paid for, and therefore
the historical data are limited and costly. This is a signifi-
cant restriction, given the difficulties of ensuring suitable
atmospheric and weather conditions for a specific future
request, and obviously limits historical studies. However,
the 90 m resolution is high, only comparable with Land-
sat when considering the spatial scale, and ASTER has
the potential for better temporal coverage, given the Terra
satellite has a twice daily pass.

ASTER images have been used for a number of stud-
ies. They were used to compare LST to urban biophysical
descriptors (such as impervious surface, green vegetation
and soil) in Indianapolis, USA through linear spectral
mixture analysis and multiple regression models, with
the results that impervious surfaces and hot objects were
positively correlated with LST, whereas vegetation and
cold objects were negatively correlated (Lu and Weng,
2006). An ASTER image was used alongside a 148 km
vehicle traverse of Hong Kong in order to compare air
and remotely sensed temperatures (Nichol et al., 2009)
and ASTER (for thermal use) and IKONOS data (for
high resolution (4 m) visible and near infrared use) were
combined to explore the cooling effect of urban parks in
Nagoya, Japan (Cao et al., 2010).

There are frequent comparisons between ASTER and
MODIS data, for example in verification. This is because
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ASTER and MODIS are complementary in scale (∼1 km
and 90 m) and are based on the same satellite platform,
so image acquisition occurs at the same time, height and
location which aids comparison. Land surface emissivity
and radiometric temperatures have been compared with
good agreement over desert in the USA and savannah in
Africa (Jacob et al., 2004). Direct comparisons between
three correction approaches over the Loess Plateau in
China have reduced the discrepancies between ASTER
and MODIS data (Liu et al., 2007). Long term ground
based long wave radiation between 2000 and 2007 have
been compared to ASTER and MODIS images for both
LST and emissivity (Wang and Liang, 2009).

3.6. AATSR

The Advanced Along Track Scanning Radiometer
(AATSR) is carried onboard the European Space Agency
(ESA) ENVironment SATellite (ENVISAT) which was
launched in 2002. This was the third instrument in a series
(ATSR-1 and ATSR-2) which started with the Along
Track Scanning Radiometer (ATSR-1) in 1991. The pri-
mary objective of all missions to date has been for sea
surface temperature (SST) collection. ENVISAT is in a
Sun-synchronous polar orbit with a 35 day repeat cycle,
which means data availability is lower than others. The
LST product is relatively new, being operational from
March 2004 for data from the AATSR, and the TIR bands
11 and 12 µm are used to provide LST at ∼1 km resolu-
tion. However the algorithms developed will be applied
to historical data from the previous sensors (ATSR-1 and
ATSR-2) resulting in an LST dataset starting in 1991,
although the timeline for completion is unknown. The
AATSR literature is primarily concerned with the theo-
retical science for algorithm development (Prata, 2002),
evaluation of algorithms (Sòria and Sobrino, 2007) or
validation (Coll et al., 2005, 2009; Noyes et al., 2007).
AATSR has been used for monthly LST mapping over
Europe (Joan and Cesar, 2009) and more broadly for
drought prediction (Djepa, 2011), estimating evapotran-
spiration (Liu et al., 2010) and detection of snow covered
areas (Istomina et al., 2010). In the future more stud-
ies using AATSR can be anticipated, although the long
orbital repeat cycle means other sensors may be better
suited.

3.7. SEVIRI

The Spinning Enhanced Visible and Infrared Imager
(SEVIRI) is an instrument on Meteosat-8 that uses a
generalized split window algorithm (detailed in Sobrino,
2004) to calculate LST from two thermal channels (10.8
and 12 µm). The satellite application facility on land
surface analysis (http://landsaf.meteo.pt/) is responsible
for generation and archiving of the data. Meteosat Second
Generation (MSG) is a geostationary satellite so therefore
has different characteristics to other orbital satellites
this review has examined. It has a very high temporal
resolution of 15 min (theoretical maximum of 96 images

per day) but the area covered is constant and not global.
All the land pixels within the Meteosat disc that are below
a 60° viewing angle are processed for LST measurements,
to avoid excessive atmospheric attenuation and reduced
accuracy at higher angles. This results in a spatial pixel
resolution of 3 km at nadir (increasing to ∼6 km at
>60°). Schmetz et al. (2002) offer a useful introduction
to the MSG instrument. The high temporal resolution has
a number of advantages, namely it has a much greater
chance of getting cloud free images of a study area due
to the number that are taken and it enables the potential
to study the diurnal LST pattern. Meteosat data have been
available since July 2005 for the complete Meteosat disc
(February 2005 for Europe).

Trigo et al. (2008) compare Meteosat LST with
MODIS LST over three locations and find that Meteosat
temperatures are warmer than MODIS, particularly in the
daytime. A comparison between MODIS and Meteosat
LST has also been carried out focussing on the heatwave
in Athens, Greece during July 2007 (Retalis et al., 2010)
and the results show significant correlation both between
each other and between air temperature measurements,
which agrees with other air temperature and Meteosat
LST comparisons that also perform well (Nieto et al.,
2011).

Due to the high temporal resolution, it is theoretically
possible to study the diurnal UHI. In practice this is
limited by cloud cover, however recent work outlines a
methodology for reconstructing cloud contaminated pix-
els (Lu et al., 2011) that allows the diurnal variation to be
studied in detail. In other fields this high temporal resolu-
tion is useful, for example for hazard modelling such as
near real time forest fire monitoring (Umamaheshwaran
et al., 2007).

4. Future developments

The future for remote sensing LST retrievals is focussed
on two main areas, that of improved or replacement phys-
ical sensors and platforms, and that of improvements
in data manipulation of current, historical and future
data. In terms of data manipulation there is potential for
improved algorithms, for example improved cloud mask-
ing or emissivity calculations. These will rely on ongoing
validation and testing across a variety of landscapes and
sensors, and could improve existing as well as future data.

Regarding the near future of sensors and satel-
lite platforms, a number of relevant projects are in
development. The Landsat Data Continuity Mission
(LDCM) (http://ldcm.nasa.gov/or http://pubs.usgs.gov/fs/
2007/3093/) intends to continue the long Landsat data
series, and is due to be launched in December 2012
with 120 m resolution in two thermal channels. The
European Space Agency (ESA) Sentinel-3 satellites are
planned for launch from 2013, offering a Sea and Land
Surface Temperature Radiometer (SLSTR) with a 1 km
resolution in the thermal channels and a daily revisit
time. The geostationary GOES-R satellite is due in 2015,
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with a 2 km resolution in the thermal channels from a
new Advanced Baseline Imager (ABI) (Yunyue et al.,
2009). The National Polar-orbiting Operational Environ-
mental Satellite System (NPOESS) is due to launch in
2016, designed to replace NASA’s Aqua, Terra and Aura
satellites and offering the Visible and Infrared Imagery
Radiometer Suite (VIIRS) sensor for LST. An interest-
ing sensor in development is the Hyperspectral InfraRed
Imager (HyspIRI) from NASA that is hopefully planned
for launch in 2015, offering a ∼60 m resolution in the
thermal bands and a repeat cycle of 5 or 16 days. This
is still in a planning phase and more details are available
online (http://hyspiri.jpl.nasa.gov/) but this offers the next
generation of space based thermal sensors. Coupled with
these large ‘traditional’ missions, in the future there is
likely to be an increase in ‘small satellites’ (Sandau et al.,
2010) that enable relatively quick and inexpensive mis-
sions, which could for example help to observe dynamic
weather systems. Future increases in spatial resolution
of sensors combined with the high temporal resolution
that geostationary platforms can provide is likely to offer
the most useful data, however this offers considerable
scientific challenges.

5. Conclusion

This review has given an overview of remote sensing
techniques, sensors and research of interest to the mete-
orological and climatological community for LST detec-
tion and monitoring. It is clear that the focus of research
has been surrounding the UHI phenomenon, but a signifi-
cant research gap still exists which is the quantification of
the relationship between measured air temperatures and
remotely sensed LST data. Indeed, as Nichol et al. (2009)
state this ‘remains the greatest unknown in remotely
sensed studies of heat islands’, and this statement is still
applicable to any study using LST data as a proxy for
air temperature. The importance of being able to relate
LST to air temperature is especially important when such
datasets are being used to inform policy decisions or com-
municate outside of the scientific community.

A significant advantage of remote sensing data and
techniques is their truly global coverage and scope, but
despite this there is a low number of studies focussing on
many geographical areas, and a limited number that inte-
grate additional ground data. Remote sensing techniques
offer access to data that would otherwise be unobtain-
able, therefore the requirement for defensible verification
and accuracy measurements is considerable. Alongside
this, the increasing need for data and intensifying analysis
will necessitate using remote sensing data alongside other
datasets from numerous sources, resulting in an integral
role for remote sensing techniques within the meteoro-
logical and climatological communities.
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List of Acronyms

ATLAS Advanced Thermal and Land Applications Sen-
sor
ATSR Along Track Scanning Radiometer
AVHRR Advanced Very High Resolution Radiometer
CFD Computational Fluid Dynamics
EMR Electromagnetic Radiation
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GSW Generalised Split Window Technique
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NDVI Normalized Difference Vegetation Index
NOAA National Oceanic and Atmospheric Administra-
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NPOESS National Polar-orbiting Operational Environ-
mental Satellite System
RTE Radiative Transfer Equation
SEVIRI Spinning Enhanced Visible and Infrared Imager
SLSTR Sea and Land Surface Temperature Radiometer
SST Sea Surface Temperature
TES Temperature Emissivity Separation
TIR Thermal InfraRed
TIROS-1 Television InfraRed Observation Satellite
TM Thematic Mapper
TOA Top of Atmosphere
UHI Urban Heat Island
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VHRR Very High Resolution Radiometer
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