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The knowledge of impervious surfaces, especially the magnitude, location, geometry, spatial pattern of
impervious surfaces and the perviousness-imperviousness ratio, is significant to a range of issues and themes
in environmental science central to global environmental change and human-environment interactions.
Impervious surface data is important for urban planning and environmental and resources management.
Therefore, remote sensing of impervious surfaces in the urban areas has recently attracted unprecedented
attention. In this paper, various digital remote sensing approaches to extract and estimate impervious
surfaces will be examined. Discussions will focus on the mapping requirements of urban impervious surfaces.
In particular, the impacts of spatial, geometric, spectral, and temporal resolutions on the estimation and
mapping will be addressed, so will be the selection of an appropriate estimation method based on remotely
sensed data characteristics. This literature review suggests that major approaches over the past decade
include pixel-based (image classification, regression, etc.), sub-pixel based (linear spectral unmixing,
imperviousness as the complement of vegetation fraction etc.), object-oriented algorithms, and artificial
neural networks. Techniques, such as data/image fusion, expert systems, and contextual classification
methods, have also been explored. The majority of research efforts have been made for mapping urban
landscapes at various scales and on the spatial resolution requirements of such mapping. In contrast, there is
less interest in spectral and geometric properties of impervious surfaces. More researches are also needed to
better understand temporal resolution, change and evolution of impervious surfaces over time, and temporal
requirements for urban mapping. It is suggested that the models, methods, and image analysis algorithms in
urban remote sensing have been largely developed for the imagery of medium resolution (10-100 m). The
advent of high spatial resolution satellite images, spaceborne hyperspectral images, and LiDAR data is
stimulating new research idea, and is driving the future research trends with new models and algorithms.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Impervious surfaces are anthropogenic features through which
water cannot infiltrate into the soil, such as roads, driveways, sidewalks,
parking lots, rooftops, and so on. In recent years, impervious surface has
emerged not only as an indicator of the degree of urbanization, but also a
major indicator of environmental quality (Arnold & Gibbons, 1996).
Impervious surface is a unifying theme for all participants at all
watershed scales, including planners, engineers, landscape architects,
scientists, social scientists, local officials, and others (Schueler, 1994).
The magnitude, location, geometry and spatial pattern of impervious
surfaces, and the pervious-impervious ratio in a watershed have
hydrological impacts. Although land use zoning emphasizes roof-
related impervious surfaces, transport-related impervious surfaces
could have a greater impact. The increase of impervious cover would
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lead to the increase in the volume, duration, and intensity of urban
runoff (Weng, 2001). Watersheds with large amounts of impervious
cover may experience an overall decrease of groundwater recharge and
baseflow and an increase of stormflow and flood frequency (Brun &
Band, 2000). Furthermore, imperviousness is related to the water
quality of a drainage basin and its receiving streams, lakes, and ponds.
Increase in impervious cover and runoff directly impact the transport of
non-point source pollutants including pathogens, nutrients, toxic
contaminants, and sediment (Hurd & Civco, 2004). Increases in runoff
volume and discharge rates, in conjunction with non-point source
pollution, will inevitably alter in-stream and riparian habitats, and the
loss of some critical aquatic habits (Gillies et al., 2003). In addition, the
areal extent and spatial occurrence of impervious surfaces may
significantly influence urban climate by altering sensible and latent
heat fluxes within the urban canopy and boundary layers (Yang et al,
2003). As impervious cover increases within a watershed/administra-
tive unit, vegetation cover would decrease. The percentage of land
covered by impervious surfaces varies significantly with land use
categories and sub-categories (Soil Conservation Service, 1975).
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Therefore, estimating and mapping impervious surface is significant to a
range of issues and themes in environmental science central to global
environmental change and human-environment interactions. The
datasets of impervious surfaces are valuable not only for environmental
management, e.g., water quality assessment and storm water taxation,
but also for urban planning, e.g., building infrastructure and sustainable
urban development.

Many techniques have been applied to characterize and quantify
impervious surfaces using either ground measurements or remotely
sensed data. Field survey with GPS, although expensive and time-
consuming, can provide reliable information on impervious surfaces.
Manual digitizing from hard-copy maps or remote sensing imagery
(especially aerial photographs) have also been used for mapping
imperviousness. Later, this technique has become more heavily involved
with automation methods such as scanning and the use of feature
extraction algorithms. From the 1970s to 1980s, satellite imagery started
to gain popularity in natural resources and environmental studies, and
was used in the interpretive applications, spectral applications, and
modeling applications of impervious surfaces (Slonecker et al., 2001). In
reviewing the methods of impervious surface mapping, Brabec et al.
(2002) identified four different approaches, i.e., using a planimeter to
measure impervious surface on aerial photography, counting the number
of intersections on the overlain grid on an aerial photography, conducting
image classification, and estimating impervious surface coverage through
the percentage of urbanization in a region. These reviews concluded that
in the 1970s and 1980s, aerial photography was the main source of
remote sensing data for estimating and mapping impervious surfaces
(Brabec et al., 2002; Slonecker et al., 2001).

A literature search via Scopus, the largest abstract and citation
database of peer-reviewed literature, indicates that in the 1990s the
number of publications on remote sensing of impervious surface was
limited (Fig. 1). This is largely due to the lack of remote sensors suitable
for detecting and estimating various types of impervious surfaces,
immature digital image processing techniques, and constrained
computing power. Then, at the turn of the 21st century, remote sensing
of impervious surfaces was rapidly gaining interest in the remote
sensing community. Fig. 1 shows that annual publications and citations
on the subject increased exponentially. The average annual citation
(number of citation per article per year) on remote sensing of
impervious surfaces was 0.82 between 2001 and 2010, while the
number of citations per year for the whole field of remote sensing was
0.55 for the same period. This comparison indicates that remote sensing
of impervious surfaces has become one of the more dynamic fields in

remote sensing. All major remote sensing journals in the world have
published articles on this subject. Table 1 lists most relevant peer-
refereed journals, along with most prolific authors and major research
groups. Several factors contribute to the increase of the literatures and
their significance. The advent of high-resolution imagery, especially
those less than 5 m resolution, and more capable image processing
techniques, have both driven the technologic advance in remote sensing
of impervious surfaces. Driven by the concerns over global environ-
mental change, societal needs of impervious surface data, and enhanced
computing and internet technology, many municipal government
agencies and non-government organizations have started to collect
and map impervious surface data for civil and environmental uses.
Given increasing importance in the field of remote sensing, it becomes
an urgent need to systematically examine the current state of the
research and to trace its future trends. This review begins with
examining data requirements for remote sensing of impervious
surfaces, with a particular interest in the impacts of remotely sensed
data characteristics (i.e., spatial, spectral, and temporal resolutions, and
LiDAR data). Next, various digital methods for extracting and estimating
impervious surfaces are assessed. In addition, the author will address
future developments by looking into how emerging algorithms in digital
image processing will influence the field of remote sensing in general
and impervious surfaces estimation and mapping in particular.

2. Remote sensing data considerations
2.1. Spatial resolution

Spatial resolution is a function of sensor altitude, detector size, focal
size and system configuration (Jensen, 2005). It defines the level of
spatial detail depicted in an image, and it is often related to the size of
the smallest possible feature that can be detected from an image. This
definition implies that only objects larger than the spatial resolution of a
sensor can be picked out from an image. However, a smaller feature may
sometimes be detectable if its reflectance dominates within a particular
resolution cell or it has a unique shape (e.g, linear features). Another
meaning of spatial resolution is that a ground feature should be
distinguishable as a separate entity in the image. But the separation from
neighbors or background is not always sufficient to identify the object.
Therefore, the concept of spatial resolution includes both detectability
and separability. For any feature to be resolvable in an image, it involves
consideration spatial resolution, spectral contrast, and as well as feature
shape. Jensen and Cowen (1999) suggested that the minimum spatial

1991/1995|1996(1997(1998/1999 2000

2001/2002|2003|2004{2005(2006/2007/2008/2009|2010

. # citations 0 0 1 4 1 1 7

15 | 16 | 55 | 95 | 152|201 | 278 | 367 | 534 | 430

=t publications | 1 2 0 0 1 1 3

3 8 |14 | 8 |10 15|23 |24 | 42|29

Fig. 1. Yearly publications and citations from 1991 to 2000 indexed by Scopus. The search was conducted on February 16, 2011, and found a total of 184 articles (including journal
articles and those published in conference proceedings). Total number of citation yielded 2157, but Scopus does not have complete citation information for articles published before

1996.
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Table 1

Literature search results using Scopus on “remote sensing impervious surface”.

Most relevant journals (# of publications)

Most prolific authors (# of publications on the subject)

Major research groups

Photogrammetric Engineering & Remote Sensing (22)

Remote Sensing of Environment (18)
International Journal of Remote Sensing (18)
Canadian Journal of Remote Sensing (6)
IEEE Transactions on Geoscience and Remote Sensing (4)
Journal of the American Water Resources Association (4)
Water Science and Technology (3)
Sensors (3)
ISPRS Journal of Photogrammetry and Remote Sensing (2)
International Journal of Applied Earth Observation
and Geoinformation (2)
GlScience and Remote Sensing (2)
Geocarto International (2)
Computers Environment and Urban Systems (2)
Journal of Hydrology (2)
Journal of Applied Meteorology and Climatology (2)
Acta Ecologica Sinica (2)
IAHS AISH Publication (2)

Weng, Q. (14)

Lu, D. (7)

Wuy, C. (7)
Xian, G. (7)
Murray, AT. (5)
Yang, L. (5)
Yuan, F. (5)
Carlson, T.N. (4)
Bauer, M.E. (4)
Hu, X. (4)

Crane, M. (4)
Jiang, L. (4)
Liao, M. (3)
Goetz, SJ. (3)
Ridd, MK. (3)
Imhoff, M.L. (3)
Bounoua, L. (3)

USGS/Earth Resources Observation and
Science Center/SAIC (17)

Indiana State University (16)

Univ. of Wisconsin Milwaukee (8)
Indiana University (6)

University of Utah (5)

Minnesota State University (5)
Chinese Univ. of Hong Kong (4)

NASA Goddard Space Flight Center (4)
Hohai University (4)

Chinese Academy of Sciences (4)

United States EPA (4)

Wuhan University (4)
University of Minnesota (4)
Zhejiang Forestry University (4)

Note: The search was conducted on October 14, 2010. In addition to journal articles, conference proceedings have also published on the subject, e.g., Proceedings of SPIE (14), IGARSS
(12), 2009 Joint Urban Remote Sensing Event in Shanghai (9), and 2007 Joint Urban Remote Sensing Event in Paris (2).

resolution requirement should be one-half the diameter of the smallest
object of interest. For two major types of impervious surface, buildings
(perimeter, area, height, and property line) and roads (width) are
generally detectable with the minimum spatial resolution of 0.25 to
0.5 m, while road centerline can be detected at a lower resolution of 1-
30m (Jensen & Cowen, 1999). Before 1999, lack of high spatial
resolution (less than 10 m) images is a main reason for scarce research
in remote sensing of impervious surfaces before 2000. Cracknell (1999)
asserted that NOAA's AVHRR had been the major instrument for remote
sensing studies between 1980 and 1999, and that Landsat or SPOT was
not mentioned among the 12 most cited papers published in the
International Journal of Remote Sensing during this period. The medium
(10-100 m) spatial resolution images, such as Landsat and SPOT, were
not readily available and were expensive. Many researchers employed
per-pixel classifiers and applied successful experience in vegetation
mapping to remote sensing of impervious surfaces (Bauer et al., 2004;
Carlson, 2004; Gillies et al., 2003). This approach can avoid a major
problem that existed in the medium resolution imagery, i.e., mixed
pixels.

Mixed pixels dominate in coarse resolution images such as AVHRR
and MODIS. However, for a remote sensing project, image spatial
resolution is not the only factor needed to consider. The relationship
between the geographical scale of a study area and the spatial resolution
of remote sensing image has to be studied (Quattrochi & Goodchild,
1997). For mapping at the continental or global scale, coarse spatial
resolution data are usually employed. Gamba and Herold (2009)
assessed eight major research efforts in global urban extent mapping,
and found that most maps were produced at the spatial resolution of 1-
2 km. When using coarse resolution images, a threshold has to be
defined with respect to what constitute a built-up/impervious pixel (Lu
etal,, 2008; Schneider et al., 2010). Reliable impervious surface data that
derive from medium resolution imagery are helpful for validating and
predicting urban/built-up extent at the coarse resolution level (Lu et al.,
2008).

With the advent of very high resolution satellite imagery, such as
IKONOS (launched 1999), QuickBird (2001), and OrbView (2003)
images, great efforts have been made in the applications of these remote
sensing images in urban and environmental studies. High resolution
satellite imagery has been applied in impervious surface mapping
(Cablk & Minor, 2003; Goetz et al., 2003; Hu & Weng, 2011; Lu & Weng,
2009; Wu, 2009). These fine spatial resolution images contain rich
spatial information, providing a greater potential to extract much more
detailed thematic information (e.g, land use and land cover), carto-

graphic features (buildings and roads), and metric information with
stereo-images (e.g., height and area). These information and carto-
graphic characteristics are highly beneficial to estimating and mapping
of impervious surfaces. The proportion of mixed pixels is significantly
reduced in an image scene. However, some new problems come with
these image data, notably shadows caused by topography, tall buildings,
or trees (Dare, 2005), and the high spectral variation within the same
land cover class (Hsieh et al, 2001). Shadows obscure impervious
surfaces underneath and thus increase the difficulty to extract both
thematic and cartographic information. These disadvantages may lower
image classification accuracy if classifiers used cannot effectively handle
them (Cushnie, 1987; Irons et al., 1985). In order to make full use of the
rich spatial information inherent in fine spatial resolution data, it is
necessary to minimize the negative impact of high intra-spectral
variation. Algorithms that use the combined spectral and spatial
information may be especially effective for impervious surface
extraction in the urban areas (Lu & Weng, 2007).

2.2. Geometric characteristics of urban features

Urban surface geometry has an important impact in remote sensing
based analysis in general and impervious surface estimation in
particular. High spatial resolution image data, including both space-
borne and airborne, provide a great possibility to achieve the
effectiveness and efficiency of extraction of cartographic features (e.g.,
building, roads, and parking lots) through automated extraction
methods. But the issues of shadow and image distortion can affect the
extraction accuracy to a certain degree. Because urban streets were mis-
classified as vegetation, it may lead to 30% of error, generally an
underestimation of impervious surface estimation in the urban areas
(van der Linden & Hostert, 2009). In contrast, Hodgson et al. (2003)
found that the low reflectance from pixels under shadow frequently
resulted in a misclassification into the water class. Displaced buildings
may occlude adjacent non-building impervious surfaces. The confusion
between them, as a function of building height and view-angle, may add
up to 16% error to the final impervious surface map compared to nadir
regions (Linden and Hostert, 2009). The issue of viewing angle is also
pertinent to space-borne sensors such as IKONOS and QuickBird, which
also provide off-nadir imagery at view-angles of up to 30°. Zhou and
Kelmelis (2006) presented a protocol of three steps for orthophoto
generation, aiming at 3-D city modeling. These steps included: digital
terrain model based- and digital building model based-orthoimage
generation, and their merging. This protocol is capable of shadow
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detection and restoration, as well as occlusion detection and compen-
sation (Zhou & Kelmelis, 2006). Tong et al. (2009) suggested that high
resolution satellite imagery, such as QuickBird, must be accurately
ortho-rectified by using the principle of photogrammetry before
applying for mapping of urban land use.

LiDAR data has been increasingly used in many geospatial
applications due to its high data resolution, short processing time, and
low cost. Unlike other remotely sensed data, LiDAR data focus solely on
geometry rather than radiometry. Feature classification and extraction
based on LiDAR data have been widely conducted (Clode et al., 2007;
Filin, 2004; Forlani et al., 2006; Lee et al., 2008), and LiDAR data have
shown a great potential in building and road extraction because of
elevation data can be derived quickly and at high resolution in
comparison to photogrammetric techniques (Miliaresis & Kokkas,
2007). In addition, some researchers have used LiDAR in conjunction
with optical remote sensing data in impervious surface estimation and
mapping. Hodgson et al. (2003), for example, used both digital aerial
photographs and LiDAR data for urban parcel impervious surface
mapping, and found that the combined datasets improved the results for
all classification approaches over the color aerial photography. The
addition of height information from LiDAR increased the coefficient of
determination value by 2% to 25%.

Building extraction is a feature classification and detection, as well as
a pattern recognition technique. Aerial imagery is a popular data source
for building extraction due to its high spatial resolution. An important
prerequisite is the number of images in which a scene can be found.
Mono, stereo, and multi-spectral images can be distinguished and used
in reconstruction of objects (Mayer, 1999). Multiple views of observa-
tion enable a better geometry reconstruction of building objects and
reduce the problems with occlusion. Multispectral high-resolution
satellite imagery such as Quickbird and IKONOS are regarded as a
repeatable data source for building extraction with a stereo-viewing
capacity and a short revisit time (1 to 3.5 days for Quickbird, 3 to 5 days
for IKONOS). LiDAR data provide a unique data source and has
advantages over satellite imagery and aerial photographs in accurate
capturing of urban features with absolute height information, especially
for building extraction (Yu et al.,, 2010).

A wide range of models and methods have been developed for
building extraction. Most of the extraction algorithms use edge-based
techniques that consist of linear feature detection for perpendicular
outline and flat roof, grouping for parallelogram structure hypothesis
extraction, and building polygons verification using knowledge such as
geometric structure, shadows and walls, illuminating angles, sub-
structures like doors or windows, and so forth (Jin & Davis, 2005). These
edge-based techniques mainly utilize the geometric properties of
buildings, while other techniques are combined with consideration of
image attributes at multiple scales. Apart from geometry, detailed image
models with rich radiometric attributes can exploit much better
information contained in the image (Braun et al., 1995; Henricsson,
1998; Lang & Forstner, 1996; Moons et al., 1998). With data fusion
algorithms, both panchromatic and multi-spectral images from different
sensors may be utilized (Henricsson, 1998; Moons et al, 1998). In
addition, by assessing multiple scales, one can start with reliable
structures in a coarse scale and then focus extraction on specific areas
and object types in fine scales (Mayer, 1999).

Remote sensing research on road extraction from aerial or satellite
images began in 1970s when only low- and medium-resolution imagery
were available. Mena (2003) presented a comprehensive review on
automatic road extraction, and grouped the methods/algorithms into six
categories: road tracking, mathematical morphology, snake, knowledge-
based, multi-resolution and multi-resource methods, and integrated
systems. In low- and medium-resolution images, the road extraction was
often considered as a linear feature extraction method, and roads as
continuous and smooth lines (Amini et al., 2002). The extraction of roads
as surfaces was applied to aerial images only (Peteri & Ranchin, 2007).
The advent of high-resolution imagery expands the surface approach for

extraction of roads. Many methods have been developed to detect urban
road network from high-resolution images (Hu et al., 2007; Long & Zhao,
2005; Shi & Zhu, 2002; Zhu et al., 2005). High resolution imagery allows
more fine details to be seen, a better differentiation of road types, and a
more accurate geographic location. The geometric characteristics of
ground features may also be detected. Geometric characteristics, such as
structures and shapes, are very important in road recognition, so that
roads can be modeled as continuous and elongated homogeneous
regions with nearly constant width (Long & Zhao, 2005). The main
limitations associated with road extraction include geometric noises
caused by cars, ground markings, shadows, and so on, and these noises
increased intra-class spectral variance. Both problems contribute to the
difficulty of road extraction when the surface approach is applied, which
assumes the homogeneity in radiometry along a road. Other problem
relates to similar radiometry between road pixels and surrounding areas,
such as builds and parking lots (Peteri & Ranchin, 2007). In this regard,
elevation information can be very useful to reduce the ambiguity
between roads and the backgrounds. Because LiDAR data can provide
height, shape and other geometric information, it has been increasingly
employed in road extraction. Clode et al. (2004) used a hierarchical
classification technique to classify LiDAR points into road and non-road,
and obtained an acceptable quality of 0.62. Clode et al. (2005) proposed a
region growing algorithm to detect the road network in Fairfield and
Yeronga, Australia. Samadzadegan et al. (2009) presented an optimum
multiple classifier system for classification and extraction of road objects,
in which both height and intensity information of LIDAR data was used.
The method was applied to the city of Castrop-Rauxel in the west of
Germany. In some recent studies, LiDAR data is combined with other
types of data to improve the extraction accuracy. Elberink and Vosselman
(2009) used airborne laser data fused with topographic map data to build
an automated method for 3D modeling of highway interchanges in the
Netherlands, and achieved an average precision of 10 to 15 cm. Tiwari
et al. (2009) explored an integrated approach to extract road
automatically using airborne laser scanning altimetry and high-resolu-
tion data. This method was applied to Amsterdam, The Netherlands, and
yielded accuracy over 90%.

2.3. Spectral resolution

Remote sensing of impervious surfaces should consider the re-
quirements for mapping three interrelated entities or substances on the
Earth surface (ie, material, land cover, and land use) and their
relationships. Mapping of each entity/substance must consider the
spectral resolution of a remote sensor. The spectral features include the
number, locations, and bandwidths of spectral bands. The number of
spectral bands can range from a limited number of multispectral bands
(e.g.,4bands in SPOT data and 7 for Landsat TM), to a medium number of
multispectral bands (e.g., ASTER with 14 bands and MODIS with 36
bands), and to hyperspectral data (e.g., AVIRIS and EO-1 Hyperion
images with 224 bands). A large number of spectral bands provide the
potential to derive detailed information on the nature and properties of
different surface materials on the ground, but it also means a difficulty in
image processing and a large data redundancy due to high correlation
among the adjacent bands. Increase of spectral bands may improve
classification accuracy, only when those bands are useful in discrimi-
nating the classes (Thenkabail et al., 2004a).

Urban areas are composed of a variety of materials, including
different types of artificial materials (i.e., impervious surfaces), soils,
rocks and minerals, green and non-photosynthetic vegetation. These
materials comprise land cover, and are used in different manners for
various purposes by human beings. Land cover can be defined as the
biophysical state of the earth's surface and immediate subsurface,
including biota, soil, topography, surface and ground water, and human
structures (Turner et al., 1995). Land use can be defined as the human
use of the land, and involves both the manner in which the biophysical
attributes of the land are manipulated and the purpose for which the
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land is used (Turner et al., 1995). Remote sensing technology has often
been applied to map land use or land cover, instead of materials. Each
type of land cover may possess unique surface properties (material),
however, mapping land covers and materials have different require-
ments (Fig. 2). Land cover mapping needs to consider characteristics in
addition to those coming from the material (Herold et al., 2006). The
surface structure (roughness) may influence the spectral response as
much as the intra-class variability (Gong & Howarth, 1990; Herold et al.,
2006; Myint, 2001; Shaban & Dikshit, 2001). Two different land covers,
for example, asphalt roads and composite shingle/tar roofs, may have
very similar materials (hydrocarbons) and thus are difficult to discern,
although from a material perspective, these surfaces can be mapped
accurately with hyperspectral remote sensing techniques (Herold et al.,
2006). Therefore, land cover mapping requires taking into account of the
intra-class variability and spectral separability. On the other hand,
analysis of land use classes would nearly be impossible with spectral
information alone. Additional information, such as spatial, textural, and
contextual information, is usually required in order to have a successful
land use classification in urban areas (Gong & Howarth, 1992; Herold
et al., 2003; Stuckens et al., 2000).

Linear spectral mixture analysis (LSMA) has been widely used in
impervious surface estimation, implying that impervious surface is a type
of surface material. This view has much to do with the spectral resolution
of a remote sensor. LSMA is a physically deterministic modeling method
that decomposes the signal measured at a given pixel into its component
parts called endmembers (Adams et al, 1986; Boardman, 1993;
Boardman et al., 1995). Endmembers are regarded as recognizable
surface materials that have homogenous spectral properties all over the
image. Impervious surfaces can be extracted and mapped as a single end-
member, or the combination of two or more end-members (Lu & Weng,

land cover

2006; Rashed et al., 2003; Weng et al., 2008, 2009; Wu & Murray, 2003).
Previous research has largely applied LSMA to medium spatial resolution,
multi-spectral images, such as Landsat TM/ETM+ and Terra's ASTER
images, for extraction of impervious surfaces (Weng, 2007). However,
both spatial and spectral resolution is regarded as too coarse for use in
urban environments because of the heterogeneity and complexity of
urban impervious surface materials. In the LSMA model, the maximum
number of endmembers is directly proportional to the number of spectral
bands used. Hyperspectral imagery may be more effective in extracting
endmembers than multispectral imagery. The vastly increased dimen-
sionality of a hyperspectral sensor may remove the sensor-related limit
on the number of endmembers available. More significantly, the fact that
the number of hyperspectral image channels far exceeds the likely
number of endmembers for most applications readily permits the
exclusion from the analysis of any bands with low signal-to-noise ratios
or with significant atmospheric absorption effects (Lillesand et al., 2004).
In previous research, hyperspectral data have been successfully used for
land use/cover classification (Benediktsson et al., 1995; Hoffbeck &
Landgrebe, 1996; Platt & Goetz, 2004; Thenkabail et al., 2004a,b),
vegetation mapping (McGwire et al., 2000; Pu et al., 2008; Schmidt et al.,
2004), and water mapping (Bagheri & Yu, 2008; Moses et al., 2009). As
space-borne hyperspectral data such as EO-1 Hyperion become available,
research and applications with hyperspectral data will increase. Weng et
al. (2008) found a Hyperion image was more powerful in discerning low
albedo surface materials, which has been a major obstacle for impervious
surface estimation with medium resolution multispectral images. A
sensitivity analysis suggested that the improvement of mapping accuracy
in general and the better ability in discriminating low albedo surfaces
resulted largely from additional bands in the mid-infrared region (Weng
et al,, 2008).

urban material classes
(e.g., impervious
surfaces)

spectral
information

spectral information
and surface structure

spectral, spatial, textural,
and contextual information

Urban Remote Sensing

Fig. 2. Illustration of the relationship among remote sensing of urban materials, land cover, and land use (after Weng & Lu, 2009).
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The spectral characteristics of land surfaces are the fundamental
principles for land imaging. Previous studies have examined the spectral
properties of urban materials (Ben-Dor et al., 2001; Heiden et al., 2007;
Hepner et al, 1998; Herold et al, 2003) and spectral resolution
requirements for separating them (Jensen & Cowen, 1999). When
Jensen and Cowen (1999) explained minimum spectral resolution
requirements for urban mapping, the discussion focused mainly on
multispectral imagery data. They suggested that spatial resolution was
more important than spectral resolution in urban mapping. The
spectrum from visible to NIR, MIR, and microwave are suitable for
LULC classification at coarser categorical resolutions (e.g., Levels I and II
of the Anderson classification); however, at the finer categorical
resolutions (e.g., Levels Il and IV of the Anderson classification) and
for extraction of buildings and roads, panchromatic band is needed
(Jensen & Cowen, 1999). Other urban studies had employed hyper-
spectral sensing for discriminating among urban surface features based
on their diagnostic absorption and reflection characteristics and for
detailed identification of urban materials. Hepner et al. (1998)
suggested that [FSAR imagery, when combined with AVIRIS data, can
provide information on 3D geometry, topography, and impervious
surfaces, and other urban surface characteristics. Ben-Dor et al. (2001)
examined the feasibility of using detailed spectral information in the
spectral region of 0.4-1.1 um for identifying different features in the
urban environment using Compact Airborne Spectral Imager (CASI)
data. Herold et al. (2003) found that several bands in the visible, NIR and
SWIR regions were best suited for distinguishing different urban
features, and emphasized that both reflection and absorption features
due to material composition in the SWIR region was significant in urban
land cover classification, especially in separating different types of
impervious surfaces. Heiden et al. (2007) presented a hierarchical
classification method for the derivation of diagnostic urban spectral
features that can be used for an automated identification of spectrally
homogeneous endmembers from hyperspectral image data.

2.4. Temporal resolution

Temporal resolution refers to the amount of time it takes for a sensor
to return to a previously imaged location, commonly known as the
repeat cycle or the time interval between acquisitions of two successive
images. For air-borne remote sensing, temporal resolution is less
pertinent, since users can schedule flights for themselves. Jensen and
Cowen (1999) suggested that studies of urban development, buildings
and property infrastructure, and road center lines only need to have an
image every one to five years. They further suggested that the temporal
resolution requirement should be a bit higher for delineating precise
road width, namely, one to two years. However, Herold (2007) believed
that road aging and deterioration may have various temporal resolution
depending up on the quality of pavement, traffic, and distresses (e.g.,
cracks and raveling).

Temporal differences between remotely sensed imagery are not only
caused by the changes in spectral properties of the Earth's surface
features/objects, they can also result from atmospheric differences and
changes in sun position during the course of a day and during the year.
Temporal resolution is a very important consideration in remote sensing
of vegetation, because vegetation grows according to daily, seasonal,
and annual phenological cycles. Weng et al. (2009) found that a summer
ASTER image was better for estimation of impervious surfaces than a
spring (April) and a fall (October) one based on a case study in
Indianapolis, U.S.A. it is suggested that mapping of impervious surfaces
tended to be more accurate with contrasting spectral response from
green vegetation when LSMA technique was employed. Plant phenology
caused changes in the variance partitioning and impacted the mixing
space characterization, leading to a less accurate estimation of
impervious surfaces in the spring and fall (Weng et al., 2009). When
other methods are used, detection of urban buildings and roads may
well be suited in the leaf-off season in the temperate regions. In addition,

the set overpass times of satellites may coincide with clouds or poor
weather conditions. This is especially true in the tropical and coastal
areas, where persistent clouds and rains in the wet season offer limit
clear views of the Earth's surface and thus prevent from getting good
quality images (Lu et al., 2008). In consideration of the impact of street
trees on impervious surfaces, Linden and Hostert (2009) suggested that
the quantification of this impact was generally possible by performing
multi-temporal analyses at leaf-on/leaf-off seasons, but solar illumina-
tion geometry and shadowing can presumably preclude leaf-off
acquisitions for many temperate cities.

The off-nadir imaging capability of satellite sensors, such as SPOT-
5, IKONOS and Quickbird, reduces the usual revisit time depending on
the latitude of the imaged areas. This feature is designed for taking
stereoscopic images and for producing digital elevation models, but it
obviously also allows for more frequent coverage of selected regions
for short periods, and provides another means for monitoring and
assessing impervious surfaces.

3. Assessing the current state of the field
3.1. Major methods of estimation and mapping

Many factors must be taken into account in selecting an image
processing method for use. Researchers may have to consider the user's
need, research objectives, remotely sensed data available, compatibility
with previous work, availability of image processing algorithms and
computer software, and time constraints (Lu & Weng, 2007). Among
these factors, the selection of suitable remote sensing data is the first
important step for a successful application (Jensen & Cowen, 1999;
Phinn, 1998; Phinn et al., 2000). The data selection closely relates to
research purposes and requirement, the scale and characteristics of a
study area, the analyst's understanding of image data and their
characteristics, cost and time constraints. Since remotely sensed data
vary in spatial, geometric, radiometric, spectral, and temporal resolu-
tions, complete understanding of the strength and weakness of various
types of data is key to a proper data selection. A review of the literature
on remote sensing of impervious surfaces over the past decade shows
that spatial resolution of remotely sensed data is an important
consideration in the selection of image processing methods to be used
(Table 2).

Because of the near inverse correlation between impervious surface
and vegetation cover in urban areas, one potential approach for
impervious surface extraction is through information on vegetation
distribution (Bauer et al., 2007; Carlson & Arthur, 2000; Gillies et al.,
2003). The Normalized Difference Vegetation Index (NDVI) or green-
ness from tasseled cap transformation or principal component analysis
may be utilized to represent vegetation distribution. Vegetation
fractional coverage can then be computed from a scaled NDVI (Carlson
& Ripley, 1997; Gillies et al., 1997). Impervious surfaces are estimated
based on: (1) complement of vegetation fraction; or (2) regression
models with vegetation indices. The first method is largely applied to
coarse- and medium-resolution satellite imagery, such as AVHRR
imagery in Carlson and Arthur (2000), MODIS NDVI imagery in Boegh
et al. (2009), Landsat MSS imagery in Gillies et al. (2003) and TM
imagery in Carlson (2004). This approach drew rich experiences in
remote sensing of vegetation and hydroclimate studies, and has the
merit of be simplistic. This approach, however, has a major drawback.
Different seasons of satellite images could result in large variations in
impervious surface estimation. In the leaf-on season, vegetation may be
considerably overestimated, while in the leaf-off season, vegetation
tends to be underestimated, leading to the overestimation of impervious
surface coverage. By developing a regression modeling method, Bauer
et al. (2004, 2007) related impervious surface area delineated from
panchromatic digital orthophoto quadrangles to Landsat tasseled cap
derived greenness to estimate and map the impervious surface in the
state Minnesota.
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Table 2

Selected literature in remote sensing of urban impervious surfaces.

Data spatial resolution Sensor type

Techniques used

References

Low (>100 m) MODIS NDVI
AVHRR
DMSP-OLS

Medium (10-100 m) Landsat MSS
Landsat TM

Landsat ETM+

ASTER

SPOT
High (<10 m) IKONOS

QuickBird
Airborne Data HyMap

Digitized color orthophoto-graph
1:50,000 aerial photograph

Regression, complement of vegetation fraction,
Complement of vegetation fraction

Regression

Complement of vegetation fraction, LSMA/rule-based
classification, expert system

SubPixel classifier (Erdas Imagine), regression,
complement of vegetation fraction, LSMA

SubPixel classifier (Erdas Imagine), CART, LSMA,
ANN, MESMA

LSMA, ANN

CART, object-based

PCA/morphological operators, ANN, decision tree,
LSMA, MLC

Multiple agent segmentation and classification,
object-based, hybrid classification

SVM

MLC, spectral clustering, expert systems

Manual interpretation

Lu et al., 2008; Boegh et al., 2009
Carlson & Arthur, 2000

Elvidge et al., 2007; Lu et al., 2008
Gillies et al., 2003; Powell et al., 2008;
Elmore & Guinn, 2010

Civco et al., 2002; Carlson, 2004;

Bauer et al.,, 2007; Yuan et al., 2008
Civco et al., 2002; Yang et al., 2003;
Wu & Murray, 2003; Lu & Weng, 2006;
Lee & Lathrop, 2006; Powell et al., 2007
Weng & Hu, 2008; Hu & Weng, 2009;
Weng et al., 2009

Yang et al., 2009; Tan et al., 2009

Cablk & Minor, 2003; Lu & Weng, 2009;
Mohapatra and Wu, 2007

Lu et al,, in press; Yuan & Bauer, 2006;
Zhou and Wang, 2008

Linden and Hostert, 2009

Hodgson et al., 2003

Phinn et al., 2002

Note: PCA — principal component analysis; ANN — artificial neural network; LSMA — linear spectral mixture analysis; MLC — maximum likelihood classifier; CART — classification
and regression tree; MESMA — multiple endmember spectral mixture analysis; SVM — support vector machine.

The regression analysis has further been conducted by Chabaeva et
al. (2004) and Yuan et al. (2008), which developed a land use based
estimation model. Yang et al. (2003) extended the regression method
by developing a classification and regression tree (CART) algorithm,
which used the classification result of high resolution imagery as the
raining dataset to generate a rule-based modeling for prediction of
sub-pixel percent imperviousness for a large area. Regression trees
were constructed using a partitioning algorithm that built a tree by
recursively splitting the training sample into smaller subsets, aiming
at reducing the model's combined residual error for the subsets. Xian
(2007) maintained that an advantage of the regression tree algorithm
was to simplify complicated non-linear relationship between predic-
tive and target variables into a multivariate linear relation and to
accept both continuous and discrete variables as input data for
continuous variable prediction. In addition to medium resolution
imagery data, the regression approach has also been applied to coarse
resolution imagery, such as MODIS NDVI (Lu et al., 2008) and DMSP-
OLS (Elvidge et al., 2007). These studies employed a similar approach,
which usually used finer resolution data for calibration and validation,
and predicted impervious surface area at the regional or continental
levels by using coarser resolution data. Whether multivariate
regression or CART, the estimation of impervious surfaces using
regression methods has to consider major limitations related to model
calibration, validation, and extrapolation of the models to other study
areas.

As indicated by Table 2, LSMA is another main approach for remote
sensing of impervious surfaces with medium resolution imagery. As a
physically based image analysis procedure, LSMA supports repeatable
and accurate extraction of quantitative sub-pixel information (Roberts
et al,, 1998a). Because of its effectiveness in handling spectral mixture
problem, LSMA has been widely used in estimation of impervious
surfaces in recent years (Lu & Weng, 2006; Madhavan et al., 2001; Phinn
et al.,, 2002; Powell et al., 2007; Ward et al., 2000; Weng et al., 2008,
2009; Wu & Murray, 2003; Yang et al., 2009). Different algorithms of
impervious surface extraction based on the LSMA model have been
developed. The straightforward method is that impervious surface was
extracted as one of the endmembers in the standard SMA model (Phinn
et al., 2002). Impervious surface estimation can also be done by the
addition of high-albedo and low-albedo fraction images, with both as
the endmembers (Lu & Weng, 2006; Weng et al., 2008, 2009; Wu &
Murray, 2003). However, these LSMA based methods share a common
problem, that is, impervious surface tends to be overestimated in the

areas with small amounts of impervious surface, but is underestimated
in the areas with large amounts of impervious surface. The similarity in
spectral properties among non-photosynthetic vegetation, soil, and
various impervious surface materials makes it difficult to distinguish
impervious from pervious materials. In addition, shadows caused by tall
buildings and large tree crowns in the urban areas may lead to
underestimation of impervious surface area with high resolution
imagery.

Generally speaking, urban areas have substantially different imper-
vious surfaces in terms of types, abundance and geometry. Identifying
one suitable endmember to represent all types of impervious surfaces is
often found problematic. Lu and Weng (2004) suggested that three
possible approaches may be taken to overcome these problems by:
(1) stratification, (2) use of multiple endmembers, and (3) use of
hyperspectral imagery. The multiple endmember SMA (MESMA)
method has been developed by Rashed et al. (2003), Powell et al.
(2007), and Franke et al. (2009). This approach starts with a series of
candidate two-endmember models and then evaluates each model
based on the criteria of fraction values, root mean square error, and
residual threshold, and finally produces fraction images with the lowest
error (Roberts et al., 1998b). Another problem with LSMA is the end
member selection associated with within-class spectral variability
(Foody et al., 1997). To overcome this problem, Wu (2004) improved
his method of impervious surface estimation by normalizing spectral
data before applying LSMA, and found normalized spectral mixture
analysis (NSMA) useful. Yang et al. (2010) presented a pre-screened and
normalized multiple endmember spectral mixture analysis
(PNMESMA) method, which combined NSMA and MESMA. The
PNMESMA method was found superior to the previous methods
(LSMA, NSMA, LSMA-LST, and MESMA) in that the estimation error
(overall root mean square error) was reduced to 5.2%, and no obvious
underestimation or overestimation occurred for high or low impervious
surface areas.

Image classification is one of the widely used methods in extraction
of impervious surfaces (Dougherty et al., 2004; Hodgson et al., 2003;
Jennings et al., 2004), but results are often not satisfactory because of the
limitation of spatial resolution in medium resolution imagery and the
heterogeneity of urban landscapes. Various impervious surfaces may be
intermingled with other land cover types, such as trees, grasses, and
soils. Moreover, the difficulty in selecting training areas could also affect
the accuracy of image classification. As fine spatial resolution data
(especially better than 5 m in spatial resolution), such as IKONOS and
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QuickBird, become available, they are increasingly employed for
different applications including impervious surface mapping. A major
advantage of these images is that such data greatly reduce the mixed
pixel problem, providing a greater potential to extract more detailed
information on land covers (Hsieh et al., 2001). Therefore, traditional
image classification methods, based on the image color and tone, have
been employed in a number of studies (Lu et al., in press; Lu & Weng,
2009; Zhou & Wang, 2008). In the meantime, other important
information rich in high resolution imagery, such as texture, shape,
and context, should also be utilized (Sharma & Sarkar, 1998). An
interesting use with these high resolution images is to separate dark
impervious surface areas and shadowed impervious surfaces from
water and shaded areas created by tree crowns (Lu & Weng, 2009). They
also demonstrated that a hybrid approach based on a decision tree
classifier and an unsupervised ISODATA classifier can effectively extract
impervious surfaces from IKONOS images, and provided a significantly
better result than the maximum likelihood classifier. Image classifica-
tion has been applied to aerial photographs and LIDAR data too.
Hodgson et al. (2003) compared the performance of per-pixel
maximum likelihood classifier, ISODATA, and a rule-based classification
algorithm applied to digitized aerial photos and LiDAR data (2x2 m
posting) in Richland County, South Carolina, and found the maximum
likelihood classifier yielded the highest accuracy while the ISODATA the
lowest accuracy.

3.2. The per-pixel vs. sub-pixel debate

Per-pixel classifiers typically develop a signature by combining the
spectra of all training set pixels for a given feature. The resulting
signature contains the contributions of all materials present in the
training pixels, but ignoring the impact of the mixed pixels. Per-pixel
based classification algorithms may be parametric or nonparametric.
The parametric classifiers assume that a normally distributed dataset
exists, and that the statistical parameters generated from the training
samples are representative. However, the assumption of normal
spectral distribution is often violated, especially with complex land-
scapes such as urban areas. In addition, insufficient, non-representative,
or multimode distributed training samples can further introduce
uncertainty in the image classification procedure (Lu & Weng, 2007).
The maximum likelihood is a well-known parametric classifier because
of its availability in any image processing software. With nonparametric
classifiers, the assumption of a normal distribution of dataset is not
required. No statistical parameters are needed to develop for separating
image classes. Nonparametric classifiers are thus especially suitable for
the incorporation of non-spectral data into a classification procedure.
Much previous research has indicated that nonparametric classifiers
may provide better classification results than parametric classifiers in
complex landscapes (Paola & Schowengerdt, 1995). Among the most
commonly used nonparametric classifiers are artificial neural network,
decision tree classifier, support vector machine, and expert systems.
However, the variation in the dimensionality of a dataset and the
characteristics of training and testing sets may lessen the accuracy of
image classification (Foody & Arora, 1997). Bagging, boosting, or a
hybrid of both techniques may be used to improve classification
performance in a nonparametric classification procedure (Lu & Weng,
2007). These techniques have been used in decision tree (DeFries &
Chan, 2000; Lawrence et al., 2004) and support vector machine (Kim
et al,, 2003) to enhance classification results.

Per-pixel classifications prevail in the previous remote sensing
literature, in which each pixel is assigned to one category and land cover
(or other themes) classes are mutually exclusive. Per-pixel classification
algorithms are sometimes referred to as “hard” classifiers. Due to the
heterogeneity of landscapes (particularly in urban landscapes) and the
limitation in spatial resolution of remote sensing imagery, mixed pixels
are common in medium and coarse spatial resolution data. The presence
of mixed pixels has been recognized as a major problem, affecting the

effective use of per-pixel classifiers (Cracknell, 1998; Fisher, 1997). The
mixed pixel problem results from the fact that the scale of observation
(i.e., spatial resolution) fails to correspond to the spatial characteristics
of the target (Mather, 1999). Strahler et al. (1986) defined H- and L-
resolution scene models based on the relationship between the size of
the scene elements and the resolution cell of the sensor. The scene
elements in the L-resolution model are smaller than the resolution cells,
and are thus not detectable. When the objects in the scene become
increasingly smaller than the resolution cell size, they may no longer be
regarded as individual objects. Hence, the reflectance measured by the
sensor may be treated as the sum of interactions among various types of
scene elements as weighted by their relative proportions (Strahler et al.,
1986). This is what happens with medium resolution imagery, such as
those of Landsat TM or ETM+, ASTER, SPOT, and Indian satellites,
applied for urban mapping. As the spatial resolution interacts with the
fabric of urban landscapes, the problem of mixed pixels is created. Such a
mixture becomes especially prevalent in residential areas where
buildings, roads, trees, lawns, and water can all lump together into a
single pixel (Epstein et al., 2002). The low accuracy of image
classification in urban areas reflects, to a certain degree, the inability
of traditional per-pixel classifiers to handle composite signatures.
Therefore, the “soft” approach of image classifications has been
developed, in which each pixel is assigned a class membership of each
land cover type rather than a single label (Wang, 1990). Different
approaches have been used to derive a soft classifier, including fuzzy set
theory, Dempster-Shafer theory, certainty factor (Bloch, 1996), and
neural network (Foody, 1999; Mannan & Ray, 2003). Nevertheless, as
Mather (1999) suggested, either “hard” or “soft” classifications was not
an appropriate tool for the analysis of heterogeneous landscapes. Both
Ridd (1995) and Mather (1999) maintained that identification/
description/quantification, rather than classification, should be applied
in order to provide a better understanding of the compositions and
processes of heterogeneous landscapes such as urban areas.

Ridd (1995) proposed an interesting conceptual model for remote
sensing analysis of urban landscapes, ie., the vegetation-impervious
surface-soil (V-I-S) model. It assumes that land cover in urban
environments is a linear combination of three components, namely,
vegetation, impervious surface, and soil. Ridd suggested that this model
can be applied to spatial-temporal analyses of urban morphology,
biophysical, and human systems. While urban land use information may
be more useful in socioeconomic and planning applications, biophysical
information that can be directly derived from satellite data is more
suitable for describing and quantifying urban structures and processes
(Ridd, 1995). The V-I-S model was developed for Salt Lake City, Utah, but
has been tested in other cities. Ward et al. (2000) applied a hierarchical
unsupervised classification approach to a Landsat TM image in southeast
Queensland, Australia, based on the V-I-S model. An adjusted overall
accuracy of 83% was achieved. Madhavan et al. (2001) used an
unsupervised classifier to classify TM images in Bangkok, Thailand,
with the V-I-S model, and found it to be useful for improving
classification and analysis of change trends. Similarly, Setiawan et al.
(2006) applied a V-I-S based hieratical procedure to classify a Landsat
TM image of Yogyakarta, Indonesia, and found its accuracy was 27%
better than the maximum likelihood algorithm. All of these studies
employed the V-I-S model as the conceptual framework to relate urban
morphology to medium-resolution satellite imagery, but “hard classifi-
cation” algorithms were applied. Therefore, the problem of mixed pixels
cannot be addressed, and the analysis of urban landscapes was still based
on “pixels” or “pixel groups”. Weng and Lu (2009) suggested that LSMA
provided a suitable technique to detect and map urban materials and V-
[-S component surfaces in repetitive and consistent ways, and to solve
the spectral mixing of medium spatial resolution imagery. The
reconciliation between the V-I-S model and LSMA provided a continuum
field model, which offered an alternative, effective approach for
characterizing and quantifying the spatial and temporal changes of the
urban landscape compositions. However, Weng and Lu (2009) warned
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that the applicability of this continuum model must be further examined
in terms of its spectral, spatial, and temporal variability.

3.3. Artificial neural network

Artificial Neural Network (ANN) has been widely used in remote
sensing image analysis. The most common application is for image
classification (Atkinson & Tatnall, 1997). While the majority of previous
researches employs ANN as a per-pixel classifier (Chen et al., 1995;
Civco, 1993; Foody et al., 1995), ANN has also been applied to estimate
sub-pixel impervious surfaces from satellite images (Flanagan & Civco,
2001; Hu & Weng, 2009; Lee & Lathrop, 2006; Mohapatra & Wu, 2007;
Weng & Hu, 2008). Advantages of an ANN model include its capability of
solving non-linear relationships, no underlying assumption about the
data, incorporation of a priori knowledge, and the ability to incorporate
different types of data into the analysis (Atkinson & Tatnall, 1997).
Moreover, ANN requires fewer training samples (Pal & Mather, 2003).
Various types of neural networks have been employed for image
analysis, including Hopfield Neural Networks, Multi-Layer Perceptron
(MLP), ARTMAP, and Self-Organizing Map (SOM), but MLP and SOM are
mostly used in remote sensing of impervious surfaces. Table 3 provides a
summary of the characteristics, strengths and limitations for these two
neural network models, with relevant literature.

The multi-layer perceptron feed forward network is the most widely
used one in remote sensing studies (Kavzoglu & Mather, 2003). The
learning algorithm is crucial to the success of an ANN model. The back-
propagation learning algorithm, also known as delta rule, is a popular
one. The MLP has been used in impervious surface extraction
(Chormanski et al., 2008; Mohapatra & Wu, 2007; Weng & Hu, 2008).
Chormanski et al. (2008) conducted a multi-layer perceptron model to
map the fractions of impervious surfaces, vegetation, bare soil, and
water/shade with both high spatial resolution and medium resolution
imagery. It is suggested that sub-pixel estimation of impervious surface
distribution can be used to substitute for the expensive high-resolution
based approach for rainfall-runoff modeling. Mohapatra and Wu (2007)
used a three-layer feed forward back propagation neural network to
estimate the percentage of impervious surfaces by creating activation
level maps from high spatial resolution imagery (i.e., IKONOS). Their
result indicated that ANN model performed well in the urban areas and
was promising for impervious surface estimation from high spatial
resolution imagery. Weng and Hu (2008) employed MLP feed forward
network with the back-propagation learning algorithm as a sub-pixel
image classifier to estimate impervious surfaces in Indianapolis, US.A. It
is found that the ANN model improved the accuracy of impervious
surface mapping by 1% and 2% for ASTER and Landsat ETM+ image
respectively. The better performance of ANN over LSMA was mainly
attributable to the ANN's capability of handling the non-linear mixing of
image spectrum. Fig. 3 shows that the ANN model delineated a much
clearer pattern of impervious surfaces than LSMA in a residential area

Table 3
Use of artificial neural networks in remote sensing impervious surfaces.

where mixed pixels prevailed. Although MLP has been widely used in
remote sensing, some drawbacks should be noted. For instance, how to
design the number of hidden layers and the number of hidden layer
nodes in the model are challenging issues. Although several methods
have been suggested for estimating the appropriate number of hidden
layer nodes, none of them are universally accepted (Kavzoglu & Mather,
2003). Another problem of MLP is that MLP requires the training sites to
include both presence and absence data. The desired output must contain
both true and false information, so that the network can learn all kinds of
patterns in a study area in order to classify an image accordingly (Li &
Eastman, 2006a). However, in some cases, absence data is not available.
Therefore, MLP might not be suitable for those cases, and other ANN
models should be explored for use. Finally, MLP has the local minima
problem in the training process, which significantly affects the accuracy
of the result.

Another neural network approach, Kohonen's self-organizing map
(SOM), has not been applied as widely as MLP (Pal et al., 2005). SOM can
be used for both supervised and unsupervised classifications, and has
the properties for both vector quantization and projection (Li &
Eastman, 2006a). SOM has been used for both “hard” classification
and “soft” classification in previous studies (Ji, 2000; Lee & Lathrop,
2006). Ji (2000) compared Kohonen self-organizing feature map
(KSOFM) and MLP for image classification at per-pixel level. Seven
classes were identified, and the result showed that SOM provided an
excellent alternative to MLP neural network in “hard” classification. Lee
and Lathrop (2006) conducted a SOM-LVQ-GMM to extract urban land
cover from Landsat ETM+ imagery at sub-pixel level. It is found that
SOM can generate promising results in “soft” classification and that SOM
had several advantages over MLP. Hu and Weng (2009) compared MLP
with SOM to estimate impervious surfaces at the sub-pixel level of three
ASTER images of Marion County, Indiana, USA, and found that SOM
outperformed MLP slightly for each season of image data, especially in
the residential areas. Comparing to MLP, SOM possesses clearly some
strengths. First, SOM is a two-layer structure, including one input layer
and one output layer. Therefore, the dilemma of determining the hidden
layer size can be avoided. Second, SOM is capable of coping with
presence-only data (Li & Eastman, 2006a). Third, the SOM is not affected
by the local minima problem in the training process, and is insensitive to
the structure of the codebook vector map (Lee & Lathrop, 2006). Fourth,
the feature map is a faster learner. Finally, the feature map is also more
consistent than the BP algorithm (Ji, 2000). Nevertheless, the classifi-
cation process of the SOM is slower than the MLP, and the accuracy level
is heavily relied on the size of the feature map. Too few or too many
neurons may significantly increase the RMSE of the estimation result.
Therefore, an appropriate size of the SOM map must be established in
order to achieve the best result of impervious surface estimation (Hu &
Weng, 2009). In addition, the number of training samples selected for
each class also affects the performance of SOM (Ji, 2000). Therefore, the
number of samples selected for each class needs to be balanced.

Techniques Characteristics

Advantages

Disadvantages Literatures

Multi-Layer Perceptron (MLP)  Multiple layers structure, usually
consists of three layers: one input

layer, one hidden layer, and one

output layer

Consist of two layers: one input layer
and one output layer. The input layer
contains neurons for each measurement
dimension (e.g., image bands), and the
output layer is usually organized as a
two-dimension array of neurons.

Kohonen's Self-Organizing
Map (SOM)

Fast computation

Fast learning, classification
results are more consistent

Slow learning; inconsistent  Per-pixel  Civco (1993)
classification results; Sub-pixel Mohapatra & Wu, 2007;
black-box working method Chormanski et al., 2008;
Weng & Hu, 2008
Slow classification Per-pixel  Ji, 2000; Li & Eastman,
2006b
Sub-pixel Lee & Lathrop, 2006;

Hu & Weng, 2009

Sensing of Environment (2011), doi:10.1016/j.rse.2011.02.030

Please cite this article as: Weng, Q., Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends, Remote




10 Q. Weng / Remote Sensing of Environment xxx (2011) XxX-xxx

High Albedo

Soil

Ouiput Layer

Fig. 3. (a) lllustration of three layer neural network structure used in the study. In the input layer, nine nodes represented nine reflective bands of the ASTER image; while four
training surface material classes were selected, i.e., high albedo, low albedo, vegetation and soil. Only one hidden layer was used and the number of hidden layers nodes was four.
(b) Impervious surface map generated by the ANN model, with an accuracy of 12.3% for the whole study area. (3) Impervious surface map resulted from linear spectral mixture

analysis, with an accuracy of 13.2% for the whole study area.

3.4. Object based image analysis

Object based image analysis (OBIA) has been increasingly used in
remote sensing applications due to the advent of high resolution satellite
imagery and the emergence of commercial software (Benz et al.,, 2004;
Wang et al., 2004). In previous studies, various image segmentation
techniques have been developed and applied for feature extraction with
a fair amount of success (Blaschke, 2010). However, most of the
segmentation techniques are not robust enough for a spectrally complex
environment (Pal & Pal, 1993), which makes them less suitable for urban
classification. Therefore, it is necessary to continue to develop new
techniques. The OBIA approach uses not only the spectral properties, but
also the characteristics of shape, texture, context, and relationship with
neighbors, super-, and sub-pixels. Successful results have been obtained
by this approach (Van de Voore et al., 2003). In a comparative study,
Yuan and Bauer (2006) compared the effectiveness of OBIA with per-
pixel maximum likelihood classification for urban classification with a
QuickBird image of Mankato, Minnesota. With OBIA, they improved the
producer's accuracy by 2% and the user's accuracy by 3% for impervious
surfaces. Zhou and Wang (2008) developed an algorithm of multiple
agent segmentation and classification (MASC) that included the steps of

image segmentation, shadow-effect, MANOVA-based classification, and
post-classification. This algorithm was applied for impervious surface
extraction in the state of Rhode Island. In addition, rule-based
classification is another method to classify image objects. However,
traditional rule-based classification is based on strict binary rules.
Objects are assigned to a class if the objects are meeting the rules of that
class. These rules may not be suitable for classifying objects, because the
attributes of different features may overlap (Jin & Paswaters, 2007).
Fuzzy logic can better cope with the uncertainties inherent in the data
and vagueness in human knowledge (Jin & Paswaters, 2007). Hu and
Weng (2011) developed an object-based fuzzy classification approach
for impervious surface extraction, which was applied to two pan-
sharpened multi-spectral IKONOS images covering the residential and
Central Business District (CBD) areas of Indianapolis, U.S.A. Fuzzy rules
were developed to extract impervious surfaces based on spectral,
spatial, and texture attributes. Their results indicated that impervious
surfaces were extracted with an accuracy of 95% in the residential area
and 92% in the CBD area. It is suggested that the CBD area had a higher
spectral complexity, building displacement, and the shadow problem,
giving rise to a more difficult estimation and mapping of impervious
surfaces (Hu & Weng, 2011).
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In addition, LiDAR data have been applied to quite a few studies in
object-oriented classification of urban land use and land cover (LULC).
Zhou and Troy (2008) combined aerial imagery and LiDAR data for an
object-oriented classification of urban LULC and achieved an overall
accuracy of 92.3%. Brennan and Webster (2006) proposed an objected-
oriented LULC classification method by solely using LiDAR-derived
surfaces, including DSM, DEM, intensity, multiple echoes, and normal-
ized height. In the classification, the average accuracy of ten classes
reached 94%, while it can be improved to 98% if aggregated into seven
classes. Due to LiDAR data's characteristics in geometry, object-oriented
classification techniques have a great potential in extracting buildings
and roads in the urban areas. The similarity of urban feature classes (e.g.,
buildings) in spectral, spatial, and textural information, such as height,
shape and texture, enables merging discrete points or pixels into objects
of similar properties close to real spatial objects, which can then be
interpreted into a high-qualified image based knowledge (Gitas et al,
2004). Miliaresis and Kokkas (2007) developed an object-oriented
method to extract buildings by using LiDAR DEM, which was based on
seed cells and region growing criteria. However, this method required a
certain level of user interface for crucial parameters and was time-
consuming. Weng (2009) used LiDAR data (specifically, normalized
height model) to extract buildings for the downtown Indianapolis.
Three building extraction strategies were adopted and compared,
including rule-based extraction with segmentation, rule-based extrac-
tion with segmentation and merge, and supervised object-oriented
extraction, and yielded an accuracy of extraction (detection percentage)
of 88.5%, 80% and 93.4% respectively. It was found that extraction errors
were mainly caused by trees mislabeled as buildings, and by buildings

Strategy |

mislabeled as background (Fig. 4). Similarly, Yu et al. (2010) extracted
buildings in the downtown Houston, and computed building density
indicators at land lot and urban district scales.

4. Discussion on emerging methods
4.1. Data and image fusion

Data and image fusion can be implemented between different
sensors, wavelength regions, spatial, spectral, and temporal resolu-
tions. Images from different sensors contain distinctive features. Data
fusion or integration of multi-sensor or multi-resolution data takes
advantage of the strengths of distinct image data for improvement of
visual interpretation and quantitative analysis. In general, three levels
of data fusion may be identified, i.e., pixel (Luo & Kay, 1989), feature
(Jimenez et al., 1999), and decision (Benediktsson & Kanellopoulos,
1999). Many methods have been developed to fuse spectral and spatial
information in previous literature (Chen & Stow, 2003; Gong, 1994; Lu
& Weng, 2005; Pohl & Van Genderen, 1998). Solberg et al. (1996)
broadly divided data fusion methods into four categories: statistical,
fuzzy logic, evidential reasoning, and neural network. Pohl and Van
Genderen (1998) provided a literature review on the methods of
multisensor data fusion. The methods, including color-related tech-
niques (e.g., color composite, intensity-hue-saturation or IHS, and
luminance-chrominance), statistical/mathematical methods (e.g.,
arithmetic combination, principal component analysis, high pass
filtering, regression variable substitution, canonical variable substitu-
tion, component substitution, and wavelets), and various combinations
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Fig. 4. LiDAR data acquired in March and April 2003 was used to extract buildings in the downtown Indianapolis, U.S.A. Errors due to mislabeled building pixels. Supervised object-
oriented extraction method (Strategy IIl) had the least amount of building pixels lost during the extraction, thus possessed the highest accuracy. The amount of extracted residential
buildings and regular business buildings were similar with Strategy I (rule-based extraction with segmentation) and Strategy II (rule-based extraction with segmentation and
merge). Missed pixels of irregular-roof business buildings accounted for the majority of errors in both Strategies I and II. Large variation in height of the irregular roofs can easily lead
to over-segmentation and produced large amount of fragmented small objects, which may be eliminated in the process of building extraction. In addition, Strategy Il had the largest
amount of missed pixels of irregular-roof business buildings, because the Merge operation combined fragmented small objects into larger objects, which were frequently not large

enough to be kept, leading to missing of more pixels.
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of the above methods, have been studied. Previous research indicated
that integration of optical data, such as Landsat TM imagery, and radar
(Ban, 2003; Haack et al., 2002) can improve image classification results.
Yang et al. (2009) integrated four SPOT HRG multispectral bands and
three Interferometric SAR parameters (i.e., coherence, average ampli-
tude, and amplitude ratio) to estimate impervious surface at the sub-
pixel level in Hong Kong using the CART algorithm. It is found that the
estimation error reduced from 15.5% (optical data alone) to 12.9% (the
combined dataset), and the improvement was especially helpful in
separation of the urban impervious surface from vacant land or bare
ground. Lu and Weng (2006) employed Landsat thermal infrared (TIR)
data to remove pervious cover from impervious cover based on their
distinct thermal response. They found that the method was effective for
reducing the underestimation in well-developed areas and the over-
estimation in the less-developed areas, and the overall RMSE of 9.22%
was achieved for the whole Marion County, Indiana, United States.
Weng et al. (2009) applied LSMA to estimate impervious surfaces in
Indianapolis from ASTER images of different seasons, and found that
using land surface temperature maps of water and vegetation as image
masks can significantly improve the accuracy of estimation. The most
remarkable improved was observed in the April image (9%), followed by
the October image (7%) and June image (3%). Because there was
significant amount of bare soil and ground and non-photosynthetic
vegetation in the spring and autumn images, LSMA was less effective.
Thus, the use of TIR data was instrumental in producing impervious
surfaces maps of reasonable accuracy.

4.2. Knowledge based expert systems

Expert systems are considered to have a great potential for providing
a general approach to the routine use of image ancillary data in image
classification (Hinton, 1996). A critical step is to develop rules that can
be applied in an expert system or a knowledge based classification
approach. According to Hodgson et al. (2003), three methods have been
employed to build rules for image classification, ie., (1) explicitly
eliciting knowledge and rules from experts and then refining the rules
(Hung & Ridd, 2002; Stefanov et al., 2001; Stow et al., 2003),
(2) implicitly extracting variables and rules using cognitive methods
(Hodgson, 1998; Lloyd et al.,2002), and (3) empirically generating rules
from observed data with automatic induction methods (Hodgson et al.,
2003; Huang & Jensen, 1997; Tullis & Jensen, 2003). Among these
methods, the automatic induction has generated increasing interest
because of relatively low effort and reasonable performance (Hodgson
et al, 2003). The approach of knowledge based expert systems is
especially attractive where the combined use of multiple sources of data
such as satellite imagery and GIS data are necessary. GIS plays an
important role in developing and implementing knowledge based
classification approaches, because of its capability in integrating
different sources of data and in spatial modeling (Lu & Weng, 2007).
Hodgson et al. (2003) employed a rule-based classifier (a rule-
generation package, See 5) to map urban parcel impervious surface,
and found it to be effective at both pixel and segment levels. The rule-
based segment classifier produced the best result among all methods
being compared, and was nearly perfect in predicting imperviousness
for the parcels with low imperviousness. Lu and Weng (2006)
developed two rules by using Landsat TIR data and abundance of soil
fraction for refining the impervious surface map derived from LSMA, and
found the method was effective, especially in the highly urbanized and
under-developed areas. Powell et al. (2008) devised a set of knowledge-
based rules for refining LSMA based classification results so that change
detection can be made. Two spatial rules were applied independently to
each date of the images in the time series for subdividing the low
vegetation and no vegetation classes into impervious and non-
impervious classes; while two temporal rules were devised to rectify
some incongruous pixel-level temporal trajectories of class labels that
resulted from the use of the spatial rules. Powell et al. (2008) suggested

that their rules can effectively distinguish impervious surfaces from
open, non-vegetated surfaces, which were spectrally indistinguishable.
Similarly, the population, housing and road-density data may be
incorporated into an urban classification procedure with different
ways to improve classification accuracy. Population-, housing-, and
road-densities are related to urban land use distribution, and may be
very helpful in the distinctions between commercial/industrial lands
and high intensity residential lands, between recreational grassland and
pasture/crops, or the distinction between residential areas and forest
land (Lu & Weng, 2006). Li (2008) developed seven rules based on
housing density to refine Landsat ETM+ derived urban LULC classifi-
cation result in Indianapolis. It is found that the post-classification
sorting enhanced most the accuracy of residential land, and that the
overall classification accuracy improved by 8.5%.

4.3. Contextual classifications

Contextual classifications exploit spatial information among neigh-
boring pixels to improve classification performance (Flygare, 1997;
Stuckens et al., 2000). Contextual classifiers may base on smoothing
techniques, Markov random fields, spatial statistics, fuzzy logic,
segmentation, or neural network (Binaghi et al., 1997; Cortijo & de la
Blanca, 1998; Kartikeyan et al., 1994; Magnussen et al., 2004). In general,
pre-smoothing classifiers incorporates contextual information as
additional bands, and a classification is then conducted using normal
spectral classifiers, while post-smoothing classifiers is conducted on
classified images that are developed previously using spectral based
classifiers (Lu & Weng, 2007). The Markov random field based
contextual classifiers such as iterated conditional modes are the most
frequently used approach in contextual classification (Cortijo & de la
Blanca, 1998; Magnussen et al., 2004), and has proven effective in
improving classification results. Contextual classifiers may be developed
to cope with the problem of intra-class spectral variations (Flygare,
1997; Gong & Howarth, 1992; Kartikeyan et al,, 1994; Keuchel et al.,
2003; Magnussen et al., 2004; Sharma & Sarkar, 1998). In remote
sensing of impervious surfaces, the use of contextual information serves
to improve the separability between impervious surfaces and the most
confusing LULC types (e.g dry soils, non-photosynthesis vegetation, and
open ground with little vegetation). Powell et al., 2008 developed
refinement rules based on spatial context of impervious surfaces,
specifically the relationship between impervious surfaces and little or
no vegetation cover. Weng et al. (2009) developed image masks based
on selected LULC types or their combination. They found that the water-
forest mask was most effective in improving the impervious surface
mapping results for the October and April ASTER images, but the water-
cropland mask the best fit for the June image. Apparently, impervious
surface calculated from LSMA had much influence from low albedo
materials including water and shade, and it was also confused with
fallow lands and non-photosynthesis vegetation in the fall and spring. In
addition, Luo and Mountrakis (2010) used intermediate inputs from
partially classified images to enhance the spectral separability imper-
vious surfaces and soils. The additional intermediate inputs were based
on spatial and texture statistics, and the method was experimented
using a 2001 Landsat ETM+ image from central New York. Their results
suggested that there was an average accuracy improvement of 3.6% in
the final impervious surface map by using these intermediate inputs.

5. Conclusions

Existing remote sensing literature has regarded impervious surface as
a type of surface material, land cover, or land use. The discrepancy in
conceptual view has stimulated research into three major directions.
Various sub-pixel algorithms applied largely to medium-resolution but
less frequently to high-resolution imagery to estimate and mapping
impervious surfaces as a type of surface material. Per-pixel algorithms
were employed for all sorts of images at various spatial resolutions to
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classify impervious surfaces as a type of land cover or land use. Feature
extraction methods were applied mainly to high resolution satellite
imagery, aerial photographs, and LiDAR data to extract roads and
buildings, implicitly suggesting impervious surface as a special type of
land use/cover. These research directions are sometime intermingled in a
study, but clearly they represent different research traditions and have
been approached from different perspectives. While feature extraction
has long been a favorite research concentration in Europe and to less
extent in Asia, the North America researchers have paid more attention to
mapping impervious surfaces as a special type of land cover or land use.
Many research endeavors have been oriented towards the spatial
heterogeneity of urban landscapes, ideal spatial resolution for urban
mapping, and the strengths and limitations of existing remote sensors.
In contrast, less research efforts have been devoted to the spectral
diversity of impervious surfaces and the spectral requirements for
remote sensing of impervious surfaces. Hyperspectral imaging has been
applied most extensively in the studies of vegetation and water but little
to impervious surfaces. Similarly, the geometric properties (especially
the 3-D nature) of urban environments have been under-studied. Digital
orthophotos have become widely available statewide or nationwide,
suitable for monitoring and assessing surface cover conditions, but
stereo-pairs of photographs were acquired only for limited areas, largely
for measurements, not for mapping urban impervious surfaces. The
enthusiasm over LiDAR data has prompted some interest in extraction of
buildings but to less degree roads. The least attention was paid to
temporal resolution, change and evolution of impervious surface over
time, and temporal requirements for urban mapping. Therefore, there is
a great need to address the temporal resolution requirements in urban
remote sensing and how it relates to spectral resolution, spatial
resolution, and the geometric characteristics of urban features and
objects. Of course, we have to link these research traits to the capacities
of various remote sensors, sensing systems and platforms over the time.
Itis pleased to learn that the Decadal Survey (National Research Council,
2007) has suggested improving the temporal resolution of satellites
capable of urban imaging (e.g., HyspIRI sensor). The MISTIGRI project, a
satellite designed to observe the Earth in the thermal infrared region,
which has been proposed to be developed by the French space
organization CNES in cooperation with Spain (Laguarde et al.,, 2010),
shows a similar interest in “high-definition” urban remote sensing.
The majority of previous remote sensing studies of impervious
surfaces have used medium spatial resolution images. The models,
methods, and image analysis algorithms in urban remote sensing have
been geared largely towards the images of such resolution. The advent
of high spatial resolution satellite images, spaceborne hyperspectral
images and LiDAR data has provided an unprecedented opportunity
for urban remote sensing, and at the meantime, is challenging the
traditional remote sensing concepts, models, and image processing
algorithms. The temptation to take advantage of the opportunity to
combine ever-increasing computational power, more plentiful and
capable digital data, and more advanced algorithms has driven the
field of urban remote sensing into a new frontier of scientific inquiry.
The following emerging trends in image processing techniques and
data analysis methods will advance remote sensing of impervious
surfaces in the future. These trends include: (1) attribute analysis and
information extraction by more powerful ANN models and knowl-
edge-based expert systems, (2) object-based image analysis, and
(3) enhanced urban mapping via data and image fusion of different
sensors, wavelength regions, spatial, spectral, and temporal resolu-
tions. In addition, we have witnessed an increasing number of studies
that explore the combined use of contextual, texture, and spatial
information with the spectral characteristics of impervious surfaces.

Acknowledgments

The author wishes to thank Drs. Xuefei Hu, Dengsheng Lu, and Mrs.
Jing Han for their assistance in research, which contributes to this

review. Dr. Marvin Bauer kindly provides editing and valuable
comments for improving the manuscript. The author would also like
to thank anonymous reviewer for the constructive comments and
suggestions.

References

Adams, J. B, Smith, M. O., & Johnson, P. E. (1986). Spectral mixture modeling: A new
analysis of road and soil types at the Viking Lander site. Journal of Geophysical
Research, 91, 8098-8112.

Amini, J., Saradjian, M. R, Blais, J. A. R, & Azizi, A. (2002). Automatic road-side
extraction from large scale image maps. International Journal of Applied Earth
Observation and Geoinformation, 4(2), 96-98.

Arnold, C. L, Jr., & Gibbons, C. ]. (1996). Impervious surface coverage: The emergence of a
key environmental indicator. Journal of the American Planning Association, 62, 243-258.

Atkinson, P. M., & Tatnall, A. R. L. (1997). Neural networks in remote sensing.
International Journal of Remote Sensing, 18, 699-709.

Bagheri, S., & Yu, T. (2008). Hyperspectral sensing for assessing nearshore water quality
conditions of Hudson/Raritan estuary. Journal of Environmental Informatics, 11(2),
123-130.

Ban, Y. (2003). Synergy of multitemporal ERS-1 SAR and Landsat TM data for
classification of agricultural crops. Canadian Journal of Remote Sensing, 29, 518-526.

Bauer, M. E., Heinert, N. J., Doyle, J. K., & Yuan, F. (2004). Impervious surface mapping
and change monitoring using Landsat remote sensing. ASPRS Annual Conference
Proceedings, Denver, Colorado, May 2004 (Unpaginated CD ROM).

Bauer, M. E., Loffelholz, B. C.,, & Wilson, B. (2007). Estimating and mapping impervious
surface area by regression analysis of Landsat imagery. In Q. Weng (Ed.), Remote
sensing of impervious surfaces (pp. 3-19). Boca Raton, Florida: CRC Press.

Ben-Dor, E., Levin, N., & Saaroni, H. (2001). A spectral based recognition of the urban
environment using the visible and near-infrared spectral region (0.4-1.1 m) — A case
study over Tel-Aviv. International Journal of Remote Sensing, 22(11), 2193-2218.

Benediktsson, J. A, & Kanellopoulos, I. (1999). Classification of multisource and
hyperspectral data based on decision fusion. IEEE Transactions on Geoscience and
Remote Sensing, 37, 1367-1377.

Benediktsson, J. A., Sveinsson, J. R, & Arnason, K. (1995). Classification and feature
extraction of AVIRIS data. IEEE Transactions on Geoscience and Remote Sensing, 33,
1194-1205.

Benz, U. C,, Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-
resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready
information. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 239-258.

Binaghi, E., Madella, P., Montesano, M. G., & Rampini, A. (1997). Fuzzy contextual
classification of multisource remote sensing images. IEEE Transactions on Geoscience
and Remote Sensing, 35, 326-339.

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of
Photogrammetry and Remote Sensing, 65, 2-16.

Bloch, I. (1996). Information combination operators for data fusion: a comparative review
with classification. IEEE Transactions on Systems, Man, and Cybernetics, 26, 52-67.
Boardman, J. W. (1993). Automated spectral unmixing of AVIRIS data using convex
geometry concepts. Summaries of the Fourth JPL Airborne Geoscience Workshop, JPL
Publication 93-26 (pp. 11-14). Pasadena, California: NASA Jet Propulsion Laboratory.

Boardman, J. M., Kruse, F. A, & Green, R. 0. (1995). Mapping target signature via partial
unmixing of AVIRIS data. Summaries of the Fifth JPL Airborne Earth Science Workshop, JPL
Publication 95-1 (pp. 23-26). Pasadena, California: NASA Jet Propulsion Laboratory.

Boegh, E., Poulsen, R. N., Butts, M., Abrahamsen, P., Dellwik, E., Hansen, S., et al. (2009).
Remote sensing based evapotranspiration and runoff modeling of agricultural,
forest and urban flux sites in Denmark: From field to macro-scale. Journal of
Hydrology, 377(3-4), 300-316.

Brabec, E., Schulte, S., & Richards, P. L. (2002). Impervious surface and water quality: A
review of current literature and its implications for watershed planning. Journal of
Planning Literature, 16, 499-514.

Braun, C,, Kolbe, T. H., Lang, F., Schickler, W., Cremers, A. B., Forstner, W., et al. (1995).
Models for photogrammetric building reconstruction. Computer and Graphics, 19
(1), 109-118.

Brennan, R., & Webster, T. L. (2006). Object-oriented land cover classification of LiDAR-
derived surfaces. Canadian Journal of Remote Sensing, 32(2), 162-172.

Brun, S. E., & Band, L. E. (2000). Simulating runoff behavior in an urbanizing watershed.
Computers, Environment and Urban Systems, 24, 5-22.

Cablk, M. E., & Minor, T. B. (2003). Detecting and discriminating impervious cover with
high resolution IKONOS data using principal component analysis and morphological
operators. International Journal of Remote Sensing, 24, 4627-4645.

Carlson, T. N. (2004). Analysis and prediction of surface runoff in an urbanizing watershed
using satellite imagery. Journal of the American Water Resources Association, 40(4),
1087-1098.

Carlson, T. N., & Arthur, S. T. (2000). The impact of land use-land cover changes due to
urbanization on surface microclimate and hydrology: A satellite perspective. Global
and Planetary Change, 25, 49-65.

Carlson, T. N., & Ripley, A. J. (1997). On the relationship between fractional vegetation
cover, leaf area index and NDVI. Remote Sensing of Environment, 62, 241-252.
Chabaeva, A. A., Civco, D. L, & Prisloe, S. (2004). Development of a population density and
land use based regression model to calculate the amount of imperviousness. ASPRS

Annual Conference Proceedings, Denver, Colorado, May 2004 (Unpaginated CD ROM).

Chen, D., & Stow, D. A. (2003). Strategies for integrating information from multiple
spatial resolutions into land-use/land-cover classification routines. Photogrammet-
ric Engineering and Remote Sensing, 69, 1279-1287.

Sensing of Environment (2011), doi:10.1016/j.rse.2011.02.030

Please cite this article as: Weng, Q., Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends, Remote




14 Q. Weng / Remote Sensing of Environment xxx (2011) XxX-XXx

Chen, K. S., Tzeng, Y. C,, Chen, C. F., & Kao, W. L. (1995). Land-cover classification of
multispectral imagery using a dynamic learning neural network. Photogrammetric
Engineering and Remote Sensing, 61(4), 403-408.

Chormanski, J., Voorde, T. V. d., Roeck, T. D., Batelaan, O., & Canters, F. (2008). Improving
distributed runoff prediction in urbanized catchments with remote sensing based
estimates of impervious surface cover. Sensors, 8, 910-932.

Civco, D. L. (1993). Artificial neural networks for land-cover classification and mapping.
International Journal of Geographical Information Systems, 7(2), 173-186.

Civco, D.L.,, Hurd,]. D., Wilson, E. H., Arnold, C. L., & Prisloe, M. P., Jr. (2002). Quantifying and
describing urbanizing landscapes in the northeast United States. Photogrammetric
Engineering and Remote Sensing, 68(10), 1083-1090.

Clode, S., Kootsookos, P., & Rottensteiner, F. (2004). The automatic extraction of roads
from LIDAR data. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Science, Vol. XXXV-B3, 231-236.

Clode, S., Kootsookos, P., & Rottensteiner, F. (2005). Improving city model determina-
tion by using road detection from Lidar data. In U. Stilla, F. Rottensteiner, & S. Hinz
(Eds.), CMRTO5. IAPRS, Vol. XXXVI, Part 3/W24 (pp. 159-164). Vienna, Austria,
August 29-30, 2005.

Clode, S., Rottensteinerb, F., Kootsookosc, P., & Zelniker, E. (2007). Detection and
vectorization of roads from LiDAR data. Photogrammetric Engineering and Remote
Sensing, 73(5), 517-535.

Cortijo, F. J., & de la Blanca, N. P. (1998). Improving classical contextual classification.
International Journal of Remote Sensing, 19, 1591-1613.

Cracknell, A. P. (1998). Synergy in remote sensing — What's in a pixel? International
Journal of Remote Sensing, 19, 2025-2047.

Cracknell, A. P. (1999). Twenty years of publication of the International Journal of
Remote Sensing. International Journal of Remote Sensing, 20, 3469-3484.

Cushnie, J. L. (1987). The interactive effect of spatial resolution and degree of internal
variability within land-cover types on classification accuracies. International Journal
of Remote Sensing, 8, 15-29.

Dare, P. M. (2005). Shadow analysis in high-resolution satellite imagery of urban areas.
Photogrammetric Engineering and Remote Sensing, 71, 169-177.

DefFries, R. S., & Chan, J. C. (2000). Multiple criteria for evaluating machine learning
algorithms for land cover classification from satellite data. Remote Sensing of
Environment, 74, 503-515.

Dougherty, M., Dymond, R. L, Goetz, S. ], Jantz, C. A., & Goulet, N. (2004). Evaluation of
impervious surface estimates in a rapidly urbanizing watershed. Photogrammetric
Engineering and Remote Sensing, 70, 1275-1284.

Elberink, S. O., & Vosselman, G. (2009). 3D information extraction from laser point
clouds covering complex road junctions. The Photogrammetric Record, 24(125),
23-36.

Elmore, A. J., & Guinn, S. M. (2010). Synergistic use of Landsat Multispectral Scanner
with GIRAS land-cover data to retrieve impervious surface area for the Potomac
River Basin in 1975. Remote Sensing of Environment, 114, 2384-2391.

Elvidge, C., Tuttle, B. T., Sutton, P. C., Baugh, K. E., Howard, A. T., Milesi, C,, et al. (2007).
Global distribution and density of constructed impervious surfaces. Sensors, 7,
1962-1979.

Epstein, ]., Payne, K., & Kramer, E. (2002). Techniques for mapping suburban sprawl.
Photogrammetric Engineering and Remote Sensing, 68, 913-918.

Filin, S. (2004). Surface classification from airborne laser scanning data. Computers and
Geosciences, 30(9-10), 1033-1041.

Fisher, P. (1997). The pixel: A snare and a delusion. International Journal of Remote
Sensing, 18, 679-685.

Flanagan, M., & Civco, D. L. (2001). Subpixel impervious surface mapping. ASPRS
Annual Conference Proceedings, St. Louis, Missouri, April 2001 (Unpaginated CD
ROM).

Flygare, A. -M. (1997). A comparison of contextual classification methods using Landsat
TM. International Journal of Remote Sensing, 18, 3835-3842.

Foody, G. M. (1999). Image classification with a neural network: from completely-crisp
to fully-fuzzy situation. In P. M. Atkinson, & N. J. Tate (Eds.), Advances in Remote
Sensing and GIS Analysis (pp. 17-37). New York: John Wiley and Sons.

Foody, G. M., & Arora, M. K. (1997). An evaluation of some factors affecting the accuracy
of classification by an artificial neural network. International Journal of Remote
Sensing, 18, 799-810.

Foody, G. M., Lucas, R. M., Curran, P. ], & Honzak, M. (1997). Non-linear mixture
modelling without end-members using an artificial neural network. International
Journal of Remote Sensing, 18, 937-953.

Foody, G. M., McCulloch, M. B., & Yates, W. B. (1995). Classification of remotely sensed
data by an artificial neural network: Issues related to training data characteristics.
Photogrammetric Engineering and Remote Sensing, 61, 391-401.

Forlani, G., Nardinocchi, C., Scaioni, M., & Zingaretti, P. (2006). Complete classification of
raw LIDAR data and 3D reconstruction of buildings. Pattern Analysis and
Applications, 8(4), 357-374.

Franke, J., Roberts, D. A, Halligan, K., & Menz, G. (2009). Hierarchical Multiple
Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for
urban environments. Remote Sensing of Environment, 113, 1712-1723.

Gamba, P., & Herold, M. (2009). Global mapping of human settlements: Experiences,
datasets, and prospects. Boca Raton, FL: CRC Press.

Gillies, R. R, Box, J. B., Symanzik, J., & Rodemaker, E. . (2003). Effects of urbanization on
the aquatic fauna of the Line Creek watershed, Atlanta — A satellite perspective.
Remote Sensing of Environment, 86, 411-422.

Gillies, R. R, Carlson, T. N., Cui, J., Kustas, W. P., & Humes, K. S. (1997). A verification of
the ‘triangle’ method for obtaining surface soil water content and energy fluxes
from remote measurements of the normalized difference vegetation index
(NDVI) and surface temperature. International Journal of Remote Sensing, 18,
3145-3166.

Gitas, 1. Z., Mitri, G. H., & Ventura, G. (2004). Object-based image classification for
burned area mapping of Creus Cape Spain, using NOAA-AVHRR imagery. Remote
Sensing of Environment, 92, 409-413.

Goetz, S. J., Wright, R. K., Smith, A. J., Zinecker, E., & Schaub, E. (2003). IKONOS imagery
for resource management: Tree cover, impervious surfaces, and riparian buffer
analyses in the mid-Atlantic region. Remote Sensing of Environment, 88, 195-208.

Gong, P. (1994). Integrated analysis of spatial data from multiple sources: An overview.
Canadian Journal of Remote Sensing, 20, 349-359.

Gong, P., & Howarth, P. J. (1990). The use of structure information for improving land-
cover classification accuracies at the rural-urban fringe. Photogrammetric Engi-
neering and Remote Sensing, 56(1), 67-73.

Gong, P., & Howarth, P. J. (1992). Frequency-based contextual classification and gray-
level vector reduction for land-use identification. Photogrammetric Engineering and
Remote Sensing, 58(4), 423-437.

Haack, B. N., Solomon, E. K., Bechdol, M. A., & Herold, N. D. (2002). Radar and optical
data comparison/integration for urban delineation: A case study. Photogrammetric
Engineering and Remote Sensing, 68, 1289-1296.

Heiden, U., Segl, K., Roessner, S., & Kaufmann, H. (2007). Determination of robust
spectral features for identification of urban surface materials in hyperspectral
remote sensing data. Remote Sensing of Environment, 111, 537-552.

Henricsson, O. (1998). The role of color attributes and similarity grouping in 3-D
building reconstruction. Computer Vision and Image Understanding, 72(2), 163-184.

Hepner, G. F,, Houshmand, B., Kulikov, 1., & Bryant, N. (1998). Investigation of the
integration of AVIRIS and IFSAR for urban analysis. Photogrammetric Engineering
and Remote Sensing, 64(8), 813-820.

Herold, M. (2007). Spectral characteristics of asphalt road surfaces. In Q. Weng (Ed.),
Remote Sensing of Impervious Surfaces (pp. 237-247). Boca Raton, Florida: CRC Press.

Herold, M., Liu, X., & Clark, K. C. (2003). Spatial metrics and image texture for mapping
urban land use. Photogrammetric Engineering and Remote Sensing, 69(9), 991-1001.

Herold, M., Schiefer, S., Hostert, P, & Roberts, D. A. (2006). Applying imaging
spectrometry in urban areas. In Q. Weng, & D. Quattrochi (Eds.), Urban Remote
Sensing (pp. 137-161). Boca Raton, FL: CRC Press.

Hinton, J. C. (1996). GIS and remote sensing integration for environmental applications.
International Journal of Geographic Information Systems, 10(7), 877-890.

Hodgson, M. E. (1998). What size window for image classification? — A cognitive
perspective. Photogrammetric Engineering and Remote Sensing, 64, 797-808.

Hodgson, M. E., Jensen, J. R,, Tullis, J. A., Riordan, K. D., & Archer, C. M. (2003). Synergistic
use of Lidar and color aerial photography for mapping urban parcel impervious-
ness. Photogrammetric Engineering and Remote Sensing, 69, 973-980.

Hoffbeck, ]. P., & Landgrebe, D. A. (1996). Classification of remote sensing having high
spectral resolution images. Remote Sensing of Environment, 57, 119-126.

Hsieh, P. -F., Lee, L. C., & Chen, N. -Y. (2001). Effect of spatial resolution on classification
errors of pure and mixed pixels in remote sensing. IEEE Transactions on Geoscience
and Remote Sensing, 39, 2657-2663.

Hu, ], Razdan, A., Femiani, J., Cui, M., & Wonka, P. (2007). Road network extraction and
intersection detection from aerial images by tracking road footprints. IEEE
Transactions on Geoscience and Remote Sensing, 45(12), 4144-4157.

Hu, X, & Weng, Q. (2009). Estimating impervious surfaces from medium spatial
resolution imagery using the self-organizing map and multi-layer perceptron
neural networks. Remote Sensing of Environment, 113(10), 2089-2102.

Huy, X, & Weng, Q. (2011). Impervious surface area extraction from IKONOS imagery using
an object-based fuzzy method. Geocarto International, 26(1), 3-20.

Huang, X, & Jensen, J. R. (1997). A machine-learning approach to automated
knowledge-base building for remote sensing image analysis with GIS data.
Photogrammetric Engineering and Remote Sensing, 63, 1185-1194.

Hung, M., & Ridd, M. K. (2002). A subpixel classifier for urban land-cover mapping
based on a maximum-likelihood approach and expert system rules. Photogram-
metric Engineering and Remote Sensing, 68, 1173-1180.

Hurd, J. D., & Civco, D. L. (2004). Temporal characterization of impervious surfaces for
the State of Connecticut. ASPRS Annual Conference Proceedings, Denver, Colorado,
May 2004 (Unpaginated CD ROM).

Irons, J. R., Markham, B. L., Nelson, R. F., Toll, D. L., Williams, D. L., Latty, R. S., et al.
(1985). The effects of spatial resolution on the classification of Thematic Mapper
data. International Journal of Remote Sensing, 6, 1385-1403.

Jennings, D. B,, Jarnagin, S. T., & Ebert, C. W. (2004). A modeling approach for estimating
watershed impervious surface area from national land cover data 92. Photogram-
metric Engineering and Remote Sensing, 70, 1295-1307.

Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective
(Third Edition). Upper Saddle River, NJ: Prentice Hall.

Jensen, J. R, & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and
socioeconomic attributes. Photogrammetric Engineering and Remote Sensing, 65,611-622.

Ji, C. Y. (2000). Land-use classification of remotely sensed data using Kohonen self-
organizing feature map neural networks. Photogrammetric Engineering and Remote
Sensing, 66, 1451-1460.

Jimenez, L. O., Morales-Morell, A., & Creus, A. (1999). Classification of hyperdimensional
data based on feature and decision fusion approaches using projection pursuit,
majority voting, and neural networks. IEEE Transactions on Geoscience and Remote
Sensing, 37, 1360-1366.

Jin, X,, & Davis, C. H. (2005). Automated building extraction from high-resolution
satellite imagery in urban areas using structural, contextual, and spectral
information. EURASIP Journal on Applied Signal Processing, 14, 2196-2206.

Jin, X., & Paswaters, S. (2007). A fuzzy rule base system for object-based feature
extraction and classification. In K. Ivan (Ed.), SPIE (pp. 65671H).

Kartikeyan, B., Gopalakrishna, B., Kalubarme, M. H. & Majumder, K. L. (1994).
Contextual techniques for classification of high and low resolution remote sensing
data. International Journal of Remote Sensing, 15, 1037-1051.

Sensing of Environment (2011), doi:10.1016/j.rse.2011.02.030

Please cite this article as: Weng, Q., Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends, Remote




Q. Weng / Remote Sensing of Environment xxx (2011) XxX-xxx 15

Kavzoglu, T., & Mather, P. M. (2003). The use of backpropagating artificial neural
networks in land cover classification. International Journal of Remote Sensing, 24,
4907-4938.

Keuchel, J., Naumann, S., Heiler, M., & Siegmund, A. (2003). Automatic land cover
analysis for Tenerife by supervised classification using remotely sensed data.
Remote Sensing of Environment, 86, 530-541.

Kim, H., Pang, S, Je, H,, Kim, D., & Bang, S. Y. (2003). Constructing support vector
machine ensemble. Pattern Recognition, 36, 2757-2767.

Laguarde, J. -P., Bach, M., Boulet, G., Briottet, X., Cherchali, S., Dadou, I, et al. (2010).
Combining high spatial resolution and revisit capabilities in the thermal infrared:
The MISTIGRI Mission Project. In R. Reuter (Ed.), Proceeding of 30th EARSeL
Symposium: Remote Sensing for Science, Education, and Natural and Cultural Heritage
(pp. 165-172). Paris, France: UNESCO May 31-June 3, 2010.

Lang, F., & Forstner, W. (1996). Surface reconstruction of man-made objects using
polymorphic mid-level features and generic scene knowledge. International
Archives of Photogrammetry and Remote Sensing, 31(B/3), 415-420.

Lawrence, R., Bunn, A., Powell, S., & Zmabon, M. (2004). Classification of remotely
sensed imagery using stochastic gradient boosting as a refinement of classification
tree analysis. Remote Sensing of Environment, 90, 331-336.

Lee, S, & Lathrop, R. G. (2006). Subpixel analysis of Landsat ETM+ using Self-
Organizing Map (SOM) neural networks for urban land cover characterization. [EEE
Transactions on Geoscience and Remote Sensing, 44(6), 1642-1654.

Lee, D.H., Lee, K. M., & Lee, S. U. (2008). Fusion of lidar and imagery for reliable building
extraction. Photogrammetric Engineering and Remote Sensing, 74(2), 215-225.

Li, G. (2008). Integration of Remote Sensing and Census Data for Land Use and Land
Cover Classification and Population Estimation in Indianapolis, Indiana, Ph.D.
Dissertation, Department of Geography, Geology, and Anthropology, Indiana State
University, Terre haute, Indiana.

Li, Z., & Eastman, ]. R. (2006a). Commitment and typicality measurements for the self-
organizing map. Bellingham, WA: Proceedings of SPIE — The International Society
for Optical Engineering (pp. 642011-1-642011-4).

Li, Z., & Eastman, J. R. (2006b). The nature and classification of unlabelled neurons in the
use of Kohonen's self-organizing map for supervised classification. Transactions in
GIS, 10(4), 599.

Lillesand, T. M., Kiefer, R. W., & Chipman, ]J. W. (2004). Remote sensing and image
interpretation (pp. 614). New York: John Wiley and Sons.

Linden, S. van der, & Hostert, P. (2009). The influence of urban structures on impervious
surface maps from airborne hyperspectral data. Remote Sensing of Environment, 113,
2298-2305.

Lloyd, R. E., Hodgson, M. E., & Stokes, A. (2002). Visual categorization with aerial
photography. Annals of the Association of American Geographers, 92, 241-266.
Long, H., & Zhao, Z. M. (2005). Urban road extraction from high-resolution optical

satellite images. International Journal of Remote Sensing, 26(22), 4907-4921.

Lu, D., Tian, H., Zhou, G., & Ge, H. (2008). Regional mapping of human settlements in
southeastern China with multisensor remotely sensed data. Remote Sensing of
Environment, 112(9), 3668-3679.

Lu, D., & Weng, Q. (2004). Spectral mixture analysis of the urban landscape in
Indianapolis with Landsat ETM+ imagery. Photogrammetric Engineering and
Remote Sensing, 70, 1053-1062.

Lu, D., & Weng, Q. (2005). Urban land-use and land-cover mapping using the full
spectral information of Landsat ETM+ data in Indianapolis, Indiana. Photogram-
metric Engineering and Remote Sensing, 71(11), 1275-1284.

Ly, D., & Weng, Q. (2006). Use of impervious surface in urban land use classification.
Remote Sensing of Environment, 102(1-2), 146-160.

Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for
improving classification performance. International Journal of Remote Sensing, 28
(5), 823-870.

Lu, D., & Weng, Q. (2009). Extraction of urban impervious surfaces from IKONOS
imagery. International Journal of Remote Sensing, 30(5), 1297-1311.

Lu, D., Hetrick, S., & Moran, E. in press. Impervious surface mapping with Quickbird
imagery. International Journal of Remote Sensing. doi:10.1080/01431161003698393.

Luo, R. C, & Kay, M. G. (1989). Multisensor integration and fusion for intelligent
systems. [EEE Transactions on Systems, Man, and Cybernetics, 19, 901-931.

Luo, L, & Mountrakis, G. (2010). Integrating intermediate inputs from partially
classified images within a hybrid classification framework: An impervious surface
estimation example. Remote Sensing of Environment, 114, 1220-1229.

Madhavan, B. B., Kubo, S., Kurisaki, N., & Sivakumar, T. V. L. N. (2001). Appraising the
anatomy and spatial growth of the Bangkok Metropolitan area using a vegetation—
impervious-soil model through remote sensing. International Journal of Remote
Sensing, 22, 789-806.

Magnussen, S., Boudewyn, P., & Wulder, M. (2004). Contextual classification of Landsat
TM images to forest inventory cover types. International Journal of Remote Sensing,
25, 2421-2440.

Mannan, B., & Ray, A. K. (2003). Crisp and fuzzy competitive learning networks for
supervised classification of multispectral IRS scenes. International Journal of Remote
Sensing, 24, 3491-3502.

Mather, P. M. (1999). Land cover classification revisited. In P. M. Atkinson, & N. J. Tate
(Eds.), Advances in Remote Sensing and GIS (pp. 7-16). New York: John Wiley &
Sons.

Mayer, H. (1999). Automatic object extraction from aerial imagery — A survey focusing
on building. Computer Vision and Image Understanding, 74(2), 138-139.

McGwire, K., Minor, T., & Fenstermaker, L. (2000). Hyperspectral mixture modeling for
quantifying sparse vegetation cover in arid environments. Remote Sensing of
Environment, 72, 360-374.

Mena, J. B. (2003). State of the art on automatic road extraction for GIS update: A novel
classification. Pattern Recognition Letters, 24(16), 3037-3058.

Miliaresis, G., & Kokkas, N. (2007). Segmentation and object-based classification for the
extraction of the building class from LiDAR DEMs. Computers and Geosciences, 33
(8), 1076-1087.

Mohapatra, R. P., & Wu, C. (2007). Subpixel imperviousness estimation with [IKONOS
imagery: An Artificial Neural Network approach. In Q. Weng (Ed.), Remote Sensing
of Impervious Surfaces (pp. 21-37). Boca Raton, FL: CRC Press.

Moons, T., Frére, D., Vandekerckhove, J., & Van Gool, L. (1998). Automatic modeling and
3D reconstruction of urban house roofs from high resolution aerial imagery.
Proceedings Of Fifth European Conference On Computer Vision I (pp. 410-425).

Moses, W. ]., Gitelson, A. A., Berdnikov, S., & Povazhnyy, V. (2009). Satellite estimation
of Chlorophyll-a concentration using the red and NIR bands of MERIS—The Azov
Sea case study. IEEE Geoscience and Remote Sensing Letters, 6, 845-849.

Myint, S. W. (2001). A robust texture analysis and classification approach for urban
land-use and land-cover feature discrimination. Geocarto International, 16,
27-38.

National Research Council (2007). Earth science and applications from space: National
imperatives for the next decade and beyond. Washington, DC: The National Academy
Press.

Pal, N. R,, Laha, A, & Das, J. (2005). Designing fuzzy rule based classifier using self-
organizing feature map for analysis of multispectral satellite images. International
Journal of Remote Sensing, 26(10), 2219-2240.

Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree
methods for land cover classification. Remote Sensing of Environment, 86,
554-565.

Pal, N. R, & Pal, S. K. (1993). A review on image segmentation techniques. Pattern
Recognition, 26(9), 1277-1294.

Paola, J. D., & Schowengerdt, R. A. (1995). A review and analysis of back propagation
neural networks for classification of remotely sensed multispectral imagery.
International Journal of Remote Sensing, 16, 3033-3058.

Peteri, R., & Ranchin, T. (2007). Road networks derived from high spatial resolution
satellite remote sensing data. In Q. Weng (Ed.), Remote Sensing of Impervious
Surfaces (pp. 215-236). Boca Raton, Florida: CRC Press.

Phinn, S. R. (1998). A framework for selecting appropriate remotely sensed data
dimensions for environmental monitoring and management. International Journal
of Remote Sensing, 19, 3457-3463.

Phinn, S. R., Menges, C., Hill, G. ]. E., & Stanford, M. (2000). Optimizing remotely sensed
solutions for monitoring, modeling, and managing coastal environments. Remote
Sensing of Environment, 73, 117-132.

Phinn, S., Stanford, M., Scarth, P., Murray, A. T., & Shyy, P. T. (2002). Monitoring the
composition of urban environments based on the vegetation-impervious surface-
soil (VIS) model by subpixel analysis techniques. International Journal of Remote
Sensing, 23, 4131-4153.

Platt, R. V., & Goetz, A. F. H. (2004). A comparison of AVIRIS and Landsat for land use
classification at the urban fringe. Photogrammetric Engineering and Remote Sensing,
70, 813-819.

Pohl, C., & van Genderen, J. L. (1998). Multisensor image fusion in remote sensing: Concepts,
methods, and applications. International Journal of Remote Sensing, 19, 823-854.

Powell, S. L., Cohen, W. B., Yang, Z., Pierce, J. D., & Alberti, M. (2008). Quantification of
impervious surface in the Snohomish Water Resources Inventory Area of Western
Washington from 1972-2006. Remote Sensing of Environment, 112, 1895-1908.

Powell, R. L., Roberts, D. A., Dennison, P. E., & Hess, L. L. (2007). Sub-pixel mapping of
urban land cover using multiple endmember spectral mixture analysis: Manaus,
Brazil. Remote Sensing of Environment, 106(2), 253-267.

Pu, R, Kelly, M., Anderson, G. L., & Gong, P. (2008). Using CASI hyperspectral imagery to
detect mortality and vegetation stress associated with a new hardwood forest
disease. Photogrammetric Engineering and Remote Sensing, 74(1), 65-75.

Quattrochi, D. A., & Goodchild, M. F. (1997). Scale in remote sensing and GIS. New York
City, NY: Lewis Publishers.

Rashed, T., Weeks, J. R., Roberts, D., Rogan, ]., & Powell, R. (2003). Measuring the
physical composition of urban morphology using multiple endmember spectral
mixture models. Photogrammetric Engineering and Remote Sensing, 69, 1011-1020.

Ridd, M. K. (1995). Exploring a V-1-S (Vegetation-Impervious Surface-Soil) model for
urban ecosystem analysis through remote sensing: Comparative anatomy for cities.
International Journal of Remote Sensing, 16(12), 2165-2185.

Roberts, D. A, Batista, G. T., Pereira, J. L. G., Waller, E. K., & Nelson, B. W. (1998). Change
identification using multitemporal spectral mixture analysis: Applications in
eastern Amazonia. In R. S. Lunetta, & C. D. Elvidge (Eds.), Remote sensing change
detection: Environmental monitoring methods and applications (pp. 137-161). Ann
Arbor, MI: Ann Arbor Press.

Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. O. (1998).
Mapping chaparral in the Santa Monica mountains using multiple endmember
spectral mixture models. Remote Sensing of Environment, 65, 267-279.

Samadzadegan, F., Bigdeli, B., & Hahn, M. (2009). Automatic road extraction from LIDAR
data based on classifier fusion in urban area. 2009 Joint Urban Remote Sensing Event
(pp. 1-6). doi:10.1109/URS.2009.5137739.

Schmidt, K. S., Skidmore, A. K., Kloosterman, E. H., van Oosten, H., Kumar, L., & Janssen, J.
A.M. (2004). Mapping coastal vegetation using an expert system and hyperspectral
imagery. Photogrammetric Engineering and Remote Sensing, 70, 703-715.

Schneider, A., Friedl, M. A., & Potere, D. (2010). Mapping global urban areas using
MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’.
Remote Sensing of Environment, 114, 1733-1746.

Schueler, T. R. (1994). The importance of imperviousness. Watershed Protection
Techniques, 1, 100-111.

Setiawan, H., Mathieu, R., & Thompson-Fawcett, M. (2006). Assessing the applicability
of the V-I-S model to map urban land use in the developing world: Case study of
Yogyakarta, Indonesia. Computers, Environment and Urban Systems, 30(4), 503-522.

Sensing of Environment (2011), doi:10.1016/j.rse.2011.02.030

Please cite this article as: Weng, Q., Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends, Remote




16 Q. Weng / Remote Sensing of Environment xxx (2011) XxX-xXx

Shaban, M. A,, & Dikshit, O. (2001). Improvement of classification in urban areas by the
use of textural features: The case study of Lucknow City, Uttar Pradesh.
International Journal of Remote Sensing, 22, 565-593.

Sharma, K. M. S., & Sarkar, A. (1998). A modified contextual classification technique for
remote sensing data. Photogrammetric Engineering and Remote Sensing, 64(4),
273-280.

Shi, W. Z., & Zhu, C. Q. (2002). The line segment match method for extracting road
network from high-resolution satellite images. [EEE Transactions on Geoscience and
Remote Sensing, 40(2), 511-514.

Slonecker, E. T., Jennings, D., & Garofalo, D. (2001). Remote sensing of impervious
surface: A review. Remote Sensing Reviews, 20, 227-255.

Soil Conservation Service (1975). Urban hydrology for small watersheds, USDA Soil
Conservation Service Technical Release No. 55. Washington, DC: U.S. Department of
Agriculture.

Solberg, A. H. S., Taxt, T., & Jain, A. K. (1996). A Markov random field model for
classification of multisource satellite imagery. IEEE Transactions on Geoscience and
Remote Sensing, 34, 100-112.

Stefanov, W. L., Ramsey, M. S., & Christensen, P. R. (2001). Monitoring urban land cover
change: an expert system approach to land cover classification of semiarid to arid
urban centers. Remote Sensing of Environment, 77, 173-185.

Stow, D., Coulter, L., Kaiser, J., Hope, A., Service, D., Schutte, K., et al. (2003). Irrigated
vegetation assessment for urban environments. Photogrammetric Engineering and
Remote Sensing, 69, 381-390.

Strahler, A. H., Woodcock, C. E., & Smith, ]. A. (1986). On the nature of models in remote
sensing. Remote Sensing of Environment, 70, 121-139.

Stuckens, J., Coppin, P. R,, & Bauer, M. E. (2000). Integrating contextual information with
per-pixel classification for improved land cover classification. Remote Sensing of
Environment, 71, 282-296.

Tan, Q, Liu, Z, & Li, X. (2009). Mapping urban surface imperviousness using SPOT
multispectral satellite images. Proceedings of IEEE Geoscience and Remote Sensing
Symposium (IGARSS 2009), IlI-346 - III-348, Cape Town. doi:10.1109/IGARSS.
2009.5417773.

Thenkabail, P. S., Enclona, E. A., Ashton, M. S., Legg, C., & de Dieu, M. J. (2004a).
Hyperion, IKONOS, ALl and ETM+ sensors in the study of African rainforests.
Remote Sensing of Environment, 90, 23-43.

Thenkabail, P. S., Enclona, E. A, Ashton, M. S., & van der Meer, B. (2004b). Accuracy
assessments of hyperspectral waveband performance for vegetation analysis
applications. Remote Sensing of Environment, 91, 354-376.

Tiwari, P. S., Pande, H., & Pandey, A. K. (2009). Automatic urban road extraction using
airborne laser scanning/altimetry and high resolution satellite data. Journal of the
Indian Society of Remote Sensing, 37(2), 223-231. d0i:10.1007/s12524-009-0023-9.

Tong, X., Liu, S., & Weng, Q. (2009). Geometric processing of Quickbird stereo imagery
for urban land use mapping — A case study in Shanghai, China. IEEE Journal of
Selected Topics in Applied Earth Observations & Remote Sensing, 2(2), 61-66.

Tullis, J. A., & Jensen, J. R. (2003). Export system house detection in high spatial
resolution imagery using size, shape, and context. Geocarto International, 18, 5-15.

Turner, B. L. I. I, Skole, D., Sanderson, S., Fisher, G., Fresco, L., & Leemans, R. (1995). Land-
use and land-cover change: Science and research plan. Stockhdm and Geneva:
International Geosphere-Bioshere Program and the Human Dimensions of Global
Environmental Change Programme (IGBP Report No. 35 and HDP Report No. 7).

van der Linden, S., & Hostert, P. (2009). The influence of urban structures on impervious
surface maps from airborne hyperspectral data. Remote Sensing of Environment, 113,
2298-2305.

Van de Voore, T., De Genst, W., Canters, F., Stephenne, N., Wolff, E., & Binnard, M. (2003).
Extraction of land use/land cover — Related information from very high resolution
data in urban and suburban areas. Proceedings of the 23 rd Symposium of the European
Association of Remote Sensing Laboratories (pp. 237-244).

Wang, F. (1990). Fuzzy supervised classification of remote sensing images. IEEE
Transactions on Geoscience and Remote Sensing, 28(2), 194-201.

Wang, L., Sousa, W. P., Gong, P., & Biging, G. S. (2004). Comparison of IKONOS and
QuickBird images for mapping mangrove species on the Caribbean coast of
panama. Remote Sensing of Environment, 91, 432-440.

Ward, D., Phinn, S. R., & Murray, A. T. (2000). Monitoring growth in rapidly urbanizing
areas using remotely sensed data. The Professional Geographer, 53, 371-386.

Weng, Q. (2001). Modeling urban growth effect on surface runoff with the integration
of remote sensing and GIS. Environmental Management, 28, 737-748.

Weng, Q. (2007). Remote sensing of impervious surfaces (pp. xv-xxvii). Boca Raton, FL:
CRC Press.

Weng, Q. (2009). Remote sensing and GIS integration: Theories, methods, and
applications. New York: McGraw-Hill.

Weng, Q., & Hu, X. (2008). Medium spatial resolution satellite imagery for estimating
and mapping urban impervious surfaces using LSMA and ANN. IEEE Transaction on
Geosciences and Remote Sensing, 46(8), 2397-2406.

Weng, Q., Hu, X., & Liu, H. (2009). Estimating impervious surfaces using linear spectral
mixture analysis with multi-temporal ASTER images. International Journal of
Remote Sensing, 30(18), 4807-4830.

Weng, Q., Hu, X,, & Lu, D. (2008). Extracting impervious surface from medium spatial
resolution multispectral and hyperspectral imagery: A comparison. International
Journal of Remote Sensing, 29(11), 3209-3232.

Weng, Q., & Lu, D. (2009). Landscape as a continuum: An examination of the urban
landscape structures and dynamics of Indianapolis city, 1991-2000. International
Journal of Remote Sensing, 30(10), 2547-2577.

Wou, C. (2004). Normalized spectral mixture analysis for monitoring urban composition
using ETM+ imagery. Remote Sensing of Environment, 93, 480-492.

W, C. (2009). Quantifying high-resolution impervious surfaces using spectral mixture
analysis. International Journal of Remote Sensing, 30(11), 2915-2932.

Wu, C,, & Murray, A. T. (2003). Estimating impervious surface distribution by spectral
mixture analysis. Remote Sensing of Environment, 84, 493-505.

Xian, G. (2007). Mapping impervious surfaces using classification and regression tree
algorithm. In Q. Weng (Ed.), Remote Sensing of Impervious Surfaces (pp. 39-58).
Boca Rotan, FL: CRC Press.

Yang, L., Huang, C., Homer, C. G., Wylie, B. K., & Coan, M. J. (2003). An approach for
mapping large-scale impervious surfaces: Synergistic use of Landsat-7 ETM+ and
high spatial resolution imagery. Canadian Journal of Remote Sensing, 29, 230-240.

Yang, L, Jiang, L., Lin, H., & Liao, M. (2009). Quantifying sub-pixel urban impervious
surface through fusion of optical and InSAR imagery. GIScience & Remote Sensing, 46
(2),161-171.

Yang, F., Matsushita, B., & Fukushima, T. (2010). A pre-screened and normalized
multiple endmember spectral mixture analysis for mapping impervious surface
area in Lake Kasumigaura Basin, Japan. ISPRS Journal of Photogrammetry and Remote
Sensing, 65, 479-490.

Yu, B, Liy, H., Wu, J., Hu, Y., & Zhang, L. (2010). Automated derivation of urban building
density information using airborne LiDAR data and object-based method.
Landscape and Urban Planning, 98(3-4), 210-219.

Yuan, F., & Bauer, M. E. (2006). Mapping impervious surface area using high resolution
imagery: A comparison of object-based and per pixel classification. American
Society for Photogrammetry and Remote Sensing Annual Conference Proceedings, Reno,
Nevada (unpaginated).

Yuan, F., Wy, C,, & Bauer, M. E. (2008). Comparison of spectral analysis techniques for
impervious surface estimation using Landsat imagery. Photogrammetric Engineering
and Remote Sensing, 74(8), 1045-1055.

Zhou, G. Q., & Kelmelis, . A. (2006). True orthoimage generation for urban areas with
very buildings. In Q. Weng, & D. A. Quattrochi (Eds.), Urban Remote Sensing
(pp. 3-20). Boca Raton, FL: CRC Press.

Zhou, W., & Troy, A. (2008). An object-oriented approach for analyzing and
characterizing urban landscape at the parcel level. International Journal of Remote
Sensing, 29(11), 3119-3135.

Zhou, Y. Y., & Wang, Y. Q. (2008). Extraction of impervious, surface areas from high
spatial resolution imagery by multiple agent segmentation and classification.
Photogrammetric Engineering and Remote Sensing, 74(7), 857-868.

Zhu, C,, Shi, W., Pesaresi, M., Liu, L., Chen, X., & King, B. (2005). The recognition of road
network from high-resolution satellite remotely sensed data using image
morphological characteristics. International Journal of Remote Sensing, 26(24),
5493-5508.

Sensing of Environment (2011), doi:10.1016/j.rse.2011.02.030

Please cite this article as: Weng, Q., Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends, Remote




