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Abstract

Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns.
Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution
and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the
experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the
measured temperature into Green’s function solutions to eliminate noise.

1. Introduction

Image enhancement and noise reduction for IR-data is an important step for the quantitative reconstruction of
defect depth and size. Most common is the application of standard tools from image processing, like Gauss- and Median-
filters (in space), or the moving average filter (in time) [1]. Several other data filtering techniques, e.g., the Wiener filter,
are discussed in [2]. In [3] a spatio-temporal filtering based on averaging over sub-blocks is proposed. The size of the
sub-blocks is increased with increasing time, leading to both compression and improved signal-to-noise ratio.

An algorithm based on an analytic solution of the heat conduction equation for the enhancement and analysis of
thermographic images was proposed in [4] for the localization of heat sources.

We follow an approach that is similar to the Thermographic Signal Reconstruction (TSR) of Shepard et al. [5].
They fit a polynomial to the surface temperature evolution in double logarithmic scale. It allows the detection of defects
based on the deviation of the polynomial from the linear decay. Additionally, noise reduction is achieved. A drawback is,
that the coefficients of the fit have no physical interpretation. In contrast, we propose a decomposition of the temperature
evolution into elementary solutions, where the coefficients of the fit are weights for temperature contributions from different
depths and positions.

2. Data Model

We consider heating the structure under test by a very short thermal pulse, approximated by a Dirac pulse. The
Dirac pulse is equivalent to a broad spectrum of thermal waves, which are all in phase [6]. For an object with a given
thickness zmax, diffuse reflection and transmission occur at the interface between the rear surface and the surroundings.
For common situations in pulse thermography, like the interface between metal and air, the reflection coefficient is close
to one, thus transmission can be neglected. At the front surface, the reflected thermal waves lead to thermal contrasts
between sound and defective areas, which is the basis for quantitative reconstruction algorithms, e.g., the Echo Defect
Shape [7] or the Envelope Algorithm [8].

As a quantitative model for the thermal contrast at a certain surface point we consider the superposition of unilat-
erally propagated thermal waves according to Figure 1. The contributions differ in intensity and in the length of the path the
pulse has traveled before reaching the surface point under consideration.

Fig. 1. The temperature evolution on the surface can be modeled as a superposition of contributions with different path
lengths.
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The total surface temperature evolution then consists of the incoming heat pulse T̂ as it would propagate through
a semi-infinite specimen and the contributions of reflected thermal waves. As we consider only unilateral propagation, 1D
heat transport models are employed. The incoming pulse T̂ is described by the heat equation on Ω = [0,∞) and the time
interval (0, tf ):

T̂t (z, t)− αT̂zz (z, t) = 0 in Ω× (0, tf ) (1a)

−λT̂z (0, t) + hT̂ (0, t) = hText + Q(t) for t ∈ (0, tf ) (1b)

T̂ (z, 0) = T0 for z ∈ Ω, (1c)

where α = λ
ρc with given material parameters density ρ, specific heat capacity c and thermal conductivity λ. For the

boundary condition, the heat transfer coefficient h includes heat conduction and linearized radiation. The heating term is
given by

Q(t) =

{
q t ≤ th
0 t > th

for the heating time th, describing flash or step heating used in practical applications. For th → 0, Q(t) could be idealized
as a Dirac distribution.

Secondly we need to model the influence of the rear surface in depth zf at which the incoming pulse is reflected.
This is essentially a prescribed heat flux at the rear. For a distance L to the surface point under considerations, we obtain
the following equation on Ω = [0, L]:

Tt (z, t)− αTzz (z, t) = 0 in Ω× (0, tf ) (2a)

−λTz (0, t) + hT (0, t) = 0 for t ∈ (0, tf ) (2b)

λTz (L, t) = Q̃(t) for t ∈ (0, tf ) (2c)

T (z, 0) = 0 for z ∈ Ω. (2d)

Homogeneous boundary conditions are prescribed, as initial and external temperature are already included in Eq. (1). The
heat flux Q̃(t) = h

(
T̂ (zf , t)− T0

)
is determined by the solution of the semi-infinite problem. As can be easily verified, the

surface contributions T (0, t) depend only on the total path length l = zf + L, such that they can be parametrized over just
one parameter l .

3. Reconstruction

In order to reconstruct the surface temperature evolution at a certain point x on the front surface of the specimen
from noisy measurements, we assume the actual temperature y (x , t) is a superposition of the incoming thermal pulse and
the nonnegative contributions of reflected thermal waves Tl (x , t) with different path lengths l or travel times:

y (x , t) = θ̂T̂ +
∫ lmax

l=0
Θ(l)Tl (x , t) dl

For a lateral size of xmax of the specimen and a thickness of zmax, the longest possible path length is given by lmax =
zmax +

√
z2

max + x2
max. However, as a contribution from the rear point directly below x has a path length of at most zmax, it will

dominate all reflections arriving later. In practice, choosing lmax = 2zmax is therefore sufficient. In the following, we assume
the spatial position x to be fixed.

As the area of the defect surface that leads to a specific path length l can vary, the intensity of the contributions
and hence the coefficients θ(l) ≥ 0 of the superposition are unknown and have to be determined from the measured data
Tmeas(x , t):

min
θ∈L1(0,lmax)

∥∥∥∥Tmeas − θ̂T̂ −
∫ lmax

l=0
θ(l)Tl dl

∥∥∥∥2

L2(0,tf )
subject to θ ≥ 0 (3)

Note that the non-negativity of θ and Tl implies the stability of the reconstruction without further regularization. As regu-
larization terms are strongly related to prior probability distributions (see [9]) of defect shapes, which are notoriously hard
to formulate quantitatively, this is a major advantage of the present approach. The resulting temperature evolutions are
necessarily smooth.

For the actual computation the path lengths have to be discretized. We employ piecewise constant functions and
approximate the integral by the midpoint rule. As the measured data is obtained in form of a piecewise constant function
in time, we approximate the L2-norm by the midpoint rule with nt time points ti as well. Thus we end up with an inequality
constrained linear least squares problem to be solved for each point x of the front surface:

min
θ∈Rnl

∥∥∥Tmeas − θ̂T̂ − Tθ
∥∥∥2

subject to θ ≥ 0 (4)
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Therein, the matrix T ∈ Rnt×nl given by Tij = Tlj (x , ti ).
The least squares problem (4) can be solved independently for each pixel with trust-region methods [10] or active

set methods [11] which are available, e.g., in the Matlab Optimization Toolbox.

4. Green’s Function Solutions

For the set-up of the matrix T in Eq. (4), the solutions T̂ of (1) and Tl of (2) have to be evaluated. In the following
we derive analytical solutions.

4.1. Semi-infinite domain

We are seeking a Green’s function solution to the heat equation (1). The Green’s function for this problem is given
by

G(z, t ; ξ, τ ) =
1

2
√
πα(t − τ )

(
exp

(
− (z − ξ)2

4α(t − τ )

)
+ exp

(
− (z + ξ)2

4α(t − τ )

))

− h
λ

exp
(

h2

λ2α(t − τ ) +
h
λ

(z + ξ)
)

erfc

(
z + ξ

2
√
α(t − τ )

+
h
λ

√
α(t − τ )

)
,

see e.g. [12]. Thus the solution to Eq. (1) can be computed as

T̂ (z, t) =
∫ ∞

0
T0G(z, t ; ξ, 0) dξ +

α

λ

∫ t

0
Q(τ )G(z, t ; 0, τ ) dτ +

α

λ

∫ t

0
hText G(z, t ; 0, τ ) dτ .

Each integral can be evaluated exactly, see appendix A.

4.2. Reflection contributions

A Green’s function for problem (2) is given by

G(z, t ; ξ, τ ) =
2
L

∞∑
m=1

exp
(
−β

2
mα(t − τ )

L2

)(
β2

m + B2

β2
m + B2 + B

)
cos

(
βm

(
1− z

L

))
cos

(
βm

(
1− ξ

L

))
.

Here, B = L h
λ

and βm are the solutions to βm tanβm = B in ascending order.
The surface temperature TL(0, t) can be computed as

TL(0, t) =
α

λ

∫ t

0
Q̃(τ )G(0, t ; L, τ ) dτ

=
2α
λL

∞∑
m=1

(
β2

m + B2

β2
m + B2 + B

)
cos (βm)

∫ t

0
Q̃(τ ) exp

(
−β

2
mα(t − τ )

L2

)
dτ . (5)

The heat flux Q̃(t) is determined by the solution of the semi-infinite problem, Q̃(t) = h
(

T̂ (L, t)− T0

)
. Note that

we do not need to include the reflection coefficient, as it is implicitly determined through the solution of the least squares
problem (4).

The integral is evaluated using numerical quadrature, the infinite sum is approximated by summing to a suitable
cut-off parameter M. The resulting temperature evolutions are illustrated in Figure 2.

5. Results

To check the proposed algorithm, PVC test specimens with triangular wedge-shaped defects were used for gen-
erating simulation data and for measurements, see Figure 3 for a sketch. As the defect is uniform in y -direction, in the
following we choose an arbitrary cross section for the defect shape reconstruction.
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Fig. 2. Top: Solutions T̂ (zi , t) to Eq. (1) for T0 = Text = 0 and different depths zi . Bottom: Front surface temperature
TLi (0, t) for Eq. (2) for rear in different depths Li .

5.1. Defect shape reconstruction

As the overall aim is to extract quantitative information about defect size and shape, we are not only interested in
the quality of the fit, but also in the influence of the proposed preprocessing on defect shape identification algorithms. To
reconstruct the defect, we use the Envelope Algorithm [8], a variant of the Echo Defect Shape method [7]. In the latter, the
relative thermal contrast

Crel(t) =
Tdefect(t)− Treference(t)

Treference(t)
is used to extract the thickness of the specimen at each surface point based on the travel time of the reflection of thermal
pulse in a purely 1D approximation. This depth estimate can be iteratively improved using comparatively expensive numer-
ical simulations of the heat equation. In the Envelope Algorithm, the thermal contrast Crel is used to construct parabolas of
equal travel time, thus taking lateral heat conduction to some extent into account. The envelope of the parabolas is a good
approximation of the defect shape, comparable in quality to the Echo Defect Shape with a couple of iterative refinement
steps.

5.2. Simulation data

Simulation data was generated by the semi-analytic method [13], with material parameters λ = 0.16 W
m K , ρ =

1500 kg
m3 , c = 900 J

kg K , h = 6.28 W
m2K , ctrans = 6.67051 · 10−8 W

m2K 4 . The initial and external temperature was Text = T0 =
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Fig. 3. PVC test specimen with wedge-shaped defect. The angle a determines the defect shape and size.

Tamb = 298K . We incorporated a radiation boundary condition linearized at T0, i.e. used h̃ = h + 4ctransT 3
0 in the boundary

conditions (1b), (2b).
We added Gaussian white noise with standard deviation σ1 = 0.2K and σ2 = 1K . Fitting results can be seen in

Figure 4 for the a = 120◦-wedge. Although the temperature evolution is fitted for each surface pixel separately, a clear
improvement of the data in a spatial cross section (at a fixed time) can be observed. Despite the high noise level, the
temperature rise above the defect is clearly visible.

For applying the Envelope Algorithm [8], we need additional smoothing in space. For simplicity, we used a stan-
dard Gauss filter in space on the noisy data after applying the Green decomposition for smoothing in time. We compare this
to the results for the same Gauss filter in space combined with a moving average filter in time. Instead of using reference
data from a defect-free specimen, we used the solution T̂ (0, t) as a reference for computing the relative thermal contrast
Crel used in the reconstruction algorithm.

The reconstruction results can be seen in Figure 5. While the reconstruction for smoothing by the moving average
filter neither captures the top of the defect, nor the flanks and lateral extent, both are resolved quite well using the Green
fit.

5.3. Experimental data

For the measurements, the experimentally determined material parameters of the PVC test specimens were
thermal conductivity λ = 0.213 ± 0.02 W

m K , density ρ = 1413.4 ± 4 kg
m3 and specific heat capacity c = 1038 ± 40 J

kg K . The
heating was performed using two flash lights with 6kJ emission energy and a flash duration of 3ms. The cooling curve was
recorded with a Thermosensorik InSb 640 IR-camera. The recording frequency was originally 93Hz, which was reduced
to 1Hz by in-camera averaging. Figure 6 shows the surface temperature directly after flash heating, as well as after 22s of
the cooling phase. Inhomogeneous heating, as well as measurement noise are clearly visible.

After temporal smoothing, a method for spatial smoothing has to be applied. We combined the moving average
filter with Gaussian smoothing (the standard tools from image enhancement). TSR and the present approach were com-
bined with a Bayesian type smoothing, where a priori information about the temperature evolution in a defect free sample
is used to construct an a posteriori estimate of the data using the Bayes theorem. See Appendix B for a brief sketch of
the method, and, e.g., [9, 14] for an general introduction to the Bayesian approach to the solution of inverse problems.
According to our experience, Bayesian spatial smoothing gives slightly better results than a standard Gauss filter.

As a reference temperature for contrast computation, the average of a small defect-free patch of the test specimen
was used. Figures 7 and 8 show the resulting fitted temperatures and reconstructed defect shapes. As for the simulation
data, the top and flanks of the defect are resolved best using the Green decomposition method.

6. Conclusion

We have presented an algorithm for enhancement of active thermography data that is based on Green’s func-
tions for idealized 1D heat conduction problems. A major advantage is that the coefficients are known to be nonnegative
for physical reasons, such that further, often quite arbitrary, regularization is not required to obtain smooth temperature
reconstructions. Due to analytically available ansatz functions and the spatially decoupled computation of coefficients, the
method is efficient and easy to implement, though somewhat more complex than moving averages or polynomial fitting.

Compared to simpler methods for data enhancement, the resulting defect reconstructions appear to be consis-
tently better for both simulation data and measurements. Nevertheless, additional spatial smoothing is still required for
good reconstruction results.
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Fig. 4. Simulation data. Top: Fitted surface temperature above defect and sound area for the a = 120◦-triangle and
σ1 = 0.2K (detail). Bottom: Temperature over a cross section in space at t = 87.5s for σ2 = 1K .

A. Computation of T̂

The solution to Eq. (1) can be computed as

T̂ (z, t) =
∫ ∞

0
T0G(z, t ; ξ, 0) dξ︸ ︷︷ ︸

=T̂ ic(z,t)

+
α

λ

∫ t

0
Q(τ )G(z, t ; 0, τ ) dτ︸ ︷︷ ︸

=T̂ ht(z,t)

+
α

λ

∫ t

0
hText G(z, t ; 0, τ ) dτ︸ ︷︷ ︸

=T̂ bc(z,t)

.

Each integral can be evaluated exactly:

T̂ bc(z, t) = Text

[
erfc

(
z

2
√
αt

)
− exp

(
h2

λ2αt +
h
λ

z
)

erfc
(

z
2
√
αt

+
h
λ

√
αt
)]

T̂ ic(z, t) = T0

[
1− erfc

(
z

2
√
αt

)
+ exp

(
h2

λ2αt +
h
λ

z
)

erfc
(

z
2
√
αt

+
h
λ

√
αt
)]

For Text = T0, we have T̂ ic(z, t) + T̂ bc(z, t) = T0. In this case, only the heating term needs to be computed.
There, we need to distinguish between t ≤ th and t > th. For t ≤ th,
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Fig. 5. Simulation data. Reconstruction using the Envelope Algorithm [8] for the a = 120◦-triangle and σ2 = 1K with Green
(left) and moving average (right), both applied before using Gauss filter in space with σ2 = 0.5. As a reference

temperature for contrast computation, T̂ (0, t) was used. Thresholds for the thermal contrast were 0.075.
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Fig. 6. Experimental data: Surface temperature directly (left) and 22s (right) after heating.

T̂ ht(z, t) =
q
h

[
erfc

(
z

2
√
αt

)
− exp

(
h2

λ2αt +
h
λ

z
)

erfc
(

z
2
√
αt

+
h
λ

√
αt
)]

holds. For t > th, we obtain

T̂ ht(z, t) =
q
h

[
erfc

(
z

2
√
αt

)
− exp

(
h2

λ2αt +
h
λ

z
)

erfc
(

z
2
√
αt

+
h
λ

√
αt
)]

+
q
h

[
exp

(
h2

λ2α(t − th) +
h
λ

z
)

erfc

(
z

2
√
α(t − th)

+
h
λ

√
α(t − th)

)
− erfc

(
z

2
√
α(t − th)

)]
.

B. Bayesian data smoothing

In this section, we briefly sketch the Bayesian approach used for spatial data smoothing.
The basic idea of the Bayesian approach to the solution of inverse problems is to remove the ill-posedness by

restating the problem in a larger space of probability distributions. All variables are modeled as random variables and
information about the variables is coded in probability distributions [9].
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Fig. 7. Experimental data: Fitted surface temperature above defect and sound area (detail).

Here, we use this technique to approximate the true temperature of the specimen from the measured data. Let
T denote the true temperature and y the measurement. Then the theorem of Bayes states, that p(T | y ) ∝ p(y | T )p(T ).
The likelihood distribution p(y | T ) ∝ exp

(
− 1

2σ2 ‖y − T‖
)

encodes the statistics of measurement errors, here modeled as
additive white noise. the prior distribution p(T ) encodes the statistics of the true temperatures. As this distribution is rarely
well-known, a reasonable modeling of the prior is one of the most difficult tasks in Bayesian inversion. Here, for lack of
more precise knowledge, we choose the normal distribution p(T ) ∝ exp

(
− 1

2

(∥∥∥T − T̃
∥∥∥ + ‖Lx‖

))
, where L is a discretized

Laplace operator (smoothness prior) and

T̃ (t) =
q√

4πρλct

(
1 + exp

(
−ρc
λt

z2
max

))
describes the approximate temperature evolution in a defect-free specimen.The result of Bayesian inversion is then the
posterior distribution p(T | y ). As computation and interpretation of high-dimensional probability distributions is in general
extremely difficult, usually only point-estimates are computed, e.g., the conditional mean TCM = E(T | y ) of the posterior
distribution as used here. As all probability distributions are normal in the comparatively simple setting considered here,
the resulting posterior is also a normal distribution, and we can compute the conditional mean explicitly. TCM then is used
as input for the defect shape reconstruction algorithm.
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