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Abstract—Operation anomalies are common phenomena in
large-scale solar farms. Effective anomaly detection and classifi-
cation is essential for improving operation reliability and electric-
ity generation. However, this is a challenging task due to the high
complexity and wide variety of frequently occurring anomalies.
Furthermore, existing pre-installed supervisory control and data
acquisition systems (SCADA) can only provide a limited amount
of information regarding the healthy condition of solar farms,
making accurate anomaly detection and classification difficult.
This paper presents a data-driven anomaly detection and classi-
fication solution, which can accurately detect and classify diverse
photovoltaic system anomalies. The proposed solution does not
require additional equipment or non-SCADA data collection.
More specifically, the proposed work consists of two methods: (1)
a hierarchical context-aware anomaly detection method using un-
supervised learning, and (2) a multimodal anomaly classification
method. The proposed solution has been deployed in two large-
scale solar farms (39.36 MWp and 21.62 MWp). Multi-month
operation demonstrates the effectiveness, robustness, as well as
cost- and computation-efficiency of the proposed solution.

Index Terms—Anomaly detection, anomaly classification, pho-
tovoltaic system, machine learning

I. INTRODUCTION

HE installation of photovoltaic (PV) systems has ex-
Tperienced rapid growth over the past decade [1]. Such
aggressive deployment of solar farms raises serious challenges
to system operation and maintenance (O&M) [2], [3]. A large-
scale PV system may consist of well over 100,000 PV panels,
spanning across a wide ground surface area. Its operation is
affected by various environmental effects, and anomalies are
common phenomena during daily operation. For instance, sur-
face soiling and partial shading are common concerns caused
by the ambient environment. These anomalies, if not detected
in a timely manner, may degrade PV system performance and
further cause serious system hazards and failures [4].

Recent research has focused on developing anomaly de-
tection and classification (ADC) methods to improve the
performance and safety of PV systems [4], [5]. An effective
ADC solution can help capture PV system anomalies and make
it possible to schedule timely system O&M activities. Further-
more, it helps expedite PV system fault recovery and prevents
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further system performance deterioration. Recent studies have
demonstrated that PV system performance and reliability can
be effectively improved by adopting proper ADC solutions [5].

The complexity of large-scale PV systems and the diversity
of system anomalies are the primary challenges for ADC.
As summarized in Table I, a wide range of anomalies may
occur during daily operation. The occurrence of each type
of anomalies is further affected by various factors, such as
seasonality, PV panel location, and PV system installation
time. For instance, one of the solar farms used in this study
suffers from severe grass shading in July as weeds grow fast
during summer. In addition, different types of anomalies are
inter-related. For instance, long-term partial shading may cause
hot spots. Since different types of anomalies require different
treatments, an effective ADC solution must be able to capture
a wide range of anomalies. However, existing ADC methods
mostly focus on tackling specific anomaly types, hence with
limited application scope [4]. The primary focus of this work is
to tackle the aforementioned challenges and develop a solution
capable of capturing and classifying commonly occurring
anomaly types.

Data collection poses another challenge to ADC solution
design. Although supervisory control and data acquisition
(SCADA) systems have been widely installed in solar farms
to support PV system O&M, the information collected by
the SCADA system is limited. More specifically, as shown
in Fig. 1 [10], in a solar farm, the large number of PV
panels are connected hierarchically — multiple PV panels
are connected into a PV string, and multiple PV strings
are connected together to a combiner box. Existing SCADA
systems can only provide voltage and current information at
individual PV string level and temperature information at the
combiner box level. The operation status of individual PV
panels is unknown. Such limited information poses restrictions
to existing ADC designs. For instance, some prior work only
provides combiner box level or system level anomaly detection
capability [5], making it a challenge for utility operators to
locate individual anomalies. Recent work tried to perform
anomaly detection at PV string level. Often, additional sensing
and monitoring hardware installation are needed [1], [11],
[12], introducing extra installation and maintenance effort.
Compared with anomaly detection, accurate classification of
the diverse types of anomalies (shown in Table I) is more
challenging due to the limited amount of information provided
by the SCADA system.

There have been continued research developments in vi-
sual & thermal methods, given their high detection accuracy
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and exact fault localization [9], [13], [14]. However, these
methods are difficult to deploy in large-scale PV systems
due to the following practical limitations. First, to perform
fault detection in a large-scale PV system, a very large power
supply is needed when implementing the orthophoto infrared
thermography by light unmanned aerial vehicle and a thermal
imaging system, resulting in costly and time-consuming ex-
perimental set-up [14]. Second, these methods cannot detect
anomalies caused by optical degradation and failure, such as
glass breakage [9]. Third, these methods are inefficient for
newly-installed systems where the proportion of defective PV
modules is relatively low [13].

This paper presents a data-driven approach to perform high-
accuracy PV string-level anomaly detection and classification,
using information solely provided by the de facto installed
SCADA system. The proposed anomaly detection method
consists of two stages, namely local context-aware detection
(LCAD) and global context-aware anomaly detection (GCAD).
LCAD aims to identify all potential anomalous PV strings
with current characteristics that are distinct from adjacent
PV strings under similar environmental conditions. GCAD
is designed to minimize false alarms across the whole so-
lar farm. Together, LCAD and GCAD can provide accurate
string-level anomaly detection for solar farms. Furthermore,
since it is difficult and expensive to obtain labeled anomaly
data, the proposed anomaly detection method uses unsuper-
vised machine learning techniques. The proposed anomaly
classification method uses multimodal features. High-quality
features are the first step towards efficient and accurate
anomaly classification [15]. Therefore, the proposed method
pays special attention to multimodal feature engineering. In
our work, domain-specific features are firstly created. Then,
to reduce computation complexity and improve classification
performance, multimodal features are carefully designed and
extracted. Next, a multimodal model training process is es-
tablished, aiming to produce an accurate classification model
tailored to specific classification scenarios.

The proposed ADC solution has been adopted by two large-
scale solar farms with DC nominal capacity of 39.36 MW and
21.62 MW, respectively. Multi-month operation demonstrates
the effectiveness, robustness, as well as cost- and computation-
efficiency of the proposed solution. The contributions of this
work are summarized as follows:

1) This work proposes a hierarchical context-aware
anomaly detection method using unsupervised learning,

Combiner Box

TABLE I: Anomalies in PV Systems

Anomaly Type Anomalies

partial shading [6]
(e.g., building shading,

Visual
grass shading),
surface soiling [7]
Thermal hot spot [8]
Others sensor bias, aging [5],

glass (front-cover) breakage [9]

scale PV system.

Fig. 1: Diagram of a grid-connected large-

which can accurately detect diverse anomalies without
pre-labeling, and is more robust against irradiance and
weather variations than previous methods.

While some anomalies are nearly undetectable under low
irradiance [16] or weather with high cloud cover, the
proposed method achieves 90.2% detection accuracy for
the top-100 anomalies, while existing methods achieve
78.8% accuracy or lower.

To the best of our knowledge, this is the first work
that uses SCADA data to classify commonly occurring
anomalies at the PV string level in large-scale PV
systems. The proposed classification method achieves
93.0% precision for the 5 types of anomalies that occur
most commonly.

The proposed solution is cost- and computation-efficient,
as it utilizes readily-available measurements in existing
PV systems, without requiring additional equipment or
non-SCADA data collection.

The rest of this paper is organized as follows: Section II
surveys the related works. Section III presents data and solu-
tion overview. Section IV, Section V describes the proposed
anomaly detection and classification methods, respectively.
Section VI presents experimental results. Finally, Section VII
concludes this work.

2)

3)

4)

II. RELATED WORK
A. Anomaly Detection

Recent anomaly detection approaches in PV systems can
be categorized into two types: model-based approaches and
data-driven approaches.

1) Model-based Approaches: Model-based methods often
require a-prior (physical) model based on domain knowledge
to model specific types of anomalies [17].

Platon et al. proposed an online fault detection model to
estimate the AC power production, in which solar irradiance
and PV module temperature measurements are used [1].
Garoudija et al. proposed a model-based fault detection
method, in which temperatures and irradiance are used to
detect faulty PV panels by predicting the healthy PV panels’
maximum power [18]. Chouder et al. built a model to estimate
the overall performance of PV systems by analyzing power
loss, and detect faulty strings and partial shading anoma-
lies [11]. Chen et al. used multiple online meters to monitor
the voltage and power signals, which are then used for fault
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Fig. 2: Gaussian distributions of PV
strings at the same timestamp for a
39.36 MWp PV system.
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detection [19]. Dhimish et al. detected faulty PV modules and
strings using two metrics: power ratio and voltage ratio [20].
Some recent work performs fault detection by analyzing the
PV string electrical characteristics [21]. In these methods,
extra monitoring equipment besides the de facto installed
SCADA system is often required for model construction. The
overall system maintenance cost thus increases.

2) Data-driven Approaches: Different from model-based
approaches, data-driven methods mainly rely on the informa-
tion provided by SCADA systems with a limited requirement
of prior domain knowledge [22].

Mekki et al. used an artificial neural network (ANN) to
estimate the output photovoltaic current and voltage to detect
partially shaded conditions in a PV module [23]. Similar
works, described in [24], [25], used ANN to detect faulty PV
modules. In these methods, a large amount of labeled data are
needed to train an accurate model. Yi et al. developed a method
for line-to-line fault detection based on multi-resolution signal
decomposition. A two-stage support vector machine classifier
is used to support decision making [26]. Other methods, such
as the Bayesian Neural Network [27] and decision tree [22],
were also used. Dhimish et al. presented an automatic fault
detection and diagnosis solution using statistical methods.
Their solution first uses voltage and power measurements to
evaluate PV system performance. Then, a fault is detected
by comparing the theoretical and measured performance [28].
Other statistical methods were also proposed in [29]. In
summary, it is difficult and expensive to collect labeling
data from real-world solar farms to build an accurate model
using machine learning based methods. In addition, statistical
methods suffer from high false alarm issues since they ignore
the spatially variant ambient environment in large-scale PV
systems.

B. Anomaly Classification

Compared with anomaly detection in PV systems, anomaly
classification is under studied [4], [11], [30], [31]. There are
only a few studies that tackle the classification problem.

Omran et al. presented an unsupervised learning based
method to cluster similar segments of the output PV
power [30]. Their method is built at system level, which
provides an overall performance evaluation, but is incapable of
providing the cause of an anomaly. Chouder et al. introduced
an automatic supervised method to classify several types of
faults in a laboratory environment [11]. The method provided
the cause of faults according to the energy loss. For instance,
a string defect fault causes constant energy loss, and a shading
fault causes short-term energy loss. Zhao et al. proposed
a supervised learning based model to detect and classify
fault types in PV arrays [31]. These fault types included
line-line faults, open circuit faults, and shading faults. They
later proposed a semi-supervised learning based method to
classify the same types of fault while reducing the demand for
labeled data [4]. The proposed anomaly classification method
is different from the above methods in two aspects: (1) the
proposed method is capable of classifying anomalies into five
types at PV string level based on SCADA systems; and (2)

3

the design of multimodal features improves the classification
performance and reduces computational efficiency.

III. DATA AND SOLUTION OVERVIEW
A. PV System Configuration and Data Collection

In this work, we utilize SCADA data collected from two
real-world solar farms (site A and site B) located in China.
Site A has a DC nominal capacity of 39.36 MW, generated by
131,184 300 W PV panels connected to 8,199 PV strings, and
553 combiner boxes. The DC nominal capacity, 21.62 MW, of
site B is generated by 72,080 300 W PV panels connected to
4,240 PV strings, and 294 combiner boxes. Measurements are
recorded every minute, and individual strings’ current values
are used to develop the solution.

B. Data Preprocessing

To achieve accurate ADC, a well-designed data preprocess-
ing procedure for the raw SCADA data is essential.

1) Data Cleaning: SCADA data are usually contaminated
by errors and imprecise values due to malfunctions of sen-
sors and the data management system. These errors may
include unavailable values (e.g., dummy values), misfielded
values [32], duplicates, or out-of-range values. These errors
are first removed from modeling the data set. In addition,
this study applies data from 8AM to 5PM because this period
corresponds to relatively high solar irradiance, usually greater
than 50 W/m?, which corresponds with high measurement
accuracy [1]. Also, observations corresponding to lower than
zero or greater than short circuit current output are removed.

2) Data Filtering: The cleaned data may still contain
random noises, which are handled with a median filter [33].
Since the 1 hour filtering interval has been widely adopted and
its accuracy has been verified in an existing fault detection
study [1], we adopted the same interval in this work. The
impact of data filtering on anomaly detection accuracy is
further investigated in Section VL

3) Data Downsampling: To reduce computation cost with-
out decreasing accuracy, downsampling is applied. In prior
works, 1-minute [11], 5-minute [5], and 10-minute downsam-
pling intervals [1] have been widely used. This study imple-
ments the proposed solution under all three downsampling
intervals. The efficiency and effectiveness of these widely-used
downsampling intervals are compared in Section VL

C. Design Motivations

First, given similar irradiance, healthy PV panels should
produce similar amount of power. PV strings connected to
the same combiner box are closely located. Therefore, a
malfunctioning PV panel/string can potentially be detected by
comparing its power production against that of neighboring PV
panels/strings connected to the same combiner box. Howeyver,
PV strings located farther away, e.g., connected to different
combiner boxes, may exhibit distinct power production profiles
due to spatially variant ambient environments. As a result,
direct comparison between PV strings connected to different
combiner boxes may draw incorrect conclusions (e.g., high
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false negatives and false positives). As shown in Fig. 2, all PV
strings connected to combiner box No. 1 operate properly, and
one faulty PV string exists in combiner box No. 2. Using direct
comparison of the power production of all the PV strings, if
the 3-Sigma rule is used for anomaly detection, normal strings
in combiner box No. 1 will be detected as false positives, while
the faulty string in combiner box No. 2 will be ignored as a
false negative.

Second, the number of PV strings connected to each com-
biner box is limited. Due to sensor noises and environmental
variations, anomaly detection based solely on local comparison
with a limited number of samples may introduce a high
false positive rate. To address this issue, locally detected
anomaly candidates need to be further examined at the system
level. Statistically, the majority of PV strings of a large-scale
PV system are expected to be fault-free most of the time.
Such information can be leveraged to identify true faulty PV
strings and minimize false alarms. These observations motivate
the proposed hierarchical context-aware anomaly detection
method.

Furthermore, different types of anomalies require different
maintenance treatments. Therefore, anomaly detection must be
combined with classification to support maintenance activities.
Anomaly classification is generally a challenging problem as
the operation of a PV system is affected by a wide range of
environmental variables. For instance, site A suffers from grass
shading and hot spot anomalies during the summer, while site
B suffers from sensor bias anomalies. Thus, how to identify
the right anomaly features and design an accurate anomaly
classifier is an unsolved research challenge. Fortunately, dif-
ferent anomalies exhibit distinct temporal and spectral charac-
teristics, which motivated us to develop a multimodal anomaly
classification method.

D. Solution Overview

Fig. 3 illustrates the flow of the proposed solution, which
consists of two layers: anomaly detection and anomaly classi-
fication. There are two stages in the anomaly detection layer.
First, an unsupervised machine learning technique is applied
to find all possible PV strings that may be contaminated by
anomalies. Then, in the second stage, those anomaly candi-
dates are further confirmed as true anomalies at the system
level. The anomaly classification layer further classifies the
detected anomalous strings into multiple categories.
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Fig. 3: Overview of the proposed ADC solution for PV systems.

IV. ANOMALY DETECTION

This section details the proposed hierarchical context-aware
anomaly detection method. The fundamental idea of the pro-

posed method resides in its ability to learn a normal operation
status for all PV strings inside a combiner box in LCAD. The
anomalies are then perceived as a long-period deviation from
the normal operation status in GCAD. The illustration of the
proposed method is shown as Fig. 4.

Step 1: LCAD - Anomaly
i Detection using AutoGMM
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5 g ) K0 | |Updatel Anomalous String
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(GMM). | |UEdate Local Anomaly
Index
!_ 1 Step 2: GCAD - Anomaly

Identification using
Auto-Thresholding

Combiner Box
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@ PV string current at t normal current at t @ anomalous current at t

Fig. 4: Diagram of the anomaly detection process.

A. Local Context-Aware Anomaly Detection

As illustrated in Fig. 4, the goal of LCAD is to capture
anomalous PV string candidates from each combiner box,
leveraging the fact that PV strings in the same combiner box
behave similarly except anomalous ones. To achieve this goal,
an AutoGMM algorithm, which applies the Gaussian Mixture
Model (GMM) [34] to represent the behaviors of normal and
anomalous PV strings at the combiner box level is proposed
with the assumption that the currents measured from normal
PV strings and anomalous PV strings follow different Gaussian
distributions.

Let us consider a PV system composed by s sensors
collecting PV string currents and monitoring a time pe-
riod n (n is the number of timestamps). A data set X =
{X1,...,X;,X;41,...,Xs} is represented a n X s matrix, in
which each column vector x; = [x((fz) I [
denotes the current values generated from the ith PV string
in the jth combiner box. At each timesta(ngp, a mixture of
K Gaussian distributions p) = Zf‘:yl] BN (s, 0%) is
used to represent PV string distributions in the jth combiner
box, where N (j1;,02) is the Gaussian component to describe
the distribution of currents inside the combiner box, while
w; and o2 are the mean and variance of the ith Gaussian
component, respectively. The value of Kéj ) is limited by
the number of PV strings inside the jth combiner box. As
K_(gj ) is an unknown parameter to be estimated, this study
uses the Bayesian Information Criterion (BIC) [35], [36] to
determine the optimal value of K ;9 ) automatically. The BIC
value increases with the increasing of unexplained variations
and the number of explanatory parameters in GMM, hence,
the model with the lowest BIC is selected in this study. Eq.
(1) shows the estimation of K g(,J ),

K{(].f)zargmink(” meln(o?)+k-In(m), @)
g

where m is the number of data samples, & is the number of free
parameters to be estimated, and ag is the model error variance.
The expectation Maximization (EM) algorithm [37] is adopted
to learn the parameters (e.g., means, variances) in GMM. In
summary, Algorithm 1 describes the AutoGMM algorithm.
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Algorithm 1 AutoGMM(x)

Require: x = {x1,X2,...,Xp, } is a set of m PV string currents in a combiner box.
1: Initialize ModelsNum + m

2: while ModelsNum > 0 do

3: clusters < GMM(x, M odels Num)

4: BICodelsNum <BIC(clusters)

5: ModelsNum < ModelsNum — 1

6: end while

7: OC < clusters with minimum BIC\jodeisNuwm
8: NC < the cluster with the maximal centroid in OC
9: Cen < the centroid of NC

10: return NC, Cen

The AutoGMM algorithm generates multiple clusters that
include all PV string currents in the same combiner box at
a timestamp. Then, the cluster with the maximal centroid
current is identified as the normal cluster (NC), and the rest
as potential abnormal clusters. This is because the normal PV
string currents are greater than the anomalous ones in the same
combiner box at a timestamp. To quantify the anomalous level
of the ith PV string, a local anomaly index (LAI) is proposed
and defined as:

n—1
LAL =Y f(k)/n, 2
k=0
where f(k) is defined as:

1 if x}j i ¢ NC at timestamp k.
0 otherwise.

fk) =

Here, LAI represents the percentage of time that a PV string
current is considered abnormal. Theoretically, the higher the
LAI is, the higher possibility the PV string is abnormal.
Afterwards, LAI = {LAI,...,LAI;} are passed to the
GCAD stage for further analysis.

B. Global Context-Aware Anomaly Detection

Due to temporal environmental conditions (e.g., cloud drift)
and sensor noises, not all PV strings with positive LAIs are
true anomalies. To reduce false alarms, a threshold is needed,
and PV strings whose LAIs are less than this threshold will
be filtered as normal PV strings. However, it is difficult to
determine a proper threshold from day-to-day fault detection
as the sensing conditions and external environment change
over time. To address this issue, this subsection proposes a
data-driven auto-thresholding algorithm.

Algorithm 2 AutoThresholding(LAI, K)
Require: A set of LAl =< LAI,LAIs,...,LAI; >.

1: Kclusters < K-Means(K)

2: < ¢}, ch,...,cx >+ the ascendingly sorted centroids of the Kclusters

3: thr <0

4: Generating c* =< ¢}, cjy,...,cj) >, with each c]* € c* and c; = c'j —
2¢i_ 1+ ¢y

5: thr < the corresponding L AT value of the first peak in ¢*

6: return thr

Algorithm 2 presents the auto-thresholding method. Firstly,
K-Means clustering is used to partition all LAls into K
clusters. In Section VI, K = 20 is empirically set. Let c;
be the centroid LAI value of the ¢th cluster. The set of
¢ = {e1,¢9,...,cx} is then sorted in ascending order into
el ={c},ch,...,c}. Here, this study assumes that the cen-
troid LAI values from abnormal clusters are significantly larger

than those from normal clusters. To capture this significant
“divergence” from the sequence ¢/, the second order difference
(SOD) of this sequence is computed as SOD mathematically
describes the rate of changes. Then, the centroid LAI corre-
sponding to the first peak in the SOD sequence is used as the
threshold thr.

V. ANOMALY CLASSIFICATION

In this section, multimodal features from both time and
frequency domains are first designed and extracted. Then,
a classification model is produced for specific classification
scenarios.

A. Feature Extraction

As described in Section III, currents of different anomalies
exhibit distinct temporal, spatial, and spectral characteristics.
The characteristics, originating from the long-term deviations
from normal PV string currents, provide helpful information
for classifying types of anomalies. However, as discussed in
Section III, the normal status of PV strings has a spatial
variance, hence when deriving the deviations that characterize
anomalies, spatial variance needs to be minimized. Specifi-
cally, in this study, the centroid of the normal cluster detected
from the LCAD stage during the proposed anomaly detection
process can be viewed as the expected current of normal PV
strings. Thus, for the ¢th PV string in the jth combiner box, the
deviation D,L(] )(k) as a function of discrete time & is defined
in Eq. (3).

3)

where C'en;”’ is the centroid of a normal cluster. It is necessary
to mention that the n can be identified according to the real-
time applicability. Since a daily alarm report is sufficient for
O&M activities, a daily D(k) sequence is used to describe the
characteristics of an anomaly.

However, daily D(k) sequence is a high-dimension feature
vector, which is not effective and computationally-efficient for
classification. To reduce computation complexity and improve
classification performance, lower-dimension feature space ex-
tracted from time and frequency domain of D(k) is designed
and presented in the following subsection.

1) Aggregation Features: Aggregation features are ex-
tracted from a temporal perspective and defined in Eq. (4).

C))

As shown in Eq. (4), F, consists of the mean, median,
standard deviation, and maximum of the D(k) sequence. The
aggregation features capture the unique temporal characteris-
tics of different anomalies and invariant characteristics of the
same anomalies under spatially variant ambient environments.
For instance, two anomalies of the same type DEJ )(k) and
DI()q)(k;) (j # q) may be different as the two anomalies are
located under two combiner boxes. However, statistical values
such as the mean, median, standard deviation, or maximum
of daily D' (k) and D? (k) sequences are similar. Fig. 5a
shows such a case. For two building shading anomalies, the

DE”(k):Ceniﬂ—xii?w k=0,1,--- ,n—1,

(7)
k

Fo={Mecan(D(k)),Median(D(k)),Std(D(k)),Max(D(k))}.
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highest scaled D(k) can occur either in the morning (10AM
for PV string No. 2) or the afternoon (2PM for PV string No.
1), which depends on both the PV string’s location and the
dynamic solar incidence angle.

2) Spectrum Features: Spectrum features represent the fre-
quency properties of a D(k) sequence. The intuition behind
spectrum features is that the spectral energy of daily D(k) se-
quences may be composed of different {requency components,
depending on the anomaly types.

LOF Siring 1 — Lo
String 2 —

/
i'ss
I\

00:90
00:L0
00:80
00:60
00:L0
00:80

0’
0
0
0
0
0
0
0
0°
00:90

(@) (b)

Fig. 5: Scaled D(k) sequence examples for (wo building shading
anomalies (string No. 1 and string No. 2), a hot spot anomaly (string
No. 3), and a grassing shading anomaly (string No. 4).

For example, the D (%) sequence of a grass shading anomaly
(PV string No. 4 in Fig. 5b) may have fluctuations caused by
environmental conditions, while daily D (k) sequence of a hot
spot anomaly (PV string No. 3 in Fig. 5b) is more stable. In
this study, Fast Fourier Transform (FFT) is used to extract the
spectrum features, which are defined as Eq. (5).

}—5:{9(’“‘)7“:0’17"' ,7’7,—1}, {g(u)}z;é (5)

=22, (6)

g(u)=3"725 D(k)e

Since the Fourier spectrum for D(k) sequence is symmetric,
this study only considers spectral values for n/2 frequencies.

B. Feature Selection

After the feature extraction, the feature dimension is reduced
from n of D(k) sequence to n/2+ 4 of extracted multimodal
features. The dimension can be further reduced by selection,
as the FFT spectrum of D(k) sequence is dominated by a
subset of frequency components. The remaining frequency
components are of little importance for distinguishing anomaly
types. To assess the importance of each feature and select
the most important ones, this study first computes features’
importance scores using the ranking function of XGBoost [38].
Then, the features with positive importance scores are chosen.

C. Model Training

As commonly occurring anomaly types are affected by
various factors, such as specific solar farms and seasonality,
the best combination of features and classification models can
vary. Thus, a suitable classifier given a set of pre-defined
models and features needs to be identified. This study trains
three classification models, including support vector machine
(SVM) [39], Bagging [40], and XGBoost based on original
D(k) features and extracted multimodal features, respectively.
The goal of the training procedure is to seck a model and
corresponding features with the highest classification perfor-
mance.

VI. EXPERIMENTS AND RESULTS
A. Evaluation Metrics and Experiment Setup

a) Anomaly Detection: As there is no prior knowledge
about the total number of anomalies, the top-k detection
accuracy defined in Eq. (7) is used to quantify the effectiveness
of the proposed anomaly detection method.

Detection Accuracy:%, @)

where k.orrect represents the number of true anomalies in the
top-k detected anomalies. The top-k detected anomalies are
the k identified anomalous PV strings with the highest LAT
from a daily report. For the three baseline methods used in
the following experiments, the total number of alarms for each
PV string is first counted within a day. Then the k PV strings
with the most frequent alarms are chosen as the top-k detected
anomalies.

The proposed method is compared against three SCADA-
based anomaly detection methods for PV systems [29]: Ham-
pel identifier, 3-Sigma rule, and Boxplot outlier rule. These
methods aim to find and report anomalous PV strings using
instantaneous currents of all PV strings at every timestamp. To
make an equal comparison setup, first, preprocessed SCADA
data is used for all methods. Secondly, daily anomaly reports
from the three baseline methods are generated by counting the
total number of anomaly alarms for each PV string within a
day and sorting their anomaly alarm numbers in descending
order. Finally, the top-k detected anomalous PV strings are
used Lo evaluate the performance of all methods.

b) Anomaly Classification: In this study, the multilabel-
based macro-averaging metric defined in Eq. (8) [41] is used to
quantify the overall performance of the proposed classification
method.

Baero(h)=1

where B(T'P;, FP;,TN;, FN;) represents binary classifica-
tion metrics (B € {Precision, Recall, F1}). L is the number
of anomaly types, in this study, L = 5. TP;, F'P;, TN, and
F'N; denote the number of true positive, false positive,
true negative, and false negative test instances with respect
to the j class label, respectively.

]L:I B(TPi'VFPi#TNwFNj)" (8)

B. ADC Method Evaluation

1) Anomaly Detection Evaluation:

a) Overall Performance: Fig. 6 shows the mean detec-
tion accuracy from onsite monitoring for nearly a month. To
show how the performance varies with different rankings of k
for each method, % is set to vary from 10 to 100. As shown
in Fig. 6, the proposed method consistently outperforms the
three other methods, and the detection accuracy of the other
methods decay more quickly as k increases. More specifically,
the detection accuracy of the proposed method is 90.2% when
k is up to 100, while it is 78.8% or lower for other methods.

In addition, the filtering algorithm can help improve the
performance of the anomaly detection methods, and the pro-
posed method (Proposed*) outperforms the unfiltered case
(Proposed). That is because the filtering algorithm can partially
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remove sensor noises and environmental variations, leading
to larger current differences between normal and anomalous
strings.

b) A Case Study of Anomaly Detection: The following
study helps further clarify the two-stage anomaly detection
method. Fig. 7 shows a combiner box containing 16 strings,
and 6 of them are identified as anomalous candidates. Fig. 8
shows 20 clusters’ centroid LAl values sorted in ascending
order and the corresponding second order difference. The first
significant peak is auto-detected as 0.21 at the 11th cluster.
Therefore, only the 9th string shown in the combiner box is
identified as a true anomalous string.

2) Anomaly Classification Evaluation: We collected 10-
month operation data from the two PV sites, from which 1,034
anomalies were detected during this period. These anomalies
are further classified into five types, summarized in Table II.
The unrecoverable anomalies require repair or replacement of
PV panels, while the recoverable ones can be recovered via
routine maintenance, e.g., cleaning and mowing.

To evaluate the proposed classification method, the opera-
tion dataset is randomly divided into training and test sets by
fixing the ratio between the training set and test set as 3:1.
The results are averaged over 12 rounds of random training-
test splits.

The proposed multimodal feature extraction process oper-
ates as follows. First, 541 features are extracted from each
daily data sequence D(k) (from 8AM to 5PM) with minute-
level resolution. It then reduces the 541-dimension D(k)
sequence into 274 features, among which 4 of them are
aggregation features, and the remaining 270 are spectrum
features. Using the XGBoost method, the importance of each
feature is further assessed, resulting in 254 features with
positive importance score. The 254 features are then fed into
classifiers.

Fig. 9 evaluates the classification performance of the pro-
posed feature extraction method. It first evaluates the per-
formance of the proposed D(k) feature sequence. As shown
in this figure, the SVM classifier achieves the best precision
(92.0%) and recall (91.8%) using the proposed D(k) feature
sequence. Other classifiers, e.g., Bagging (BGG) and XG-
Boost (XGB), offer similar performance. In other words, the
proposed D(k) feature sequence consistently enables high-
quality anomaly classification. Next, the proposed feature
extraction method further reduces the 541-dimension D(k)
feature sequence down to the final 254 multimodal features,
offering 53.1% feature dimension reduction. As shown in this
figure, using the reduced 254-dimension multimodal features,
among the three classifiers, the XBGoost offers the best

TABLE II: Types of Anomalies Found in Two PV Systems

Anomaly | Anomaly Occurrence
Property Examples
Source Type Frequency
internal type 1 sensor bias, aging 45.94%
unrecoverable external type 2 building shading 22.15%
hot spot.
internal type 3 P 18.96%
glass breakage
4 ss shadi 12.
recoverable external type grass shading 7%
type 5 surface soiling 0.39%

classification precision (93.0%) and recall (92.8%). More
importantly, it slightly outperforms against that of the 541-
dimension D(k) features. In other words, the proposed feature
reduction method not only reduces classification computa-
tion complexity, but also maintains and slightly improves
anomaly classification. Furthermore, using the 254-dimension
multimodal features, other classifiers, i.e., SVM and Bagging
(BGG) consistently offer similar classification performance.

The following study aims to gain further insights of the
proposed feature extraction method. Figs. 10 and 11 illustrate
the top-2 components of the proposed D(k) features and the
final 254 multimodal features using t-distributed stochastic
neighbor embedding (t-SNE) algorithm [42], respectively. It
can be seen that both feature sets provide clean separation
for anomalies belonging to different types. Fig. 10 shows the
proposed D(k) features contribute more in classifying type 1
and type 3 anomaly. Compared against D(k) features, type
2, type 4, and type 5 anomaly are more accurately classified
using the multimodal features, as shown in Fig. 11. Figs. 12a
and 12b provide further study using a confusion matrix. As
can be seen, the classifier based on D(k) features misclassifies
9 testing samples of type 4 as type 3, while the classifier based
on the multimodal features misclassifies 4 testing samples of
type 4 as type 3 and type 5.

3) Sensitivity Analysis: The proposed method is more ro-
bust against irradiance and weather variations than previous
methods. To better understand the sensitivity of our method
in various scenarios, we compare our proposed method with
the Hampel method, which has shown the best performance
among the three methods currently available.

a) Impact of Irradiance: Fig. 13 shows the anomaly
detection accuracy of our method and the Hampel method
under different irradiance. We estimate the quantile regression
model [43] for two quantiles (7 = .1 and 7 = .9) to investigate
the relationship between top-100 detection accuracy and irradi-
ance. We can see that for both methods, the detection accuracy
increases as irradiance increases, and the accuracy is more
concentrated under higher irradiance. However, compared with
the Hampel method, the proposed method achieves higher
detection accuracy, and this accuracy exhibits less variation
under the same irradiance. For example, when the irradiance
is 4,000 Wh/m?/day, the detection accuracy of the proposed
method ranges approximately from 78% to 97%, while the
detection accuracy of the Hampel method ranges from 40%
to 94%. Also, the mean detection accuracy is 90.2% for the
proposed method, while it is only 78.8% for the Hampel
method.

b) Impact of Weather: The proposed method is also more
robust to weather variations than the Hampel method. Fig. 14
shows a boxplot summarizing the distribution of top-100
anomaly detection accuracy for five different weather condi-
tions: heavy rain, light rain, overcast, cloudy, and sunny. These
conditions correspond to different amounts of cloud cover.
As we can see in the figure, the proposed method achieves
higher median detection accuracy (the horizontal bar within
cach box) and has less variation than the Hampel method
under the same weather conditions, which demonstrates that
the proposed method is less impacted by weather.
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Fig. 12: Confusion matrix of individual anomaly types when using
D(k) features vs. multimodal features.

C. Cost-benefit Analysis

Adopting the proposed solution can reduce the levelized
cost of electricity (LCOE) of PV technology [44] by reducing
O&M expenditures, increasing energy yield incomes, and
improving soft benefits. To show the financial advantage of
the proposed method, a cost-benefit analysis is performed to
determine the net present value (NPV) [45], which is defined
in Eq. (9).

Cl()—co)

T
NPV=Er,=0 (1)t ’

©)

where T is the expected lifetime of the PV system in years
(20 years in this study), r is the discount rate (10% in this
study), CI(t) and CO(t) are the benefits and costs in year
t, respectively. Fig. 15 shows how the NPV varies with the
DC nominal capacity when using the proposed solution versus
conducting ADC manually. We can see that: (1) the proposed
method are more financially viable than conducting ADC
manually; and (2) the larger the DC nominal capacity, the
greater the NPV value. Thus, it is clear that the proposed
solution is financially advantageous when applied to more PV
systems. The key benefits and costs are listed in Appendix A.

D. Efficiency Analysis

Computation efficiency is critical to support daily mainte-
nance activities. The proposed ADC solution is implemented
on a 2.66 GHz quad-core computer. The computation time
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Fig. 10: Visualization of D(k) features.
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Fig. 11: Visualization of multimodal features.
of processing the daily collected data is measured as follows.
The computation time of the LCAD stage for cach sampling
interval (1-minute, 5-minute, and 10-minute) is 179 min,
36 min, and 15 min, respectively. When using 10-minute
downsampling interval, the computation time for site B is
approximately 9 min in the LCAD stage. The computation
time of GCAD is the same for all sampling intervals, 2.2
seconds. Under different sampling intervals, the proposed
anomaly detection method achieves over 90% accuracy of
the top-100 anomalous PV strings. To reduce computation
and memory cost, the 10-minute downsampling interval is
recommended. Also, the computation time in the test set
for the proposed anomaly classification method with the best
performance is less than 4.9 seconds (XGBoost method using
multimodal features), which satisfies the real-time requirement
of daily system O&M.

VII. CONCLUSIONS

This study proposes a data-driven solution for effective
anomaly detection and classification, which utilizes PV string
currents as indicators to detect and classify the 5 types of
anomalies that occur most commonly in large-scale PV sys-
tems. Two PV systems located in China have adopted the pro-
posed solution. Comprehensive theoretical and experimental
analysis demonstrates the method is effective at detecting and
classifying diverse types of faults as long as their maximum
power point current Iy, changes. Whether the method can
detect and diagnose faults with negligible I,,,;,,, such as shunt
defects, requires further investigation. We will continue to
track the anomalies diagnosed from the two PV sites.

Future works include the investigation of combining I,
and maximum power point voltage V,,,, to detect and di-
agnose more diverse types of anomalies to facilitate O&M.
Also, our proposed method could be complemented by visual
& thermal methods given their high detection accuracy and
exact fault localization. It is possible to combine aerial infrared
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weather.

thermography imaging with data-related methods for large-
scale PV systems, so as to perform effective, efficient detection
and diagnosis of diverse types of incipient faults.
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APPENDIX A
COMPARISON OF COSTS AND BENEFITS
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Proposed Solution Manual ADC
Costs and Benefits
(CNY/MW/year) (CNY/MW/year)
O&M expenditures 3,600 6,000
software deployment costs 1,000 0
soft benefits 4,800 0
increased energy yield incomes 9,600 6,400
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