
1

Modeling Dynamic User Preference via
Dictionary Learning for Sequential

Recommendation
Chao Chen, Member, IEEE, Dongsheng Li, Member, IEEE, Junchi Yan, Member, IEEE, Xiaokang

Yang, Fellow, IEEE

Abstract—Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often
drift over time. Many existing recommendation algorithms – including both shallow and deep ones – often model such dynamics
independently, i.e., user static and dynamic preferences are not modeled under the same latent space, which makes it difficult to fuse
them for recommendation. This paper considers the problem of embedding a user’s sequential behavior into the latent space of user
preferences, namely translating sequence to preference. To this end, we formulate the sequential recommendation task as a dictionary
learning problem, which learns: 1) a shared dictionary matrix, each row of which represents a partial signal of user dynamic
preferences shared across users; and 2) a posterior distribution estimator using a deep autoregressive model integrated with Gated
Recurrent Unit (GRU), which can select related rows of the dictionary to represent a user’s dynamic preferences conditioned on his/her
past behaviors. Qualitative studies on the Netflix dataset demonstrate that the proposed method can capture the user preference drifts
over time and quantitative studies on multiple real-world datasets demonstrate that the proposed method can achieve higher accuracy
compared with state-of-the-art factorization and neural sequential recommendation methods.

Index Terms—Collaborative filtering, sequential recommendation, dynamic preference, dictionary learning

F

1 INTRODUCTION

IN recommender systems, user preferences often drift over
time due to various reasons, e.g., changes in life [23],

experience growth [40], etc. However, many existing col-
laborative filtering (CF) algorithms [28], [41] summarize a
user’s historical records into a single latent vector, which
may lose the dynamic preference drifts and lead to subop-
timal recommendation accuracy [9], [23], [40]. To remedy
this, many techniques have been adopted to model user
dynamic preferences in collaborative filtering. For instance,
Rendle et al. [47] and He et al. [16] both adopted Markov
chains to model local patterns among items. Zheng et al.
[68] used the neural autoregressive distribution estimator
(NADE) to model the conditional probability of the next
item given a user’s historical ratings. Recently, several
works [2], [21], [62] used recurrent neural networks (RNN)
to embed previously purchased products for current interest
prediction. Due to the recent advances of deep learning,
these RNN-based methods have achieved promising re-
sults in sequential recommendation. Our case study shows

• Chao Chen is with School of Electronic Information and Electrical
Engineering, and MoE Key Lab of Artificial Intelligence, AI Institute,
Shanghai Jiao Tong University, Shanghai, 200240, P. R. China. E-mail:
chao.chen@sjtu.edu.cn.

• Dongsheng Li (correspondence author) is a senior researcher with Mi-
crosoft Research Asia, Shanghai, and an adjunct professor with School
of Computer Science, Fudan University, Shanghai, 201203, P. R. China.
E-mail: dongshengli@fudan.edu.cn.

• Junchi Yan (correspondence author) is with Department of Computer
Science and Engineering, and MoE Key Lab of Artificial Intelligence, AI
Institute, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
E-mail: yanjunchi@sjtu.edu.cn.

• Xiaokang Yang is with MoE Key Lab of Artificial Intelligence, AI In-
stitute, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
E-mail: xkyang@sjtu.edu.cn.

• Dongsheng Li and Junchi Yan are the corresponding authors.

that RNN-based methods [62], [68] that consider sequential
patterns exhibit better accuracy than state-of-the-art matrix
approximation methods [5], [28], [34] without considering
sequential information on the Netflix prize dataset.

However, existing RNN-based methods [62], [65], [68],
which exhibit the advantage by capturing temporal or se-
quential user behaviors, may not be suitable for modeling
and capturing the long-term impact of previously purchased
items on the future one [9]. To remedy this, many works [9],
[25], [26], [44], [60], [64], [67] proposed to use external
memory networks (EMN) [55], [61] and attention mecha-
nism [11], [57], where shorter path between any positions
in the sequence makes the long-term impact easier to learn.
Despite their effectiveness, the ordinal information of his-
torical items is usually not explicitly considered in these
works, which may lead to suboptimal performance because
the sequential patterns contained in the sequence of user
behaviors may be neglected. In addition, the sequential pat-
terns may be conceptually different from user preferences,
i.e., in different feature spaces, and thereby it may increase
the complexity of learning the downstream estimators when
user preferences are directly combined with the intermedi-
ate outputs of recurrent/memory/attention networks.

In this paper, we propose a dictionary learning-based
approach to model both long-term static user preferences
and short-term dynamic user preferences under the same
latent space. More specifically, we learn a dictionary from
scratch and each row of the dictionary can be regarded as
a basis representing a partial signal of user dynamic prefer-
ences shared across all users. Then, the dynamic preference
of each user can be modeled by a linear combination of
all the rows in the dictionary. To achieve adaptive linear
combination on different users / sequences, we propose a

2

deep autoregressive model integrated with Gated Recurrent
Unit (GRU) to learn features from user sequential behaviors,
which can generate the weights for the linear combination to
form the dynamic preference of each user. After obtaining
the dynamic preference of each user, we use an additive
mechanism to fuse the dynamic and static preferences for
predicting the future interests of each user.

The main contributions of this work are summarized as
follows:
1. To the best of our knowledge, this is the first work
that tackles the sequential recommendation problem via
dictionary learning, which can model user static preferences
and dynamic preferences under the same latent space to
achieve simpler fusion, i.e., a simple additive mechanism
can achieve decent performance.
2. Sequence-to-preference neural machine (S2PNM) is pro-
posed to translate the sequential behaviors of users into dy-
namic user preferences using a deep autoregressive model
integrated with GRU.
3. Empirical studies on multiple real-world datasets
demonstrate that S2PNM can significantly outperform state-
of-the-art factorization and neural sequential recommenda-
tion methods in recommendation accuracy.

2 PROBLEM FORMULATION

This section first formulates the targeted problem and then
presents a case study to show the challenge faced by existing
CF methods without considering sequential information.

2.1 Matrix Factorization (MF)
Matrix factorization-based collaborative filtering algorithms
have recently achieved superior performance in both rat-
ing prediction task [5], [28] and top-N recommendation
task [20], [24]. Given a user-item rating matrix Rm×n with
m users and n items, we denote rij|t as the score rated
by user i on item j at time t. Then for each user, there
always exists an item sequence {x1, . . . , xT } (T will vary for
different users). Traditional MF methods, e.g., regularized
SVD (RSVD) [43], are popular due to simple implementation
and superior accuracy compared to other kinds of methods.
More formally, these methods generally minimize the sum-
squared error between the rating matrix R and its low-rank
recovery R̂ = UV > with `2 regularization as follows:

min
U,V
||I ◦ (R− UV >)||+ λ1||U ||+ λ2||V ||, (1)

where U ∈ Rm×k, V ∈ Rn×k are the latent factors of users
and items respectively, and Iij is an indicator function that
equals to 1 when Rij is observed and equals to 0 otherwise.
||U || :=

√∑
ij U

2
ij is the Frobenius norm of U .

2.2 Case Studies
Traditional MF methods [5], [28], [34] did not consider
the sequential information, and thus may yield suboptimal
performance in real scenarios in which user future interests
are predicted on their historical behaviors. Here, we conduct
a case study on the Netflix dataset to demonstrate that state-
of-the-art MF methods indeed underperform in sequential-
based data splitting protocol. More specifically, we adopt

TABLE 1
Recommendation RMSE of SVD++ [28], GLOMA [5], MRMA [34],

RRN [62], NADE [68] and the proposed S2PNM method, as well as the
relative performance gains over the baseline – SVD++ on the Netflix
dataset with two different data splitting protocols (i.e., split by random

and split by time). Note that we set the rank as 300 for SVD++, GLOMA
and MRMA, 300 hidden units for RRN and S2PNM, and 1000 hidden

units for NADE.

Method spit-by-random spit-by-time
SVD++ 0.80701 (+0.00%) 0.89267 (+0.00%)
GLOMA 0.80132 (+0.70%) 0.89326 (−0.06%)
MRMA 0.79940 (+0.94%) 0.89210 (+0.06%)
RRN 0.80443 (+0.32%) 0.89014 (+0.28%)
NADE 0.80243 (+0.56%) 0.88876 (+0.43%)
S2PNM 0.78481 (+2.75%) 0.87301 (+2.20%)

two different data splitting protocols on the Netflix dataset
to study how the prediction accuracy varies: 1) random
splitting, which is the most widely adopted protocol in
classical collaborative filtering literature [28], [62]; and 2)
sequential-based splitting, in which we split the dataset
based on the chronological order to simulate real recom-
mendation scenarios. To make a fair comparison, we keep
the ratio of training and test sets as 9:1 for both data splitting
protocols.

Table 1 summaries the recommendation accuracy in
terms of RMSE on one baseline method (SVD++ [28]), two
state-of-the-art MF methods (MRMA [34] and GLOMA [5]),
two sequential recommendation methods (RRN [62] and
NADE [68]), and meanwhile the proposed S2PNM method.
As shown in the results, non-sequential methods (MRMA
and GLOMA) achieved higher accuracy than sequential
methods (RRN and NADE) on random splitting protocol
but achieved lower accuracy on sequential-based splitting
protocol. This confirms that capturing the correlations be-
tween user historical behavior and his/her future interests
can help to achieve better recommendations in real scenar-
ios. In addition, when comparing the numbers between the
second column and the third column, we can see that the
accuracies of GLOMA and MRMA are on par with the base-
line method – SVD++ in the sequential-based splitting pro-
tocol whereas they significantly outperform SVD++ in the
random splitting protocol. This indicates that conclusions
made under the unrealistic random splitting protocol may
not hold in the realistic setting, and therefore it is necessary
to design and evaluate recommendation algorithms in the
harder but more realistic sequential-based splitting protocol.

3 THE PROPOSED SEQUENCE-TO-PREFERENCE
NEURAL MACHINE

This section first presents the main building block of S2PNM
– the Seq2Pref network in detail. Then, we discuss the choice
of prediction function for recommendation scores. After
that, we discuss the optimization problems for two recom-
mendation tasks. At last, we discuss the parallel training of
S2PNM.

3.1 Seq2Pref Network
3.1.1 Dictionary Learning
Dictionary learning aims to learn a set of vectors capable of
succinct expression of the targeted events, i.e., a linear com-
bination of the rows of the dictionary learned from the data

3

RNNRNN

𝑧!|#

𝑝! |#

D

𝑢%!|#

𝑢!∗

+ Estimator

𝑥#𝑥#%&

𝑟̂!|#

Weigted	Sum

Item	Embedding

Sequential	Embedding

Dynamic	User	
Preference

Static	User	
Preference

Dictionary

Coefficients

Ranking/Rating Score

(Eqn.	11)

(Eqn.	15)

(Eqn.	16)

Fig. 1. Architecture of sequence to preference (Seq2Pref) neural network. We first feed the ith user’s historical items {x1, . . . , xT } to RNNs to
embed sequential dependencies into a hidden vector zi|t, then the dynamic user preference ūi|t is translated from zi|t by weighting the rows of
dictionary D differently, assigning higher (lower) weights pi|t to rows that contribute more (less) to match users’ current interests. Finally, an estimator
can provide the rating/ranking score r̂ij|t for recommendations with dynamic user preference ūi|t, static user preference u∗i , item embedding vj ,
overall mean rating bg , and biases of ith user and jth item bi and bj .

can succinctly represent any piece of the input data [32], [39].
In this paper, we try to learn a dictionary that can construct
sufficient representations of user dynamic preferences and
meanwhile embed user dynamic preferences into the same
latent space of user static preferences.

More formally, we propose to learn a feature dictionary
D ∈ Rddict×duser such that the dynamic user preference of
user i at time t — ui|t can be constructed by a linear combi-
nation of the rows in D using the non-negative coefficients
pi|t as follows:

ui|t = p>i|tD. (2)

Here, ddict denotes the number of rows in the dictionary D
and duser denotes the number of hidden units to represent
user preferences. The dictionary D can be regarded as a
collection of basis which is capable of modeling the changes
of user preference vector according to his/her sequential
behavior. Then, the combined preference vector of user i at
time t can be modelled as follows:

ui|t = u∗i + ui|t, (3)

where u∗i is the static user preference vector.
To learn the optimal dictionary D for modeling user

dynamic preferences, we can define a optimization objective
as follows:

D(ri, r̂i|t|θ) = D(ri, (u
∗
i + ūi|t)V

>|θ)
⇐⇒ D(ri − u∗i V >, ūi|tV >|θ)
= D(ri − u∗i V >, p>i|tDV >|θ)
= D(rresi , p>i|tDV

>|θ). (4)

Here, ri is the rating vector of user i and r̂i|t is the predicted
rating vector at time t. D is the distance function between
two vectors. Let rresi = ri − u∗i V > and D′ = DV > and D
be the F-norm. The above Eqn. 4 means that minimizing the
discrepancy between the true ratings and predicted ratings
is equivalent to minimizing the discrepancy between the
residual error (true rating minus predicted rating from static
user preferences) and the dynamic rating (computed from

dynamic user preferences). Based on this idea, the above
optimization objective can be reformulated as follows:

min
pi|t,D′

||rresi − pi|tD′|| s.t., pi|t ≥ 0,
∑
k

pi|t(k) = 1.

Therefore, modeling the dynamic user preferences can be
formulated as a supervised dictionary learning problem, in
which the dictionary D is randomly initialized and then
optimized by gradient-based learning techniques. Note that
the above Eqn. 4 only illustrates our main idea that the
goal of the dictionary learning is to minimize the residual
error of the predictions. More specifically, we use an end-to-
end training for the whole model instead of training each
part of the model individually. The final loss functions are
presented in Section 3.3.

In the above dictionary learning problem, the posterior
distribution pi|t should not be obtained via point estima-
tions which are not feasible in test time. Therefore, different
from standard dictionary learning problem [39], we propose
to learn a state function φ, which allows us to accurately
obtain pi|t from the user rating vector as follows:

pi|t = φ(ri≤t
). (5)

ri≤t
denotes the complete rating history of user i before

time t. Note that the learning of φ is challenging because
(1) it should accurately capture the sequential dependencies
within the rating sequence of each user and (2) it needs
to embed the sequential dependencies into the same latent
space as the downstream score estimator. To this end, we
propose to use a RNN-based autoregressive model to cap-
ture the sequential dependencies, and then feed the learned
information to the latent space via minimizing the loss
D(ri, r̂i|t|θ).

3.1.2 Encoding Sequential Dependencies

This paper adopts GRU [10] with attention to learn user
dynamic preferences. GRU can adaptively capture the se-
quential dependencies with different time scales which is
more suitable to model the users with different rating time
scales in recommendation problem. The neural attention

4

mechanism permits learning an adaptive nonlinear weight-
ing function, which allows the more (less) related depen-
dency patterns to make more (less) contributions in the
predictions.

Given the historical ratings of a user {x1, . . . , xT }1, we
first put them into an embedding layer which outputs
continuous vectors, then we feed these vectors to GRU
to learn the sequential representations {g1, . . . , gT }. Each
hidden state gt after the t-th historical item can be formally
described as follows:

ht = Recurrency(ht−1, xt). (6)
αt = Attention(ht). (7)

gt =
∑T
j=1 αt,jhj . (8)

In Eqn. 6, GRU is used as a recurrent activation function
which we refer to as a recurrency. Meanwhile, ht−1 ∈ RdGRU

is the (t-1)-th hidden state of GRU, and αt ∈ RT is a vector
of the attention weights. Eqn. 7 describes a content-based
multiplicative attention mechanism [11] which scores each
element in h separately and normalizes the scores using
softmax as follows:

h′t = tanh(Whht + bh), et,j = h>j h
′
t/
√
drnn, (9)

αt,j = exp(et,j)/
∑T
i=1 exp(et,i). (10)

Here, we use a weighted mapping Wh ∈ Rdrnn×drnn in stead
of an identity mapping due to better empirical performance.

3.1.3 Decoding Dynamic User Preferences
After encoding the sequential dependencies in a rating
sequence, we decode and embed these information into the
same latent space of user static preference. More specifically,
we learn a multi-layer perceptron (MLP) to approximate the
posterior distribution pi|t in Eqn. 2, i.e., the output of the
MLP is used as pi|t in Eqn. 2. Formally, we estimate the
posterior distribution pi|t for the t-th item rated by user i as
follows:

zt = concat(ht, gt, ht − gt, ht ◦ gt). (11)
ct = ψ(Wzzt + bz). (12)

c′t,k = sign(abs(ct,k)) ◦ exp(ct,k). (13)

pi|t(k) = c′t,k/
∑
j c
′
t,j . (14)

Here, the operator ◦ is the element-wise product and ht ◦ gt
in Eqn. 11 can capture the second-order interactions be-
tween the learned sequential dependencies because gt is
a linear combination of h1, . . . , hT . In this way, zt can
be more informative due to containing high-order interac-
tions among ht and can potentially improve model perfor-
mance [45], [56]. ψ in Eqn. 12 is the activation function, such
as sigmoid, tanh and ReLU [42]. The term sign(abs(ct,k)) is
the masking function2, which equals to 0 if ct,k is 0 and
1 otherwise. This design allows for a sparse pi|t. Eqn. 13
poses a non-negative constraint on pi|t(k) and Eqn. 14
normalizes the probabilities. This non-negative constraint

1. When training the model, we use the entire sequence without
slicing, so that the length T is variable for each user in a batch.

2. Note that sign(abs(ct,k)) is a non-differentiable function, of which
the gradients are ignored for simplicity. Alternatively, we have also
tried the differentiable masking function: c′t,k = exp(ct,k) − exp(0),
but the performance differences are negligible.

forces the rows of D′ in Eqn. 5 to combine, not to cancel out,
which can yield more interpretable features and improve
the downstream prediction performance [35].

After obtaining pi|t, we compute the final dynamic user
preferences by interpolating the dictionary D with the
weights pi|t as follows:

ui|t = p>i|tD =
∑
k pi|t(k)Dk. (15)

3.2 Estimator
Similar to the BiasedMF method [43], we formulate the
prediction function of our method as follows:

r̂ij|t(θ) = bg + bi + bj + (u∗i + ūi|t)
>vj , (16)

where vj is the item embedding, bg is the average of all
ratings, and bi and bj are biases of the user i and item j,
respectively. Alternatively, we also tried to replace the inner
product in Eqn. 16 with an MLP ϕ as suggested in [19]:

r̂ij|t(θ) = bg + bi + bj + ϕ(u∗i + ūi|t, vj). (17)

In this way, we observed accuracy improvements on ran-
dom data splitting protocol, but the improvements are negli-
gible on sequential-based data splitting protocol. Therefore,
we still use Eqn. 16 in this paper due to higher efficiency.

3.3 The Optimization Objectives for Recommendation
There are two main recommendation tasks in the literature:
rating prediction and item ranking. In rating prediction, we
predict how a user will rate an unseen item in the future,
e.g., 1-5 stars. In item ranking, we predict whether a user
will interact with an unseen item in the future, e.g., buy a
product or not. As we can see in previous sections, the pro-
posed Seq2Pref network can work properly on both kinds
of tasks because we can use user rated items to train their
dynamic preference. However, the main difference comes
from the loss function. For rating prediction, we can let the
Seq2Pref network to predict the rating of next rated item
in a sequence and backpropagate the error to update the
parameters. For item ranking, the prediction errors on both
rated and unrated items should be considered to update
the parameters. To this end, different optimization objectives
should be defined for the two tasks.

Let θ be the model parameters, r̂ij|t(θ) be the predicted
score of user i on item j given θ and Itrain be the training set,
we adopt the popular mean square loss for rating prediction
task [28], [43] as follows:

min
θ

∑
(i,j,t)∈Itrain

(
rij − r̂ij|t(θ)

)2
+R(θ). (18)

R(θ) is a regularization term to prevent overfitting.
For item ranking task, we assume all unrated items are

negative following many existing works [20], [24] and we
sample fraction of negative examples for faster training [7].
More specifically, we adopt the popular weighted mean
square loss [20], [24] as follows:

min
θ

∑
(i,j,t)∈Itrain

wij
(
rij − r̂ij|t(θ)

)2
+R(θ). (19)

Here, wij denotes the weight of user i on item j, in which
wij is large for the true positive ratings and small for the

5

TABLE 2
Statistics of the evaluation datasets.

Datasets #Users #Items #Interactions Density
Instant Video 1, 372 7, 957 23, 181 0.43%
Baby Care 5, 057 10, 420 77, 787 0.15%
Netflix 480, 188 17, 769 100, 462, 737 1.18 %

negative ratings to address the implicit feedback issue in
item ranking task [24]. Therefore, S2PNM can be effectively
trained with the back-propagation algorithm via stochastic
gradient descent. More training details can be found in the
experiment section.

3.4 Parallel Training

The proposed S2PNM method will suffer from efficiency
issue on large datasets similar to many existing neural
network-based methods [2], [19], [21], [62]. However, we can
leverage multiple GPUs to largely reduce the training time.
For the proposed Seq2Pref network, we can use the mini-
batch parallel tricks [21] to address length variation issue
(e.g., the sequence length may range from 2 to 17770 on the
Netflix Prize dataset), in pursuit of higher scalability. More
specifically, we use a sliding window over the sequence and
put the windowed fragments, referred to as mini-batch, next
to each other. Then in the training process, if any of the
mini-batches finishes, the next available mini-batch is filled
in. We observed that it takes about 4 minutes per iteration
using one GTX 1080Ti GPU on the Netflix prize dataset, and
the time reduces to 3 minutes with two GPUs.

4 EXPERIMENTS

In this section, we first empirically study the performance
of static and dynamic user preferences with varying hyper-
parameters. Then, we compare the accuracy of the proposed
method on both rating and ranking tasks, compared against
state-of-the-art methods. Qualitative analysis on the Netflix
prize dataset demonstrate that S2PNM can indeed capture
the user preference drifts over time.

4.1 Experimental Setup

4.1.1 Datasets

Two widely adopted real-world datasets are used in the
experiments: (1) Netflix Prize3 [4] for rating prediction task,
and (2) Amazon dataset4 [17] for item ranking task. For the
Netflix dataset, we split it into training and test sets by
chronological order to simulate the real scenarios, and we
set the ratio of training and test sets as 9:1. For the Amazon
dataset, we use two product categories including Instant
Video and Baby Care. To achieve sequential recommenda-
tion, we select users with at least 10 purchasing records in
the experiments. Each user’s purchasing history is ordered
by purchasing time, and the first 70% items of each user are
used for training while the remaining items are used for test.
The statistics of the final datasets are shown in Table 2.

3. https://www.netflixprize.com/
4. http://jmcauley.ucsd.edu/data/amazon/

4.1.2 Training Details

To train S2PNM, we adopt the adaptive learning rate al-
gorithm – Adam [27] with β1 = 0.9, β2 = 0.98 and
ε = 10−9. We also decay the learning rate over 5 full data
passes with a rate of 0.9. Meanwhile, all the weight matri-
ces are initialized from a Glorot uniform distribution [12],
and recurrent weights are furthermore orthogonalized. We
also employ dropout [53] as regularization during training
RNNs with a dropout rate of pdrop = 0.02, and `2-norm as
regularization to penalize the user and item embeddings.
The historical items of each user are batched together with
a batch size of 16. We train S2PNM with 20 epochs and
measure the performance after each epoch. Then, we report
the results on the test set using the best performing model
on the validation set. We found that S2PNM is quite robust
to hyper-parameters, therefore we adopt the same hyper-
parameter setting across both datasets. In addition, pre-
training the static user/item preferences can achieve higher
accuracy and faster convergence speed. Therefore, in the
experiments, we use the BiasedMF method [43] to initialize
the static user/item preference vectors. Training details of
the compared methods can be found below.

We tune the learning rate lr ∈ {0.001, 0.002, 0.005,
0.01, 0.02, 0.05, 0.1}, the regularization strength λ ∈
{0.001, 0.01, 0.1} and the latent factor dimension d ∈
{20, 50, 100, 150, 200, 300} via grid search for all compared
methods. Other implementation details are as follows:
• SVD++ [28] is one of the most popular hybrid collabora-
tive filtering based approach. We use the cpp implementa-
tion in GraphChi 5 [31], and we have found that the optimal
results on both MovieLens 10M and Netflix data can be
achieved when we use factor size 200, learning rate 0.002
with decay rate 0.99 and regularizer 0.01.
• GLOMA [5] achieves robust results on many bench-
marks by enhancing local models based on submatrix with
a unified global model. We use StableMA 6 provided by
the authors which is implemented in Java, and adopt the
default setting in [5] which shows the best RMSEs in both
idealistic and realistic scenarios, i.e., learning rate 0.0008,
regularization 0.06, and the latent factor dimension 300. No-
tably, we introduce biases into GLOMA following the same
idea in BiasMF [30] for improved accuracy, particularly in
realistic scenario it helps improve the model performance
from 0.96302 to 0.89326 on Netflix data.
• MRMA [34] is so far among the best ensemble based
recommendation algorithm. We use the program provided
by the authors, and the default setting in [34] produces the
best RMSEs in both scenarios. That is factor size ranging in
{10, 20, 50, 100, 150, 200, 250, 300}, learning rate 0.001 and
regularizer 0.02. As the same with GLOMA, we modify
MRMA in a fashion of BiasMF, which reduces the RMSE
on Netflix from 0.94780 to 0.89150 in realistic scenario.
• TimeSVD++ [29] is one of the most successful models
which are able to capture dynamic nature of the recommen-
dation data. We test the implementation in LibRec [14]7, in
addition to GraphChi [31] of which the implementation is
slightly different from the original paper (See lines 162 - 167

5. https://github.com/GraphChi/graphchi-cpp
6. https://github.com/ldscc/StableMA
7. https://github.com/guoguibing/librec

6

in timesvdpp.cpp for more details). This explains why the
result of LibRec i.e., RMSE 0.90 on Netflix is better than that
from GraphChi i.e., RMSE 0.92 in realistic scenario, where
noticeably our results for GraphChi are comparable to [62].
While for LibRec it takes ≥24 hours per iteration on Netflix
data, by rewriting the data structure to store each user’s
data and refining the model update procedure we reduce
it to nearly 2 mins per iteration. Although we tuned this
model very carefully, it is still worse than SVD++, and the
best results are observed by using factor size 200, learning
rate 0.002 for latent factors and 0.00003 for bias parameters,
regularizer 0.01.
• AutoRec [51] is among the best neural network models
so far in terms of rating prediction. We use the program
provided by the authors 8, which indeed reproduces the
results shown in the paper. However, we fail in performing
it on Netflix data due to the requirement of memory more
than 150 GBs. Therefore, we have to implement it in modern
deep learning platform - Tensorflow, whereby we achieve
RMSE 0.78056 on MovieLens 10M which is much better than
0.78463 produced by the authors’ code. More specifically,
we adopt the latent state dimension as 500 to yield the
best performance and use Adam [27] with batch size 512,
learning rate 0.0005 with decayed rate 0.9 every 10 full data
passes to train the model.
• NADE [68] learns the ordinal nature of the user prefer-
ence and achieves the best results among all baselines. We
use the program provide by the authors 9 to evaluate U-CF-
NADE-S, and meanwhile we also test the program based
on Chainer 10 which produces similar results on MovieLens
10M. The Chainer version requires much less memory as
a result of storing data in sparse matrix, in contrast to
dense matrix in authors’ code. For computational time, it
takes 15 mins per iteration but requires 500 iterations to
converge. After fine-tuning the model with 8 GTX-1080Ti,
we have found that the optimal setting varies in different
datasets, but the configurations with hidden unit size of 500
in original paper always produce the best results.
• RRN [62] is one of the most closely related works which
takes temporal dynamics into consideration, and offers ex-
cellent prediction accuracy. We use the program provided
by the authors, which is relied on a late-2016 version of
MXNET. We rewrite part of the code to make it work
with the dependency mxnet-cu80 of version 0.9.5. Different
from its original paper, we use 200-dimensional stationary
factors, extra 120-dimensional dynamic factors, and a single-
layer LSTM with 100-hidden neurons, pursuing better re-
sults. Notably, we use BiasMF to initiate RRN model instead
of PMF [41] and Autorec [51] for improved performance –
RMSE reducing from 0.91823 to 0.89014.
• BPR [46] is the most famous pairwise matrix approx-
imation based model for ranking prediction. We use the
implementation in LibRec [14]. By experiments, we found
large learning rates lead to accelerated convergence rate so
that we chose 0.25 on Baby Care dataset. In addition, we also
found that decayed learning rates can significantly improve
the prediction accuracies, perhaps we decayed the learning

8. https://github.com/mesuvash/NNRec
9. https://github.com/Ian09/CF-NADE
10. https://github.com/dsanno/chainer-cf-nade

rate by 0.9 every epoch. After grid search, we use the factor
size 128 and the regularizer 0.01 on Baby Care dataset.
• eALS [20] is one of the most successful pointwise rec-
ommendation approaches. We use the implementation in
LibRec [14]. We select factor size over {16, 32, . . . , 256} and
regularization parameter over {0.1, 0.2, . . . , 1.0}. To be spe-
cific, we use the factor size 64 for all datasets, and c0=256,
learning rate 0.01 and regularizer 0.1 on Baby Care dataset.
• NeuMF [19] is among the best neural models for ranking
prediction. We use the program provided by the authors 11

, where we search by grid the learning rate over {1e-1, 5e-
2,. . . ,1e-4}, batch size over {256, 512, . . . , 4096}. The batch
size of 2048 is the optimal for all datasets. And the best
performance is achieved when we use learning rate 1e-3.
• RUM [9] is one of state-of-the-art sequential recommen-
dation models based on memory networks, and also most
closely related to our work. We note that the comparisons
to the classic FPMC [47] and DREAM [65] are omit, since
RUM excels them by a large margin. We search by grid the
embedding dimension D in the range of {32, 64, . . . , 256}.
By experiments, we found the number of memory slots 20
and embedding size 64 produce the best results.
• SHAN [64] introduces hierarchical attention networks for
temporal modelling and achieves state-of-the-art results on
many benchmarks. We search by grid the embedding size
over {50, 100, . . . , 300} and regularization strength over
{0.001, 0.01, . . . , 1}. Experiments show that embedding
size 300 and regularizer 0.01 for user/item factors and
regularizer 1 for transformation matrix yield the best results.
• SASRec [26] adapts the transformer [57] to recommender
systems and is among the best sequential recommendation
algorithm. We use the implementation provided by the
authors 12, and select the embedding size over {50, 100, . . . ,
300} and the number of blocks up to 4. By experiments,
the best results can be obtained by using 250-dimensional
embedding size and 4 blocks with dropout rate 0.2.

4.1.3 Evaluation Metrics

We study the performance of the proposed S2PNM model
for both rating prediction task and item ranking task by
using the popular evaluation metrics in the literature of
recommender systems. For the rating prediction task, we
use root mean square error (RMSE) which is defined as
RMSE =

√
1/|Itest|

∑
(i,j,t)∈Itest(rij − r̂ij|t)2 where Itest

stands for the set of test examples.
For the item top-k ranking task, we evaluate the pro-

posed S2PNM model by using Precision@k, Hit-Rate@k
(HR@k) and Normalized Discounted Cumulative Gain@k
(NDCG@k): 1) Precision@k = 1

|Itest|
∑
i∈Itest |Ri ∩ Ti|/|Ri|

where Ri is defined as the k-size generated recommenda-
tion list for user i and Ti is the grand-truth; 2) HR@k =

1
|Itest|

∑
i∈Itest 1|Ri ∩ Ti|, in which 1|x| is an indicator func-

tion whose value is 1 when x > 0 and 0 otherwise; 3)
NDCG@k = 1

|Itest|
∑
i∈Itest DCG@ki/iDCG@ki, in which

DCGi@k =
∑k
j=1(1|Rji ∩Ti|−1)/ log2(j+1) and iDCGi@k

is a normalized constant which is the maximum possible
value of DCGi@k.

11. https://github.com/hexiangnan/neural collaborative filtering
12. https://github.com/kang205/SASRec

7

64 128 256 512 1024
Dictionary Size ddict

1.05

1.10

1.15

1.20
R

M
S

E
S2PNM-stat S2PNM-dynm S2PNM

32 64 128 256 512
#GRU Size dGRU

1.05

1.10

1.15

1.20

R
M

S
E

S2PNM-stat S2PNM-dynm S2PNM

50 100 200 250 300
User Embedding Size duser

1.05

1.10

1.15

1.20

R
M

S
E

S2PNM-stat S2PNM-dynm S2PNM

Fig. 2. RMSE of S2PNM with static user preferences (S2PNM-stat), S2PNM with dynamic user preferences (S2PNM-dynm), and S2PNM with
both static and dynamic preferences (S2PNM), with varying dictionary size ddict in {64, 128, 256, 512, 1024} (left), GRU size dGRU varying in
{32, 64, 128, 256, 512} (middle) and user embedding size duser (right) varying in {50, 100, 200, 250, 300} on the Amazon Instant Video.The lower
value means the better performance. Note that the accuracy of S2PNM slightly increases when we increase the dictionary size and GRU size.

64 128 256 512 1024
Dictionary Size ddict

0.5

1.0

1.5

2.0

P
re

ci
si

on
@

5
(%

)

S2PNM-stat S2PNM-dynm S2PNM

32 64 128 256 512
#GRU Size dGRU

0.5

1.0

1.5

2.0
P

re
ci

si
on

@
5

(%
)

S2PNM-stat S2PNM-dynm S2PNM

50 100 200 250 300
User Embedding Size duser

0.5

1.0

1.5

2.0

P
re

ci
si

on
@

5
(%

)

S2PNM-stat S2PNM-dynm S2PNM

Fig. 3. Precision@5 of S2PNM with static user preferences (S2PNM-stat), S2PNM with dynamic user preferences (S2PNM-dynm), and S2PNM
with both static and dynamic preferences (S2PNM), with varying dictionary size ddict in {64, 128, 256, 512, 1024} (left), GRU size dGRU varying in
{32, 64, 128, 256, 512} (middle) and user embedding size duser (right) varying in {50, 100, 200, 250, 300} on the Amazon Instant Video. The greater
value means the better performance.

64 128 256 512 1024
Dictionary Size ddict

4

6

8

H
it

R
at

eR
@

5
(%

)

S2PNM-stat S2PNM-dynm S2PNM

32 64 128 256 512
#GRU Size dGRU

4

6

8

H
it

R
at

eR
@

5
(%

)

S2PNM-stat S2PNM-dynm S2PNM

50 100 200 250 300
User Embedding Size duser

4

6

8

H
it

R
at

eR
@

5
(%

)
S2PNM-stat S2PNM-dynm S2PNM

Fig. 4. Hit-rate@5 of S2PNM with static user preferences (S2PNM-stat), S2PNM with dynamic user preferences (S2PNM-dynm), and S2PNM
with both static and dynamic preferences (S2PNM), with varying dictionary size ddict in {64, 128, 256, 512, 1024} (left), GRU size dGRU varying in
{32, 64, 128, 256, 512} (middle) and user embedding size duser (right) varying in {50, 100, 200, 250, 300} on the Amazon Instant Video.The greater
value means the better performance.

64 128 256 512 1024
Dictionary Size ddict

0.5

1.0

1.5

2.0

N
D

C
G

@
5

(%
)

S2PNM-stat S2PNM-dynm S2PNM

32 64 128 256 512
#GRU Size dGRU

0.5

1.0

1.5

2.0

N
D

C
G

@
5

(%
)

S2PNM-stat S2PNM-dynm S2PNM

50 100 200 250 300
User Embedding Size duser

0.5

1.0

1.5

2.0

N
D

C
G

@
5

(%
)

S2PNM-stat S2PNM-dynm S2PNM

Fig. 5. NDCG@5 of S2PNM with static user preferences (S2PNM-stat), S2PNM with dynamic user preferences (S2PNM-dynm), and S2PNM with
both static and dynamic preferences (S2PNM), with varying dictionary size ddict in {64, 128, 256, 512, 1024} (left), GRU size dGRU varying in
{32, 64, 128, 256, 512} (middle) and user embedding size duser (right) varying in {50, 100, 200, 250, 300} on the Amazon Instant Video.The greater
value means the better performance.

8

4.2 Sensitivity Analysis

This study uses the Amazon Instant Video dataset to
analyze the importance of each component in S2PNM,
and show how S2PMN performs with different hyper-
parameters.

4.2.1 Effects of static and dynamic preferences

S2PNM-stat and S2PNM-dynm denote the S2PNM model
with solely using static user preferences and dynamic
users preferences, respectively. Figure. 2 - 5 show that
S2PNM-dynm outperforms S2PNM-stat in all cases, and
S2PNM (with both static and dynamic user preferences)
achieves much higher accuracy than both S2PNM-dynm
and S2PNM-stat. These results confirm that (1) S2PNM is
effective to capture user dynamic preferences and (2) static
user preferences are also necessary for predicting user future
ratings without which the performance will be suboptimal.
In addition, we can see that S2PNM-dynm and S2PNM
have comparable results in terms of Precision@5 and HR@5,
whereas S2PNM significantly outperforms S2PNM-dynm in
NDCG@5. This indicates that users’ static preferences can
help to put right recommendations in higher positions.

4.2.2 Effects of dictionary size

The leftmost figures of Fig. 2 - 5 show the accu-
racy with different dictionary sizes, i.e., ddict varies in
{64, 128, 256, 512, 1024}. In Fig. 2 (left), we set user em-
bedding size duser = 50 and the number of hidden units
in GRU dGRU = 32. In Fig. 3 (left), we set duser = 250
and dGRU = 256. As shown in the results, increasing the
dictionary size can increase accuracy when ddict varies in
{64, 128, 256, 512, 1024}. This makes sense because a large
dictionary can increase the capacity of S2PNM. Therefore,
we choose ddict = 1024 for the accuracy comparison.

4.2.3 Effects of GRU size

The middle figures of Fig. 2 - 5 show the recommendation
accuracy with varying number of hidden units in GRU
(dGRU). In Fig. 2 (middle), we set duser = 50 and ddict = 64.
In Fig. 3 (middle), we set duser = 250 and ddict = 512. As
shown in the results, increasing the GRU size can improve
the model performance when dGRU ≤ 256. However, all
ranking metrics dropped when dGRU = 512, which suggests
that overfitting happens with dGRU = 512. Therefore, we
choose dGRU = 256 for the accuracy comparison.

4.2.4 Effects of embedding size

The rightmost figures of Fig. 2 - 5 show the recommen-
dation accuracy with the embedding size duser varying in
{50, 100, 200, 250, 300}. In Fig. 2 (right), we set ddict = 64
and dGRU = 32. In Fig. 3, we set ddict = 512 and
dGRU = 256. We can see from the results that higher
accuracy can be achieved with larger user embedding size,
which is consistent with existing methods [28], [43]. There-
fore, we choose duser = 300 in the following accuracy
comparison although higher duser could further improve the
performance of S2PNM.

TABLE 3
Test RMSE comparison between S2PNM and seven state-of-the-art

rating prediction methods on the Netflix dataset. S2PNM with duser=50
can outperform SVD++, TimeSVD++, GLOMA and MRMA of the rank
of 300, I-AutoRec and NADE with 1000-dimension embeddings, RRN

with 300-dimension embeddings. We also present the relative
performance gain in percentage over SVD++.

Method Model RMSE
SVD++ Factorization 0.89267 (+0.00%)
TimeSVD++ Factorization 0.90762 (−1.67%)
GLOMA Factorization 0.89326 (−0.06%)
MRMA Factorization 0.89210 (+0.06%)
I-AutoRec Neural 0.92185 (−3.27%)
RRN Neural 0.89014 (+0.28%)
NADE(2 layers) Neural 0.88876 (+0.43%)
S2PNM, duser=50 Neural 0.87661 (+1.80%)
S2PNM, duser=200 Neural 0.87386 (+2.11%)
S2PNM, duser=300 Neural 0.87322(+2.18%)

4.3 Rating Prediction Comparison

4.3.1 Comparison with State-of-the-art methods

This experiment compares the rating prediction accuracy
of S2PNM against state-of-the-art factorization methods [5],
[28], [29], [34] and neural methods [51], [62], [68]. Note
that SVD++ , GLOMA and MRMA are factorization mod-
els which assume that user preferences are static, while
TimeSVD++ [29] used a time-dependent bias term to capture
the temporal effects. RRN [62] and NADE [68] both leverage
the neural autoregressive model to extract the patterns of
how user future actions are affected by his/her historical
behaviors. For S2PNM, we use a single-layer RNN with 256
GRU units, the dimension of user embedding duser ranges
in {50, 200, 300}, and set the dictionary size as ddict = 1000.

Table 3 compares the RMSE of all the methods on the
Netflix prize dataset. We can see that S2PNM with duser = 50
can outperform SVD++ [28], TimeSVD++ [29], GLOMA [5]
and MRMA [34] with the rank of 300, I-AutoRec [51] and
NADE [68] with 1000-dimension embeddings, RRN [62]
with 300-dimension embeddings. This demonstrates that
S2PNM is more effective to predict user ratings than the
compared methods. In addition, compared with NADE,
S2PNM achieves 0.43% performance gain and over 5X
efficiency improvement. The main reasons why S2PNM can
improve the recommendation accuracy are: 1) the learned
dictionary which maximizes the use of the GRU outputs
enriches the expressive capacity of the S2PNM model, 2)
the neural network-based distribution approximator that
attentively reads the dictionary atoms can accurately cap-
ture the dynamic preferences of users, and 3) both the static
and dynamic preferences of users are modelled by S2PNM
instead of only modeling the static preferences in SVD++,
GLOMA, MRMA and I-AutoRec.

4.3.2 Comparison with MRMA on different users

To understand how sequential information help in recom-
mendation, we conduct a detailed comparison with the
MRMA method which only learns static preferences of
users. As shown in Fig. 6, S2PNM achieves consistent im-
provements (≥ 1.5%) over MRMA for all kinds of users and
the largest improvement is 3.3% on users with less than 5
ratings. The fact that users with less ratings benefit more
from S2PNM indicates that (1) the sequential information

9

TABLE 4
Item ranking performance on the Amazon Baby Care dataset in terms

of precision@5, hit-rate@5 (HR@5) and NDCG@5. Higher values
indicate better performance. Bold face indicates the best performing

result in each column, and ‘%’ is omitted from all numbers.

Measures(%) Precision@5 HR@5 NDCG@5
SVD++ 0.618 3.108 0.650
BPR 0.689 3.334 0.694
eALS 0.677 3.262 0.725
NeuMF 0.802 3.579 0.779
RUM 0.692 3.590 0.791
SHAN 0.764 3.703 0.759
SASRec 0.812 3.901 0.787
S2PNM, duser=50 0.717 3.525 0.712
S2PNM, duser=200 0.812 3.960 0.835
S2PNM, duser=300 0.820 4.000 0.835

captured by S2PNM are indeed helpful when little informa-
tion of users are obtained from ratings (not enough ratings),
and (2) S2PNM may be applied to address the on long-tail
user issue where many existing CF methods may fail [63].

4.4 Item Ranking Comparison

4.4.1 Comparison with State-of-the-art methods
Here, we evaluate S2PNM in item ranking task. Differing
from rating prediction experiment, this study uses ddict
= 5000 and dGRU = 256 with batch size as 128. Beside
SVD++, we compare S2PNM with four ranking-based meth-
ods including BPR [46], eALS [20], NeuMF [19], RUM [9],
SHAN [64] and SASREC [26]. Note that NeuMF is a neural
method that is designed to utilize implicit feedback with
non-linear interactions to improve performance and RUM is
a state-of-the-art sequential recommendation method based
on external memory network to capture the dynamic user
preferences.

Table 4 shows the recommendation accuracy of S2PNM
and the four compared methods on the Amazon Baby Care
dataset. We can see from the results that the four neural
methods (NeuMF, RUM, SHAN and SASREC) significantly
outperform all factorization methods (SVD++, BPR, and
eALS), which confirms that neural methods are indeed
more powerful than factorization methods in sequential

1-5 6-10 11-15 16-20 21-50 51-200 200+

#Training Ratings/User

1.0

1.5

2.0

2.5

3.0

3.5

Im
p

ro
ve

m
en

t
ov

er
M

R
M

A
(%

)

3.3% Improvement

0

5

10

15

20

25

#
U

se
rs

(%
)

Fig. 6. RMSE improvements over MRMA on users with varying number
of training ratings. S2PNM achieves 3.3% improvement on users with
less than 5 ratings. Users with less ratings benefit more from S2PNM.
The yellow line denotes the fraction of users.

recommendation. As shown in the table, SASREC achieved
the best performance among all the compared method.
However, S2PNM outperforms SASREC by 0.99%, 2.54%
and 6.10% in terms of Precision5, HR5 and NDCG@5, re-
spectively. This indicates that S2PNM can better capture the
sequential interactions between users and items for more
accurate recommendation.

4.4.2 Comparison with RUM on different users
As mentioned previously, S2PNM bears some similarities
with RUM [9]. The main difference lies in that RUM directly
combines user preferences and sequential patterns, while
S2PNM translates sequential patterns to dynamic part of
user preferences. Fig. 7 compares S2PNM with RUM by
HR@5 (results of NDCG and Precision show the same trend
thus omitted for space). It is clear that S2PNM consistently
outperforms RUM for all kinds of users and the largest
improvement is 17.0% on users with less than 10 ratings.
This highlights the importance of translating sequence to
preference, especially for sparse users that have few history
in training.

4.5 Qualitative Analysis
Here, a qualitative analysis is conducted to better under-
stand the dynamic user preferences captured by S2PNM. To
verify if the additive user dynamic preference ut captured
by S2PNM can help track user preference drifts and predict
user future preferences, we select the most similar neighbors
using Cosine similarity given each ut. Then, we study the
semantic meanings of the neighbors by extracting the most
frequent keywords from the movie titles watched by the
neighbors.

Table 5 presents an example for the Netflix user with
id=1, and meanwhile presents the user preference drifts rep-
resented by the changes of neighbors over different periods
of time. We can see from the results:
1. before day 158013, we can see that the user ids of the top
3 neighbors are: 127192, 442596, 203167 – all with strong
interests in Lord of Rings and Star War. This suggests that

13. The elapsed day is defined as the number of days after the
system’s initial date – Nov. 11th 1999.

1-10 11-15 16-20 21-25 25+

#Training Ratings/User

0

5

10

15

20

Im
p

ro
ve

m
en

t
ov

er
R

U
M

(%
)

17.0% Improvement

0

15

30

45

60
#

U
se

rs
(%

)

Fig. 7. HR@5 improvements over RUM on users with varying number
of training ratings. S2PNM achieves 17.0% improvement on users with
less than 10 ratings. Users with less ratings benefit more from S2PNM.
The yellow line denotes the fraction of users.

10

TABLE 5
Understanding the dynamic user preferences captured by S2PNM by the changes of neighbors over different periods of time on the Netflix dataset.

neighborhood computed at 1580-th day, movies watched during day 1580-1826

top three
nearest neighbors

user 127192: star, men, independ, potter, boy, harri, war, sign, harbo
user 442596: star, lord, ring, final, true, king, stor, trek, american, lethal
user 203167: star, man, boy, girl, ring, friend, trek, return, simpson, war

top seven movies
watched by user 1

1. Star Wars: Episode VI: Return of the Jed
2. Lord of the Rings: The Two Tower
3. Lord of the Rings: The Fellowship of the Ring
4. Star Wars: Episode IV: A New Hop
5. Harry Potter and the Sorcerer’s Stone
6. Pulp Fiction
7. The Godfather

neighborhood computed at 1826-th day, movies watched during day 1826-1860

top three
nearest neighbors

user 388153: citi, sex, friend, star, ring, war, best, lord, return, man
user 461900: soprano, seinfeld, halen, shield, simpson, godfath, pretti
user 203167: star, man, boy, girl, ring, trek, return, last, war, king

top seven movies
watched by user 1

1. The Bourne Supremac
2. Harry Potter and the Prisoner of Azkaba
3. Along Came Poll
4. Absence of Malic
5. Road to Perditio
6. 50 First Date
7. Bad Boys

neighborhood computed at 1997-th day, movies watched during day 1997-2118

top three
nearest neighbors

user 229573: star, ring, trek, lord, black, war, stargat, back, stor, men
user 203167: star, man, boy, girl, ring, friend, trek, return, simpson, war
user 201895: soprano, war, star, bad, sex, godfath, man, citi, die

top seven movies
watched by user 1

1. Star Wars: Episode I: The Phantom Menac
2. Lord of the Rings: The Fellowship of the Ring: Extended Editio
3. Lord of the Rings: The Two Towers: Extended Editio
4. Lord of the Rings: The Return of the King: Extended Editio
5. Harry Potter and the Chamber of Secret
6. The Sopranos: Season (itemid: 8116, 5760, 11662, 14302)
7. Friends: Season (itemid: 2942, 7158, 9909)

user 1 prefered sci-fiction and fantasy movies, which can
be verified by the most popular movies watched by user 1
within the period (day 1580 – 1826);
2. during day 1826 – 1860, user preferences shifted from sci-
fiction and fantasy movies to romance and comedy movies,
e.g., Absence of Malic, and crime movies, e.g., Along Came
Poll. Similar patterns also occur in neighborhood: user 1 was
closer to user 388153 who favored romance and comedy
movies and user 461900 who favored crime movies;
3. at day 1997, the neighbors became comprehensive -
user 229573 and user 203167 are fans of sci-fiction and
fantasy movies, user 203167 also shows interests to romance
movies, and user 201859 is interested to crime movies.
Conformed with the patterns unveiled by the neighbors,
user 1 watched movies across multiple genres in the next
4 months, including fantasy movies - Lord of the Rings and
Harry Potter, sci-fiction movie - Star War, romance movie -
Friends, and crime movie - The Sopranos.

It is worth noting that traditional matrix factorization
methods work with static user embeddings and thus cannot
adjust user preferences over time. This study confirms that
S2PNM can adapt automatically to the changes of user
interest and thus can help adjust the predictions. We can also
learn from the study that user preference drifts are complex
and using simple temporal bias terms, e.g., TimeSVD++ [29],
could not optimally capture these dynamic information.

5 RELATED WORK

Many collaborative filtering works [1], [54] formulate per-
sonalized recommendation problems as matrix completion

problems, of which the goal is to recover the missing entries
in the rating matrix based on low-rank assumptions. In
general, the attributes or preferences of a user are modeled
by linearly combining item factor vectors using user-specific
coefficients. And most of traditional CF solutions [6], [20],
[30], [33], [46], [48], [52], [66] assume the user profiles and
item attributes are static so that temporal or sequential
information are ignored. Probably the most popular variants
are Probabilistic Matrix Factorization (PMF) [41] and its
Bayesian extension [49], which achieved robust and strong
results in rating prediction. In addition to simple matrix
factorization based CF models, hybrid methods have also
been investigated in the literature. The Netflix Prize winners
Bell et al. [3] and Koren et al. [28] utilized the combina-
tion of memory-based and matrix factorization methods to
improve the recommendation accuracy. Another research
line focuses on the issue of the computational efficiency,
for example Mackey et al. [38] employed a Divide-Factor-
Combine (DFC) framework as well as [6], [33], [58], in
which the expensive task of matrix factorization is randomly
divided into smaller subproblems which can be solved in
parallel using arbitrary matrix factorization algorithms.

Temporal aspects in recommendation were discussed
in TimeSVD++ [29]. The key innovation here lies in that
TimeSVD++ introduced time-dependent bias terms to cap-
ture temporal dynamics caused by rating scale changes and
popularity changes in an integrated fashion [62]. However,
the features of TimeSVD++ are hand engineered similar to
SVDFeature [8], which makes the model difficult to adapt
to new problems due to the lack of the knowledge of the

11

new dataset. To remedy this issue, Factorized Personalized
Markov Chains (FPMC) [47] and its extension – hierarchical
representation model (HRM) [59] were proposed, of which
both embedded the adjacent behavior transition into the
latent space. By doing so, the local patterns between items
can be exploited in an end-to-end way. Beyond two-step
behavior modeling, Markov chain is used for modeling
sparse sequence [16]. One major issue of using Markov
chains is potential state space explosion in face of different
possible sequences over items.

As the revolution of deep learning, many efforts [15],
[19], [36] have been made to adopt neural networks to
solve the recommendation tasks, which are also mostly
focused on the static collaborative filtering setting, i.e.,
without considering the temporal or sequential information.
In specific, one of the earliest works proposed to apply
Restricted Boltzmann Machines (RBM) [50] for collabora-
tive filtering. Later, Autoencoder-based method [51] was
proposed, which regards the recommendation task as a
denoising problem. To exploit the ordinal nature of ratings,
neural auto-regressive distribution estimator (NADE) [68]
has been used to perform collaborative filtering. The above
neural methods showed excellent empirical performance on
popular benchmark datasets in static recommendation.

More recently, another line of emerging works employ
recurrent/memory networks [10], [22], [37] to tackle the
more practical task of sequential recommendation – to
predict the future behavior given a user’s historical rating
records. This family of the algorithms [9], [25], [62], [64],
[65] can usually outperform the aforementioned Markov
chain-based methods [47], [59] due to the higher model
capacity. In more detail, the Dynamic REcurrent bAsket
Model (DREAM) [65] embeded user historical ratings by a
RNN to predict his/her future preference. And similarly the
Recurrent Recommender Network (RRN) [62] proposed to
employ LSTM [22] to capture the dynamics of both users
and items. Complementary to the RNN-based methods,
Huang et al. [25] and Ren et al. [44] alternatively adopted
memory networks [13], [55] to learn the short-term patterns,
together with item attributes. In the meanwhile, the Sequen-
tial Hierarchical Attention Network (SHAN) [64] and [26],
[67] introduced the attention mechanism to automatically
assign different influences of items in a user’s long-term
set so that the dynamic properties can be captured, then
relied on another attention layer to couple user sequential
behavior with long-term representation.

Probably most closely related to our work is RUM [9],
one of the few neural networks models for sequential rec-
ommendation. It utilized an external memory matrix to
maintain item-level historical information. When making
predictions, the memory of the latest interacted items in a
fixed-size window (controlled by parameter K) would be
attentively read out to generate an embedding as dynamic
part of the user representation. However, we argue that
the different sequential patterns might emerge on different
timescales such that a simple first-in-first-out windowed
mechanism might limit the model capacity. From the exper-
iments, we can observe that our model outperforms state-
of-the-art RUM in term of ranking prediction.

In a nutshell, this work formulates the sequential rec-
ommendation task as a supervised dictionary learning task.
The proposed S2PNM method learns a dictionary to con-

struct user dynamic preferences, which can embed user
static and dynamic preferences under the same latent space,
making the model very compact. Thus, S2PNM can achieve
superior performance by a simple additive mechanism to
fuse the static and dynamic preferences of users. To the best
of our knowledge, this is the first work that translates user
rating sequence into user preference via dictionary learning
for sequential recommendation. The experiments on Netflix
and Amazon datasets demonstrate that S2PNM can signif-
icantly outperform the state-of-the-art matrix factorization
methods and neural collaborative filtering methods in the
realistic setting.

6 CONCLUSION AND FUTURE WORK

This paper proposes S2PNM – a sequence-to-preference
neural machine for sequential recommendation. In partic-
ular, we propose the Seq2Pref Network for dynamic user
preference modeling, which first embeds the sequential
dependencies into a latent vector and then translates the
dynamic preference into the latent space of user static
preference using a learned dictionary. Empirical studies on
multiple real-world datasets demonstrate that S2PNM can
achieve significantly higher accuracy compared with state-
of-the-art factorization and neural sequential recommenda-
tion methods.

One line of future work is to study pair-wise learn-
ers for S2PNM and extend S2PNM for multi-media items,
whereby multi-media items such as videos and images,
contains much richer semantics that reflects the interest of
users. This requires the model capable of modeling auxil-
iary information – learn from multi-view and multi-modal
data. The second future work is to introduce non-linearity
when combing the static user preferences and dynamic user
preferences, which may further improve the performance
of the proposed method [18]. Another emerging problem is
to learn the meaningful dependencies from the fragmented
sequence instead of overall sequences, without sacrificing
the recommendation qualities. This matters a lot for prac-
tical recommender systems. One more future direction is
to explore the potential of time-aware recurrent neural
networks by devising an extra loss of the RNN-based auto-
regressive models to improve the performance of event-time
prediction.

ACKNOWLEDGEMENTS

This work was partially supported by National Natural
Science Foundation of China under Grant Nos. U19B2035
and 61972250, and National Key Research and Develop-
ment Program of China under Grant Nos. 2016YFB1001003,
2018AAA0100704 and 2018YFC0830400.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation
of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Transactions on Knowledge and Data
Engeering, 17(6):734–749, 2005.

[2] R. Baral, S. Iyengar, T. Li, and N. Balakrishnan. Close: Contextu-
alized location sequence recommender. In Proceedings of the 12th
ACM Conference on Recommender Systems, Proceedings of the 12th
ACM Conference on Recommender Systems (RecSys ’18), pages
470–474. ACM, 2018.

12

[3] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at mul-
tiple scales to improve accuracy of large recommender systems.
In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’07), pages 95–104, 2007.

[4] J. Bennett and S. Lanning. The netflix prize. In KDD Cup, pages
35–35, 2007.

[5] C. Chen, D. Li, Q. Lv, J. Yan, L. Shang, and S. M. Chu. GLOMA:
Embedding global information in local matrix approximation
models for collaborative filtering. In Thirty-First AAAI Conference
on Artificial Intelligence (AAAI ’17), pages 1295–1301, 2017.

[6] C. Chen, D. Li, Y. Zhao, Q. Lv, and L. Shang. WEMAREC: Accurate
and scalable recommendation through weighted and ensemble
matrix approximation. In Proceedings of the 38th International ACM
SIGIR conference on Research and Development in Information Retrieval
(SIGIR ’15), pages 303–312, 2015.

[7] T. Chen, Y. Sun, Y. Shi, and L. Hong. On sampling strategies for
neural network-based collaborative filtering. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 767–776, 2017.

[8] T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yu. Svdfea-
ture: a toolkit for feature-based collaborative filtering. Journal of
Machine Learning Research, 13:3619–3622, 2012.

[9] X. Chen, H. Xu, Y. Zhang, J. Tang, Y. Cao, Z. Qin, and H. Zha.
Sequential recommendation with user memory networks. In
Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, WSDM ’18, pages 108–116, 2018.

[10] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase rep-
resentations using rnn encoder–decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP ’14), pages 1724–
1734, 2014.

[11] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio.
Attention-based models for speech recognition. In Advances in
Neural Information Processing Systems (NIPS ’15), pages 577–585,
2015.

[12] X. Glorot and Y. Bengio. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS ’10, pages 249–
256, 2010.

[13] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines.
arXiv preprint arXiv:1410.5401, 2014.

[14] G. Guo, J. Zhang, Z. Sun, and N. Yorke-Smith. Librec: A java
library for recommender systems. In UMAP Workshops, volume 4,
2015.

[15] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: a factorization-
machine based neural network for ctr prediction. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence
(IJCAI’17), pages 1725–1731. AAAI Press, 2017.

[16] R. He and J. McAuley. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th
International Conference on Data Mining (ICDM ’16), pages 191–200,
2016.

[17] R. He and J. McAuley. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering.
In Proceedings of the 25th International Conference on World Wide Web
(WWW ’16), pages 507–517, 2016.

[18] X. He and T.-S. Chua. Neural factorization machines for sparse
predictive analytics. In Proceedings of the 40th International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
SIGIR ’17, page 355–364. Association for Computing Machinery,
2017.

[19] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural
collaborative filtering. In Proceedings of the 26th International Con-
ference Companion on World Wide Web (WWW ’17), pages 173–182,
2017.

[20] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factor-
ization for online recommendation with implicit feedback. In Pro-
ceedings of the 41th International ACM SIGIR conference on Research
and Development in Information Retrieval (SIGIR ’16), pages 549–558.
ACM, 2016.

[21] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-
based recommendations with recurrent neural networks. In The
4th International Conference on Learning Representations (ICLR ’16),
2016.

[22] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[23] M. Hosseinzadeh Aghdam, N. Hariri, B. Mobasher, and R. Burke.
Adapting recommendations to contextual changes using hierar-
chical hidden markov models. In Proceedings of the 9th ACM

Conference on Recommender Systems (RecSys ’15), pages 241–244.
ACM, 2015.

[24] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. In 2008 IEEE 8th International Conference
on Data Mining (ICDM ’08), pages 263–272, 2008.

[25] J. Huang, W. X. Zhao, H. Dou, J.-R. Wen, and E. Chang. Improving
sequential recommendation with knowledge-enhanced memory
networks. In Proceedings of the 41th International ACM SIGIR con-
ference on Research and Development in Information Retrieval (SIGIR
’18), pages 505–514, 2018.

[26] W.-C. Kang and J. McAuley. Self-attentive sequential recommen-
dation. In Proceedings of 2018 IEEE International Conference on Data
Mining (ICDM’18), pages 197–206. IEEE, 2018.

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic optimiza-
tion. In The 3rd International Conference on Learning Representations
(ICLR ’15), 2015.

[28] Y. Koren. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining (KDD ’08), pages 426–434, 2008.

[29] Y. Koren. Collaborative filtering with temporal dynamics. In
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’09), pages 447–456,
2009.

[30] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30–37, 2009.

[31] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale
graph computation on just a PC. In The 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’12), pages
31–46, 2012.

[32] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix
factorization. In Advances in Neural Information Processing Systems
(NIPS ’01), pages 556–562, 2001.

[33] J. Lee, S. Kim, G. Lebanon, and Y. Singer. Local low-rank matrix
approximation. In The 30th International Conference on Machine
Learning (ICML ’13), pages 82–90, 2013.

[34] D. Li, C. Chen, W. Liu, T. Lu, N. Gu, and S. Chu. Mixture-rank
matrix approximation for collaborative filtering. In Advances in
Neural Information Processing Systems (NIPS ’17), pages 477–485,
2017.

[35] Y. Li, Y. Liang, and A. Risteski. Recovery guarantee of non-
negative matrix factorization via alternating updates. In Advances
in Neural Information Processing Systems (NIPS ’16), pages 4987–
4995, 2016.

[36] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun. xdeepfm:
Combining explicit and implicit feature interactions for recom-
mender systems. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining (KDD’18),
pages 1754–1763. ACM, 2018.

[37] C. Ma, P. Kang, and X. Liu. Hierarchical gating networks for
sequential recommendation. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD’19), pages 825–833, 2019.

[38] L. W. Mackey, M. I. Jordan, and A. Talwalkar. Divide-and-conquer
matrix factorization. In Advances in Neural Information Processing
Systems (NIPS ’11), pages 1134–1142, 2011.

[39] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary
learning for sparse coding. In The 26th International Conference on
Machine Learning (ICML ’09), pages 689–696, 2009.

[40] J. J. McAuley and J. Leskovec. From amateurs to connoisseurs:
Modeling the evolution of user expertise through online reviews.
In Proceedings of the 22nd International Conference Companion on
World Wide Web (WWW ’13), pages 897–908. ACM, 2013.

[41] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization.
In Advances in Neural Information Processing Systems (NIPS ’07),
pages 1257–1264, 2007.

[42] V. Nair and G. E. Hinton. Rectified linear units improve restricted
boltzmann machines. In The 27th International Conference on Ma-
chine Learning (ICML ’10), pages 807–814, 2010.

[43] A. Paterek. Improving regularized singular value decomposition
for collaborative filtering. In KDD CUP, pages 5–8, 2007.

[44] K. Ren, J. Qin, Y. Fang, W. Zhang, L. Zheng, W. Bian, G. Zhou,
J. Xu, Y. Yu, X. Zhu, et al. Lifelong sequential modeling with
personalized memorization for user response prediction. In Pro-
ceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’19), pages 565–574,
2019.

[45] S. Rendle. Factorization machines with libFM. ACM Transactions
on Intelligent Systems and Technology, 3(3):57:1–57:22, May 2012.

13

[46] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In
The 25th Conference on Uncertainty in Artificial Intelligence (UAI ’09),
pages 452–461. AUAI Press, 2009.

[47] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing
personalized markov chains for next-basket recommendation. In
Proceedings of the 19th International Conference on World Wide Web
(WWW ’10), pages 811–820, 2010.

[48] J. D. Rennie and N. Srebro. Fast maximum margin matrix fac-
torization for collaborative prediction. In The 22nd International
Conference on Machine Learning (ICML ’05), pages 713–719, 2005.

[49] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In The 25th Inter-
national Conference on Machine Learning (ICML ’08), pages 880–887,
2008.

[50] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann
machines for collaborative filtering. In The 24th International
Conference on Machine Learning (ICML ’07), pages 791–798, 2007.

[51] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Au-
toencoders meet collaborative filtering. In Proceedings of the 24th
International Conference on World Wide Web (WWW ’15), pages 111–
112, 2015.

[52] A. P. Singh and G. J. Gordon. Relational learning via collective
matrix factorization. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD
’08), pages 650–658, 2008.

[53] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[54] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering
techniques. Advances in Artificial Intelligence, 2009.

[55] S. Sukhbaatar, J. Weston, R. Fergus, et al. End-to-end memory
networks. In Advances in Neural Information Processing Systems
(NIPS ’15), pages 2440–2448, 2015.

[56] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals,
A. Graves, et al. Conditional image generation with pixelcnn
decoders. In Advances in Neural Information Processing Systems
(NIPS ’16), pages 4790–4798, 2016.

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems (NIPS ’17), pages
6000–6010, 2017.

[58] K. Wang, W. X. Zhao, H. Peng, and X. Wang. Bayesian probabilistic
multi-topic matrix factorization for rating prediction. In IJCAI ’16,
pages 3910–3916, 2016.

[59] P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng. Learning
hierarchical representation model for nextbasket recommendation.
In Proceedings of the 38th International ACM SIGIR conference on
Research and Development in Information Retrieval (SIGIR ’15), pages
403–412, 2015.

[60] Q. Wang, H. Yin, Z. Hu, D. Lian, H. Wang, and Z. Huang. Neural
memory streaming recommender networks with adversarial train-
ing. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD’18), pages 2467–2475,
2018.

[61] J. Weston, S. Chopra, and A. Bordes. Memory networks, 2014.
[62] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. Recurrent

recommender networks. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining (WSDM ’17), pages
495–503, 2017.

[63] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail
recommendation. Proceedings of the VLDB Endowment, 5(9):896–
907, 2012.

[64] H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong,
and J. Wu. Sequential recommender system based on hierarchical
attention networks. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI’18), 2018.

[65] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan. A dynamic recurrent
model for next basket recommendation. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in
Information Retrieval (SIGIR ’16), 2016.

[66] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonparametric matrix
factorization for large-scale collaborative filtering. In Proceedings
of the 32nd International ACM SIGIR conference on Research and
Development in Information Retrieval (SIGIR ’09), pages 211–218,
2009.

[67] T. Zhang, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, D. Wang, G. Liu,
and X. Zhou. Feature-level deeper self-attention network for

sequential recommendation. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI’19), pages 4320–4326,
2019.

[68] Y. Zheng, B. Tang, W. Ding, and H. Zhou. A neural autoregres-
sive approach to collaborative filtering. In The 33rd International
Conference on Machine Learning (ICML ’16), pages 764–773, 2016.

Chao Chen (M’19) is a PhD candidate in School
of Electronic Information and Electrical Engi-
neering, Shanghai Jiao Tong University, Shang-
hai, China. He joined IBM Research - China
since May 2016, and before that he studied in
department of Computer Science from Tongji
University, Shanghai, China. His research inter-
ests focus on applying neural networks tech-
niques to recommender systems.

Dongsheng Li (M’14) is a senior researcher
with Microsoft Research Asia (MSRA), Shang-
hai, since February 2020. Before joining MSRA,
he was a research staff member with IBM Re-
search – China since April 2015. He is also
an adjunct professor with School of Computer
Science, Fudan University, Shanghai, China. He
obtained Ph.D. from School of Computer Sci-
ence of Fudan University, China, in 2012. His re-
search interests include recommender systems
and general machine learning applications.

Junchi Yan (M’10) is currently an Associate Pro-
fessor (PhD Advisor) with Department of Com-
puter Science and Engineering, and AI Institute
of Shanghai Jiao Tong University. He is also
the co-director for the prestigious SJTU ACM
Class (in charge of AI direction). Before that, he
was a Senior Research Staff Member with IBM
Research – China where he started his career
since April 2011, and once an adjunct professor
with the School of Data Science, Fudan Univer-
sity. His research interests are machine learning

and computer vision. He serves as Associate Editor for IEEE ACCESS,
(Managing) Guest Editor for IEEE Transactions on Neural Network and
Learning Systems, Pattern Recognition Letters, Pattern Recognition,
Vice Secretary of China CSIG-BVD Technical Committee, and on the
executive board of ACM China Multimedia Chapter. He has published
40+ peer reviewed papers in top venues in AI and has filed 20+ US
patents. He has once been with IBM Watson Research Center, Japan
NII, and Tencent/JD AI lab as a visiting researcher. He won the Dis-
tinguished Young Scientist of Scientific Chinese and CCF Outstanding
Doctoral Thesis.

Xiaokang Yang (M’00-SM’04-F’19) received the
B. S. degree from Xiamen University, in 1994,
the M. S. degree from Chinese Academy of
Sciences in 1997, and the Ph.D. degree from
Shanghai Jiao Tong University in 2000. He is
currently a Distinguished Professor of School of
Electronic Information and Electrical Engineer-
ing, Shanghai Jiao Tong University, Shanghai,
China. His research interests include visual sig-
nal processing and communication, media anal-
ysis and retrieval, and pattern recognition. He

serves as an Associate Editor of IEEE Transactions on Multimedia and
an Associate Editor of IEEE Signal Processing Letters. Prof. Yang is also
a fellow of IEEE.

