
Breaking the Security of Physical Devices
Dr Silvio Cesare

Qualys

1 Introduction
Electronics, computers, mobile phones, microcontrollers are ubiquitous devices in the world we live

in. These devices, previously disparate things, are now converging. This allows the security

researcher who previously only knew about IT security, or the researcher who only knew electronics,

to apply their knowledge across a number of devices which share all these atttributes.

This whitepaper looks at some of those physical devices that we commonly see and applies a variety

of hardware, software, and radio techniques to break their security. The devices in question

examined here include:

1. Baby monitors

2. Home alarm systems

3. Automobiles

It is hoped that this paper inspires researchers to look at other real-world devices.

2 Eavesdropping on analog Baby Monitors
Baby monitors are common. There are a

variety of types that exist, such as IP-based

baby monitors, or DECT-based baby monitors.

A pre-cursor to IP and DECT-based systems is

the analog baby monitor which transmits and

receives a radio audio signal. Analog baby

monitors are easily obtainable and can be

quickly found and purchased on E-Bay.

A baby monitoring system works by putting in

a listening device in a room with the baby. At

a specific frequency an audio signal will be continuously transmitted to another room in where a

receiver takes the RF signal and emits the audio.

Software defined radio (SDR) represents an ideal solution to tackle eavesdropping on an analog baby

monitor.

Many types of software define radio devices and dongles exist. The Funcube Dongle [1] is one such

device. A cheaper device is based around the TV tuner range of SDRs. These SDR dongles cost little

more than $15 [2] and can receive but not transmit on a wide range of frequencies.

Also required is an antenna and these can be cheaply purchased on

E-Bay. The frequency range of SDR devices can be expanded to

receive lower frequencies by using an upconverter. An upconverter

moves the signals in lower frequency ranges into a frequency range

that the SDR dongles can process. One such upconverter is the Ham

It Up [3] upconverter.

Determining what frequency the baby monitor is transmitting at is

done by using a spectrum analyser. Expensive professional devices

are available in conjunction with cheaper hobbyist devices. One

such inexpensive device is the RF Explorer [4]. What I found was

that the analog baby monitor in my possession was transmitting at

40MHz.

Now that the transmitting frequency is known, we need to demodulate the signal back to audio.

Software spectrum analysers such as HDSDR [5] on Windows or Gqrx [6] on Linux are useful. These

programs can both show signal strength and demodulate the signal

using AM or FM.

All the pieces of the puzzle are complete, and I know that the signal

transmitted by the baby monitor is at 40MHz and through testing the

different modulation schemes I found that FM modulation was used.

The software spectrum analysers produce audio from the baby

monitor and it can be heard quite clearly.

It is certainly possible to transmit on the baby monitor frequency, but

using the cheap SDR dongles we can only receive.

Mitigating eavesdropping attacks can be done by upgrading the baby monitors to IP or DECT-based

solutions. DECT has known problems also, however implementations of those attacks are not wide-

spread.

3 Disabling and tampering with RF-based home alarm systems
Many home alarms available on the market are controlled by a

remote control that enables and disables the security systems. Such

home alarms can be bought from home depot and home hardware

stores and most have remote control functionality. These remote

controls use RF and can be analysed using software defined radio.

The security on home alarm systems is not high and often used

fixed RF codes to enable and disable the system. Fixed codes are

susceptible to replay attacks. An attacker listens to the RF signal

waiting for the user to disable the system. The attacker captures

this signal, and then later when performing the live attack, replays

the captured code. The alarm system is then disabled.

This attack works on most home alarm systems. The standard frequencies that the keyfobs use are

315MHz and 433.92Mhz.

The har dware required to do this attack is different

to the baby monitoring attack. An SDR device that

can transmit as well as receive is required. A

common SDR device is the USRP [7] and the B200

model is used here.

GNURadio [8] is the software component of the

attack that is used. In capturing the alarm code, the

USRP is used as a signal source and a File is used as

a sink. To replay the codes, the source is the File and the sink is the USRP.

What exactly is the signal that is generated and how do we know that the signal is using a fixed

code? To answer this we need to be able to demodulate the

signal. Generally, most keyfobs use a combination of AM and

PWM to modulate the signal. The presence of an AM carrier

wave for a specific length of time designates whether the data

being sent is a binary 0 or a binary 1. Typically, a long pulse

represents one value, and a short pulse represents another.

The pulses used in pulse width modulation (PWM) can be

measured and grouped together into clusters. This forms the

basis of knowing what the length of a pulse is. Cluster analysis is

used as implemented in the pycluster [9] Python library. The

mean of each cluster is the length of time for that pulse cluster. The mean of the two means (for 0,1)

designates a threshold to classify a pulse as being short or long.

A USRP costs close to $1000. A cheaper solution to implement this attack is to buy commercial AM

transmitter and receiver modules. These modules cost a hundredth of the price of a USRP. The

modules give or take data that can be provided by an Arduino development board. For $50 it is

possible to build a device as I have done using these components to implement replay attacks

against home alarms.

To mitigate replay attacks, it is advisable to buy a commercial-grade alarm system. Typically these

systems will not use fixed codes, but codes that change each time they are sent. This is an example

of a rolling code. Avoid home depot and hardware shops and pay for a professional installation if

security is important.

The next attack looks at tampering. One home alarm system that was being tested was dismantled

in a physical attack. I discovered that the main IC on the board was clearly labelled as a PIC

microcontroller. Test ports were nearby, and an

immediate possibility was that the test ports were

for device programming. I soldered header pins

onto the board and did a continuity test was on

each pin to discover ground.

The ground pin that was found matched the ICSP (in

circuit serial programming) interface used to

program PIC microcontrollers. At this point, I attached a device programmer was attached ran device

programmer software.

What I found was that the device programmer identified the microcontroller in the alarm system.

The software was not able to read the firmware on the device as a fuse had been set to protect the

code. Howe ver, the data could be read and this data revealed the secret password used to program

the keypad on the home alarm system.

Ideally, it would be nice to read the firmware from the micocontroller. Some possible attacks include

silicon analysis after decapsulation. Another attack could

include glitching the device while attempting to read the

firmware.

It is hard to stop attackers with physical access. The

marking on the IC could be removed that would make it

more difficult for an attacker. It should be assumed that

physical tampering and reversing may be attempted but it

is very hard to stop a well resourced attacker.

4 Defeating the keyless entry of a 2000-2005 model automobile
Automotive remote keyless entry systems represent attractive targets to analyse. The keyfobs can

be analysed using software defined radio and the security of these devices has been largely

investigated. Perhaps the best known

attack was the cryptographic break of

the Keeloq [10] rolling code which was

used in a large number of remote

control systems, including (supposedly)

automobiles.

I investigated the security of a popular

2000-2005 model vehicle. The reason

to examine this particular automobile

was that one was in my possession. This

model car is documented as still being

manufactured in particular countries.

From my front driveway, I can see other cars of the same make and model on my street.

The first method of analysis was to generate a dataset of what happens when a button on the

remote is pressed. At first, I simply tried pressing the button repeatedly for a period of time. This

was effective, but repetitive and time consuming. I decided to automate this. To do this, I built a

button pushing robot. This was effectively a solenoid controlled by an Arduino development board.

The button presses were simultaneously analysed using SDR equipment - a B200 USRP and

GNURadio.

The keyfob transmits at 315MHz which is typical of a keyfob. It is noted that holding down a button

on the remote only transmits a single code. On other types of remotes, holding down a button on

the remote repeats the code that is being transmitted for the duration of the button press. The

codes transmitted use AM and PWM modulation schemes.

The code transmitted by the remote is not fixed and changes each time it is sent. A digit in any part

of the code can be one of three states, a 1, a 0, or a gap. A gap is important and is part of the code. A

0, and a gap are the same size in terms of timing, and a 1 is twice that size. An implicit gap also

follows every 1 or 0.

It is clear that there exists a preamble which is the same for every transmission. This preamble

includes synchronisation data and then a code which tied to the individual remote as an

identification. The preamble also contains a section for defining which button the remote was

pressed, either lock, unlock, trunk, or panic. Finally, the remainder of the code is the non-fixed part

of the code that changes each time a button is pressed.

Because the code changes each time, we can assume this particular remote uses a rolling code. The

way a rolling code works is that the remote, which only transmits, and the car, which only receives,

both maintain a pseudo random number generator (PRNG). The state of the PRNG on both the

keyfob and the car are synchronized. Therefore, the car can predict the next pseudo random number

that the keyfob creates. When a button on the remote is pressed, it transmits this pseudo random

number and the car can verify it is correct. Receivers typically allow for the next X valid numbers to

authenticate the device. This is done so that if the keyfob is pressed less than X times and the car

does not receive the transmission, the car will still accept the remote as authentic.

The PRNG of the keyfob can be analysed using the dataset of

button pushes created earlier. I used phase space analysis [11]

to do this analysis. Phase space analysis was used famously for

analysing the initial sequence numbers of TCP connections and

the software to do this analysis is freely available. This software

was used in the analysis against our automobile. The idea is to

transform a sequence of numbers into a sequence of 3-

dimensional points in space. These points are created by taking

the difference between numbers in our original dataset as the

value along a particular axis. If the PRNG is strong, the 3-

dimensional visualisation should produce a uniform cloud of

points. If the PRNG is not strong, the cloud will appear to be non

random.

Phase space analysis reveals that the sequence of numbers in the car's PRNG can be predicted with a

high degree of success given the previous 3 numbers. Therefore, to perform an attack against the

car, we to eavesdrop and capture the last 3 codes, then predict the next rolling code using phase-

space analysis and transmit the code using the USRP and GNURadio.

To increase the range of the transmitter, I use an amplifier in the

output stage of the system that is powered by a bench supply. We

also need to test that the codes transmitted by the USRP can be

accepted by the car before implementing the attack with predicted

codes. The way I validated this was by performing a capture and

replay of the real remote. If the car is in range of the remote,

capturing the code will make it invalid once it has been received by

the automobile. I prevented the car from receiving the code by

putting the remote inside a Faraday cage. A Faraday cage is an RF

shield that blocks RF. Faraday cages can be made as metal cages,

or metal screened cages. An inexpensive version can be simply a $1

Aluminium foil lined freezer bag. I used 2 bags, one inside the other, and this worked effectively.

Using the capture and then transmitting the code I want, I verified that the transmission component

of the attack potentially works.

The actual attack is effective and the predicted rolling codes are correct.

A better attack would be a bruteforce of the rolling code. If we look at

the rolling code, we can see that the total timing of the entire

transmission is one of two sizes and the transmissions alternate between

them. There are also fewer gaps than 1s or 0s. We also note that a gap

never follows a gap.

A theoretical bruteforce attack would capture any 1 transmission by the

real remote to obtain the correct preamble. At that point, all numbers in

the rolling code range would be generated using the constraints above.

This gives us less than 1 million guesses.

I implemented the bruteforce and the car successfully unlocks typically under 2 hours.

There is something funny happening though when I implement this attack. Some of the codes always

unlock the car. What this appears to be, is a manufacturer

backdoor that bypasses the rolling code security. It now takes

seconds to unlock the car once the backdoor is known.

The backdoor is tied into the identification of the remote. This

identification is in the preamble of the transmissions, but at this

point, I have been unable to determine the algorithm to generate

the backdoor given a transmission capture. However, brute forcing

can find the backdoor.

It's hard to mitigate attacks against cars without a recall. It is

possible to replace the keyless entry with a more secure system.

Needless to say, newer cars have stronger security, so upgrading the car is als o an option. For car

makers, a PRNG could be replaced with a list of codes stored in flash memory that is generated by a

true random number generator. Also, obviously, avoid coding in backdoors.

In the future I would like to continue this research by doing a silicon level analysis after

decapsulating the IC in the keyfob. This could potentially help in recovering the firmware and finding

the algorithm to generate backdoors.

Conclusion
Hardware hacking is fun. Many real-world devices can be attacked using hardware and radio

techniques. This leaves much room for analysis by security researchers. Rolling codes and keyfob

security is a prime area ready for more investigation and it seems likely that many systems could be

vulnerable.

References
[1] Funcube Dongle. Available: http://www.funcubedongle.com/
[2] SDR. Available: http://www.nooelec.com/store/sdr/sdr-receivers/nooelec-nesdr-nano-sdr-

dvb-t-usb-stick-r820t-w-antenna-and-remote-control.html#.U7YG5vm1ZZU
[3] Ham It Up

 Available: http://www.nooelec.com/store/ham-it-up-v1-0-rf-upconverter-for-software-defined-
radio.html#.U7YGufm1ZZU

[4] RF Explorer. Available: http://rfexplorer.com
[5] HDSDR. Available: http://www.hdsdr.de
[6] Gqrx. Available: http://gqrx.dk
[7] USRP. Available: http://home.ettus.com
[8] E. Blossom, "GNU radio: tools for exploring the radio frequency spectrum," Linux journal,

vol. 2004, p. 4, 2004.
[9] pycluster. Available:

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#pycluster
[10] N. Courtois, G. Bard, and D. Wagner, "Algebraic and Slide Attacks on KeeLoq," in Fast

Software Encryption. vol. 5086, K. Nyberg, Ed., ed: Springer Berlin Heidelberg, 2008, pp. 97-
115.

[11] M. Zalewski. Strange Attractors and TCP/IP Sequence Number Analysis. Available:
http://lcamtuf.coredump.cx/oldtcp/tcpseq.html

