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1 Introduction

Infectious diseases, also known as contagious diseases, are disorders caused by microorganisms
such as bacteria or virus. Some infectious diseases can be transmitted through bites from insects
or from person to person. Others are acquired by exposure to organisms in the environment or
by ingesting contaminated food or water. Millions of people die annually from infectious diseases
like measles, tuberculosis, HIV/AIDS, or ebola. Infectious diseases are still not eradicated since
there are many countries with poor sanitary conditions or lack of medical care, therefore creating
favorable conditions to spread the infectious agents. Moreover, in some cases, the pathogens create
new strains resistant to current medications potentially leading to new epidemics.

The main goal of mathematical models in epidemiology is to understand the behavior of a par-
ticular infectious disease, such as the prevalence and the duration of the epidemic, and its impact
in the population. These models can help the health authorities to choose the best strategies when
dealing with the epidemic, like mass vaccination programmes, use of antiviral drugs, pest control,
disinfections, and enforce the use of isolation and quarantine.

Mathematical models are used to describe reality, but usually they are simplifications because it
is almost impossible to make computations with a large set of input parameters. For example, when
studying infectious diseases, usually we disregard some parameters such as weather conditions,
individuals’ diets, other diseases and types of contact between particular individuals, etc. In this
sense, it is important to identify the main variables that significantly influence the model in order
to decrease the computational complexity and simultaneously to have a good description of the
evolution of the disease.
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In general, an epidemiological mathematical model divides the overall population into disjoint
compartments where each compartment represents a specific health status with respect to an
infectious agent under consideration. The model is dynamic because the number of individuals of
each compartment may fluctuate over time when their health status changes. This feature is of
the upmost importance in an infectious disease with a short infectious period, such as measles,
varicella, rubella or mumps. Typically, in this kind of diseases, the dynamics of birth and death
are often omitted because the time frame is a short period.

One of the simplest compartmental models in epidemiology divides the population in three
health states (see [5, 9]): Susceptible (S) to the infection of the infectious agent, Infected (I) by
the infectious agent and Recovered/Immune (R) to the disease. These models are known as SIR
models. The first SIR model was presented by Kermack and McKendrick in 1927 [30] and played
a major influence on the development of mathematical models for disease spread. Later on, these
authors contributed further to the development of epidemiological models by the introduction of
birth and death rates in the problem (see [31, 32]). Since then, numerous works have come up with
different approaches. For example, the Reed–Frost and Greenwood discrete-time epidemic models
[1] and [9], the SI model [66] (that is, once infected there is no recovery), or more complex SIR
models. For example, we refer to [19] and [43], where the susceptible population is divided into
subgroups with different infection rates, or there may be multiple levels of infections, some lethal,
some sublethal [10]. More complex models can be considered to include, for example, antiviral
treatment and vaccination policies [25, 26, 41].

To make these basic epidemiological models into more realistic ones, other compartments can
be included. For example, an Exposed (E) compartment, when there is a significant incubation
period during which the individual has been infected but has not yet symptoms, and a Maternally-
derived immunity (M), when considering newborns that are immune during the first months of life
as a result of maternal antibodies. The model that takes into account all of these compartments
is referred as the MSEIR model. This scheme is suitable for diseases that confers permanent
immunity, like measles, varicella, rubella or mumps. Therefore, the considered classes in the
MSEIR model are:

� M : the individuals with passive immunity, protected by maternal antibodies;

� S: the susceptible class, those individuals who can incur the disease but are not yet exposed
to the disease;

� E: the individuals exposed to the disease but not yet infectious;

� I: the individuals infected by the disease and transmitting the disease to others;

� R: the recovered, with permanent immunity.

Depending on the classes considered, we have different epidemiological models. For example,
the SIS model [27, 69], the SIRS model [34, 42], the SEIR model [35, 39], the MSEIR model
[28], among others. Epidemiological models have been successfully applied to the study of several
diseases such as HIV/AIDS [52, 68], Ebola [37, 38], Influenza [63], Cancer [2], Dengue [55, 64],
Malaria [54, 54], Salmonella infection [57], and Zika [49].

Recently, fractional derivatives have been used to describe epidemiological models and they
have proven to be more accurate in some cases, when compared to the classical ones. We find
in the literature different models described by fractional derivatives, like the SIR model [6, 7, 21,
24, 47, 50, 60, 61], the SIR model with vaccination [17, 36, 58], the SIRC model [17], the SEIR
model [23, 51], the MSEIR model [8], etc. We also refer some applications to biomedical modelling
[11, 29, 44, 45, 48].

In this paper, we propose a fractional MSEIR model, where the spread of the disease is de-
scribed by a system of nonlinear fractional-order differential equations. It is worthwhile mentioning
that fractional derivatives are non-local operators, and thus may be more suitable for modeling
systems dependent on past history (memory). Also, since the fractional order can be any positive
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real α, we can choose the one that better fits the data. Therefore, we can adjust the model to real
data and, thus, better predict the evolution of the disease.

There are several definitions for fractional derivatives; in this paper we choose to work with the
Caputo fractional derivative. One of the advantages of such derivative is allowing us to consider
classical initial conditions to be included in the formulation of the problem. Also, the Caputo
fractional derivative of a constant is zero, which is not true for other fractional derivatives.

The paper is outlined as follows. In Section 2, we first recall some definitions and results about
fractional calculus and also present a new result that will be needed in what follows. In Section 3,
we present the classical MSEIR model, and then, in Section 4, extend it to the context of fractional
calculus. Namely, we prove that the problem is well-posed and we evaluate the equilibrium points
and the basic reproduction number. Numerical simulations using Matlab are given in Section 5,
where we study a varicella outbreak in the region of Shenzhen, China, in 2015.

2 Preliminaries on fractional calculus

Fractional calculus is an extension of the ordinary calculus, by considering integrals and derivatives
of arbitrary real or complex order [33, 59]. This subject is as old as calculus itself, and in the past
decades it has proved to be applicable to real world phenomena. In some cases, considering the
dynamic being modeled by a fractional derivative/integral, we obtain a more realistic model.

Let α > 0 be a real number and x : [a, b]→ R an integrable function. The Riemann–Liouville
fractional integral of x of order α is given by the expression

Iαa+x(t) :=
1

Γ(α)

∫ t

a

(t− τ)α−1x(τ) dτ,

where Γ denotes the Gamma function

Γ(t) :=

∫ ∞
0

τ t−1 exp(−τ) dτ,

for t > 0. We remark that Γ(t + 1) = tΓ(t), for all t > 0, and for positive integers n, we have
Γ(n+ 1) = n!.

Given a function x : [a, b]→ R of class Cn, the Caputo fractional derivative of x of order α is
defined by

CDα
a+x(t) :=


1

Γ(n− α)

∫ t

a

(t− τ)n−α−1x(n)(τ) dτ, if α /∈ N, n = [α] + 1

x(n)(t), if α = n ∈ N.

One important relation between these two fractional operators is stated next [33]:

1. Given a continuous function x : [a, b]→ R, CDα
a+I

α
a+x(t) = x(t).

2. If x : [a, b]→ R is a function of class Cn, then

Iαa+
CDα

a+x(t) = x(t)−
n−1∑
k=0

x(k)(a)

k!
(t− a)k.

Another function of great importance for the fractional calculus is the Mittag–Leffler function Eα,
which is defined by the series

Eα(t) :=

∞∑
k=0

tk

Γ(αk + 1)
, t ∈ R.

While the Gamma function is a generalization of the factorial function, the Mittag–Leffler function
is a generalization of the exponential function once if α = 1, E1(t) = exp(t). Since, in general, the
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solutions of linear ODE’s involve the classical exponential function, the Mittag–Leffler function
appears naturally in the solution of fractional order differential equations [33]. We also remark that
the Mittag–Leffler function is useful to describe the electrical properties of nerve cell membranes
and the propagation of electrical signals [44].

Theorem 1. [13] Let x be a function such that x and CDα
a+x are continuous, for α ∈ (0, 1]. Then,

for all t ∈ (a, b], there exists some c ∈]a, t[ satisfying the condition

x(t) = x(a) +
1

Γ(α+ 1)
CDα

a+x(c)(t− a)α.

Thus, from Theorem 1, we conclude that if CDα
a+x(t) > 0, for all t ∈ [a, b], then the function

x is strictly increasing, and if CDα
a+x(t) < 0, for all t ∈ [a, b], then the function x is strictly

decreasing.
One other useful tool is the Gronwall inequality [67], which plays an important role in stability,

boundness, uniqueness, and continuous dependence on the initial or boundary value and param-
eters of solutions to differential and integral equations. With this tool, we prove the next result
that is useful to prove the nonnegativity of solutions for our fractional MSEIR model.

Lemma 1. Let α ∈ (0, 1), m ∈ N, and denote the vectors X := (x1, . . . , xm) and Y :=
(y1, . . . , ym). For each i = 1, . . . ,m, let fi : [a, b] × Rm → R be a continuous function and
Lipschtiz with respect to the second component:

|fi(t,X)− fi(t, Y )| ≤ Li‖X − Y ‖,

where Li is a constant. Let us denote f := (f1, . . . , fm), and consider the two fractional differential
equations

CDα
a+X(t) = f(t,X) +

1

k
and CDα

a+X(t) = f(t,X), (1)

with the same initial conditions, where k is a positive integer. If kX
? := (kx

∗
1, . . . ,k x

∗
m) and

X? := (x∗1, . . . , x
∗
m) are the solutions of (1), respectively, then kX

?(t) → X?(t) as k goes to
infinity, for all t ∈ [a, b].

Proof. Applying the fractional integral to both sides of Eqs. (1), we get that

‖kX?(t)−X?(t)‖ ≤
m∑
i=1

|kx?i (t)− x?i (t)|

≤
m∑
i=1

[
1

Γ(α)

∫ t

a

(t− τ)α−1|fi(τ,kX?(τ))− fi(τ,X?(τ))| dτ +
(t− a)α

Γ(α+ 1)k

]

≤
m∑
i=1

[
Li

Γ(α)

∫ t

a

(t− τ)α−1‖kX?(τ)−X?(τ)‖ dτ +
(t− a)α

Γ(α+ 1)k

]
.

Using the Gronwall inequality [4, Theorem 8], we conclude that

‖kX?(t)−X?(t)‖ ≤ m(t− a)α

kΓ(α+ 1)
Eα

(
m∑
i=1

Li(t− a)α

)
.

Thus, as k →∞, one has ‖kX?(t)−X?(t)‖ → 0.

3 The classical MSEIR model

In our work we assume that, once recovered from the disease, the individual gets lifelong immunity.
Also, the birth and dead rates are the same, constant in time, and denoted by b, so that the total
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population N = M +S+E+ I +R is constant along time. The class of susceptible S increases at
a rate bS, since only mothers that are susceptible can have susceptible newborns (without passive
immunity). All other classes were exposed to the disease and have immunity, and so the other
newborns b(N − S) enter the passively immune class M . Individuals can be transferred from one
compartment to another at different rates. By δM , we mean the transfer out of M , µS is the
transfer out of S, εE the transfer out of E and γI the recovery rate from the infectious class (Figure
1). For example, for the varicella, the values are 1/δ = 6 months, 1/ε = 14 days, and l/γ = 7
days [62]. Let β be the transmission rate, that is, the probability of a susceptible individual to be
infected after an effective contact with one infectious individual, so that µ = βI/N .

Figure 1: The MSEIR model.

The flow of the infection is given by the following system of ordinary differential equations (cf.
[20]): 

M ′(t) = b(N − S(t))− (δ + b)M(t)

S′(t) = bS(t) + δM(t)− β

N
S(t)I(t)− bS(t)

E′(t) =
β

N
S(t)I(t)− (ε+ b)E(t)

I ′(t) = εE(t)− (γ + b)I(t)
R′(t) = γI(t)− bR(t).

(2)

The variable t represents time, and can be measured in hours, days, weeks, or months, depending
on the disease spread. Doing the substitution S = N − M − E − I − R, we can remove the
differential equation for S, and considering m := M/N , e := E/N , i := I/N , and r := R/N , we
obtain the simpler model

m′(t) = b(e(t) + i(t) + r(t))− δm(t)
e′(t) = βi(t)(1−m(t)− e(t)− i(t)− r(t))− (ε+ b)e(t)
i′(t) = εe(t)− (γ + b)i(t)
r′(t) = γi(t)− br(t).

(3)

4 A fractional MSEIR model

Motivated by system (2), we present here our fractional MSEIR model. First, we replace each
ordinary derivative in the system by the Caputo fractional derivative of order α, where α is an
arbitrary real belonging to the interval (0, 1). Then, each parameter ? is replaced by ?α, in
order to both sides of the equations have the same dimension, with the exception of N , that is
dimensionless [14]. Therefore, our proposal model is given by the following system of nonlinear
fractional differential equations:

CDα
0+M(t) = bα(N − S(t))− (δα + bα)M(t)

CDα
0+S(t) = bαS(t) + δαM(t)− βα

N
S(t)I(t)− bαS(t)

CDα
0+E(t) =

βα

N
S(t)I(t)− (εα + bα)E(t)

CDα
0+I(t) = εαE(t)− (γα + bα)I(t)

CDα
0+R(t) = γαI(t)− bαR(t).

(4)
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It is assumed that M,S,E, I,R and their Caputo fractional derivatives are continuous functions.
Similarly to the classical case, we have CDα

0+N(t) = CDα
0+(M +S+E+ I +R)(t) = 0, and so we

conclude that M + S + E + I + R is constant, and equal to the population size. We can rewrite
the fractional system (4), and obtain the following one:

CDα
0+m(t) = bα(e(t) + i(t) + r(t))− δαm(t)

CDα
0+e(t) = βαi(t)(1−m(t)− e(t)− i(t)− r(t))− (εα + bα)e(t)

CDα
0+i(t) = εαe(t)− (γα + bα)i(t)

CDα
0+r(t) = γαi(t)− bαr(t),

(5)

with the initial conditions

m(0) = m0, e(0) = e0, i(0) = i0 and r(0) = r0, (6)

where 0 ≤ m0, e0, i0, r0 ≤ 1. The susceptible population is given by s(t) = 1−m(t)−e(t)−i(t)−r(t).
Remark 1. In [16, 56], one other method to deal with the inconsistency of the dimensions between
the left and right hand sides of the equations, due to simply replacing ordinary derivatives by
fractional derivatives in model (3), is proposed. The procedure consists of multiplying the left-
hand size of each equation by τα−1, where τ is a time constant used to balance the units, after
replacing the differential operators. In such case, the fractional system becomes

τα−1CDα
0+m(t) = b(e(t) + i(t) + r(t))− δm(t)

τα−1CDα
0+e(t) = βi(t)(1−m(t)− e(t)− i(t)− r(t))− (ε+ b)e(t)

τα−1CDα
0+i(t) = εe(t)− (γ + b)i(t)

τα−1CDα
0+r(t) = γi(t)− br(t).

Theorem 2. There is a unique solution for the initial value problem given by (5)-(6) and the
solution belongs to (R+

0 )4 := {(x1, x2, x3, x4) ∈ R4 : xi ≥ 0, for all i}.

Proof. The global existence and uniqueness of the solution follows from Theorem 3.1 and Remark
3.2 of [40], respectively. To show the nonnegativity of the solution, consider the following auxiliary
system of fractional differential equations:

CDα
0+m(t) = bα(e(t) + i(t) + r(t))− δαm(t) + 1/k

CDα
0+e(t) = βαi(t)(1−m(t)− e(t)− i(t)− r(t))− (εα + bα)e(t) + 1/k

CDα
0+i(t) = εαe(t)− (γα + bα)i(t) + 1/k

CDα
0+r(t) = γαi(t)− bαr(t) + 1/k,

(7)

with k ∈ N. We will prove that solution of (6)-(7) (m?
k(t), e?k(t), i?k(t), r?k(t)) belongs to (R+

0 )4, for
all t ≥ 0. In order to obtain a contradiction, let us assume that there exists some instant in time
where the condition fails. Let

t0 := inf{t > 0 | (m?
k(t), e?k(t), i?k(t), r?k(t)) /∈ (R+

0 )4}.

Thus, (m?
k(t0), e?k(t0), i?k(t0), r?k(t0)) ∈ (R+

0 )4 and one of the quantities m?
k(t0), e?k(t0), i?k(t0) or

r?k(t0) is zero. Suppose that m?
k(t0) = 0. Since

CDα
0+m

?
k(t0) = bα(e?k(t0) + i?k(t0) + r?k(t0)) +

1

k
> 0,

by continuity of CDα
0+m

?
k, we conclude that CDα

0+m
?
k([t0, t0 + ζ[) ⊆ R+, for some ζ > 0. By

Theorem 1, m?
k([t0, t0 + ζ[) ⊆ R+

0 and so m?
k is nonnegative. In an analogous way we can prove

that the remaining functions e?k, i?k and r?k are nonnegative, obtaining a contradiction. By Lemma
1, as k →∞, we conclude that the solution (m?(t), e?(t), i?(t), r?(t)) of (5)-(6) belongs to (R+

0 )4,
for all t ≥ 0, proving the desired result.

Theorem 3. Model (5)-(6) has at most two equilibrium points:
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1. a disease free equilibrium PF = (0, 1, 0, 0, 0), and

2. an endemic equilibrium point PE = (m?, s?, e?, i?, r?), with

s? = 1−m? − e? − i? − r?, r? =
γα

bα
i?, e? =

γα + bα

εα
i?,

and

m? =
bα (βαεα − (bα + γα)(bα + εα))

εαβα (bα + δα)
,

i? =
bαδα (βαεα − (bα + γα)(bα + εα))

βα (b3α + b2α(δα + εα + γα) + bα(δαεα + δαγα + εαγα) + δαεαγα)
,

if m?, s?, e?, i?, r? are between 0 and 1.

Proof. The equilibrium points are computed by putting the right hand sides of the four equations
given in (5) equal to zero.

Theorem 4. The disease free equilibrium PF of system (5)-(6) is locally asymptotically stable if

βαεα

(εα + bα)(γα + bα)
< 1.

Proof. The Jacobian matrix of (5), evaluated at the equilibrium point PF , is the following
−δα bα bα bα

0 −εα − bα βα 0
0 εα −γα − bα 0
0 0 γα −bα

 . (8)

The eigenvalues of matrix (8) are

λ = −δα ∨ λ = −bα ∨ λ =
−(A+B)±

√
(A+B)2 − 4(AB − C)

2
,

with
A := εα + bα, B := γα + bα, C := βαεα.

As it was proven in [3, 46], the disease free equilibrium for (5) is locally asymptotically stable if
all eigenvalues λi of the Jacobian matrix (8) satisfy the following inequality

| arg(λi)| > α
π

2
. (9)

Since A+B > 0 and (A+B)2 − 4(AB − C) > 0, condition (9) is meet if

βαεα

(εα + bα)(γα + bα)
< 1,

proving the desired result.

The number

R0 :=
βαεα

(εα + bα)(γα + bα)

is called the basic reproduction number. This number represents the average number of secondary
infections produced by an infected individual in a susceptible population.

7



5 Numerical simulations / A case study

In this section, we obtain numerical results for the solution of the fractional MSEIR model and
compare it with the results of the classical MSEIR model, applied to an epidemic of varicella
that occurred in China in 2015 [65]. We remark that there are no general methods to solve
analytically systems of differential equations in the classical case or in the fractional case. In
order to obtain approximate numerical solutions of the fractional order model, we have used the
Predictor-Corrector approach [15].

It is well known that varicella is a disease commonly affecting children, teens, and young adults
and it is spread by direct contact or airborne droplets. Accordingly to Tang et al. [65], between
2010 and 2015, there were two epidemic waves annually among school populations in Shenzhen,
China. Furthermore, the authors refer that these outbreaks pose serious health threats to the
juvenile population since the Chinese Immunization Program does not cover vaccination against
varicella. Note that this problem could be even worse in the near future because the one-child
policy, established in 1979, was replaced with the two child-policy since the 29th of October of
2015.

We will use the data from the paper of Tang et al. [65], consisting of the number of weekly
varicella confirmations of people living in Shenzhen from 2013 to 2015. The authors used data
from the Infectious Disease Reporting Information Management and, in our present work, we
considered the data consisting in 22 weeks, counting from the 19th week until the 40th week of
2015, with a total population of N = 1 500 000.

Table I: Data provided by the Infectious Disease Reporting Information Management System
Week 19 20 21 22 23 24 25 26 27 28 29
Cases 628 360 533 429 395 324 261 259 249 247 257
Week 30 31 32 33 34 35 36 37 38 39 40
Cases 242 167 153 154 125 90 97 102 128 141 87

In 2015, the number of births per year in China (in millions) was 16.4 and the population was
1371 millions. So, the birth rate is 0.01196 per year. Since our unit of time is one week, our model
parameters are

b = 0.00023, δ =
1

26
, ε =

1

2
and γ = 1

Regarding the initial values for the two differential systems (3) and (5), we assume that at the
beginning there are no exposed individuals, and the percentage of vaccinated or recovered from
a varicella episode is 65% (cf. [65]). Also, since the life expectancy in China is 76 years and
only mothers exposed to the disease can provide antibodies to the newborns during 6 months, we
consider m(0) = (628/N + 0.65)/152. So, the initial data are

m(0) = 0.0043, e(0) = 0, i(0) =
628

N
and r(0) = 0.65.

The goal is to estimate the remaining parameters α and β, in order to better approximate
our theoretical model to real data. For that purpose, we use the routine fminsearch from the
Matlab Optimization Toolbox. This routine implements the Nelder-Mead optimization algorithm
and the objective function used is based on the least square technique. Given a theoretical model
t 7→ Ψ(t, λ1, . . . , λn), depending on some unknown parameters λ1, . . . , λn and a sequence of data
points (t0, x0), . . . , (tm, xm), the goal is to find the values of the parameters for which the error

E :=

m∑
i=0

(Ψ(ti, λ1, . . . , λn)− xi)2

attains a minimum. The results are the following. For the classical model (3), the value of the
parameter β is β ≈ 2.789687. For the fractional model (5), we need to estimate the best rate β
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and the fractional order α. The results are

β ≈ 4.249134 and α ≈ 0.5408709.

We would like to emphasise that these are the best values of α and β when we apply the fminsearch
routine. The fractional and classical errors were approximately 4.040609×102 and 5.077711×102,
respectively.

In Figure 2, we compare the results obtained for both the classical MSEIR model and the
fractional MSEIR model that we studied.

0 5 10 15 20 25

time (weeks)

0

100

200

300

400

500

600

700
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ed

Data
Classical model
Fractional model

Figure 2: Cases of Varicella in Shenzhen, China, from the 19th until the 40th week of 2015:
classical and fractional models.

In this example, the fractional MSEIR model gives us a more accurate fitting to the known real
data than the classical MSEIR model. Note that the fractional derivative is a generalization of the
classical derivative and for this reason the mathematical models based on fractional differential
equations are a more powerful approach than the classical ones. It is also worthwhile to mention
that with the fractional approach we need to find the best order α of the fractional derivative that
adjusts better to the real data.

6 Conclusion

Epidemic models have a major impact on the population worldwide as they provide not only useful
information for health authorities in order to understand disease transmission, but also to predict
and choose the best strategies to control epidemics.

In this paper, we have proposed a nonlinear fractional order MSEIR model that can be applied
to any infectious disease that confers permanent immunity after the individual has been infected by
the microorganism causing the disease. We proved that our fractional model has a unique solution
and that this solution is nonnegative. We also proved that the fractional order MSEIR model
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has at most two equilibrium points. In addition, a sufficient condition for the local asymptotic
stability of disease-free equilibrium was presented.

We tested our fractional MSEIR model with the real data from the population infected with
varicella from Shenzhen, China, for the year 2015. We showed that the fractional model best fits
the real data when compared to the classic MSEIR model. In fact, the error between the real data
and the fractional model decreased approximately 20%.

Finally, it is important to mention that mathematical models based on fractional derivatives
are, in general, a more powerful approach to epidemiological models, not only because we can
choose the order α of the fractional derivative, but also because of the memory properties of the
fractional derivatives.
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