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ABSTRACT

This paper describes our participation in the NTCIR-12
Temporalia-2 task including Temporal Intent Disambigua-
tion (TID) and Temporally Diversified Retrieval (TDR) sub-
tasks. In the TID subtask, we extract linguistic features
from the query, time distance features and multinomial dis-
tribution of the query n-grams which are then combined
using a rule based voting method to estimate a probability
distribution over the temporal intents. In the TDR subtask,
we perform temporal ranking based on two approaches, lin-
ear combination of textual and temporal relevance method,
and learning to rank method. Three classes of features com-
prising of linguistic, topical and temporal features were used
to estimate document relevance in the learning to rank ap-
proach.

Team Name

L3S

Subtasks

Temporal Intent Disambiguation Task (English), Tempo-
rally Diversified Retrieval Task (English)

Keywords

temporal information retrieval, learning to rank, temporal
intent disambiguation, text classification

1. INTRODUCTION
Temporal information retrieval is a sub-branch of informa-

tion retrieval concerned with improving retrieval effective-
ness by leveraging temporal information found in documents
and queries [3, 1, 9]. Previous studies have shown that nearly
1.5% of all queries issued explicitly mention time expres-
sions [14], while about 7% of web queries have an implicit
temporal intent [13]. In the TID (Temporal Intent Disam-
biguation) subtask, the objective is to estimate a probability
distribution of the query intent across four temporal intent
classes: past, recent, future or atemporal. For example, the
query “history of rap” implies a high probability should be
assigned to the past intent. The temporal intent disambigua-
tion of queries is then useful when searching in longitudinal
document collections for selecting the appropriate temporal
retrieval model [2, 10, 11]. In the TDR (Temporally Diversi-
fied Retrieval) subtask, teams must devise retrieval models to
produce a ranked list of documents that are diverse across
all of the above defined temporal intents for a given query.

For a more detailed overview of the subtasks of NTCIR-12
Temporalia-2 task please refer to [8].

For the TID subtask, we identify a set of query-specific
features such as verb tense of the query, distance between
the temporal expressions identified in the query topic and
the query hitting time, and the frequently occurring n-grams
for each temporal intent using a multinomial distribution.
We combine them using intent specific rules that if satisfied
contribute a vote to the respective intent class. After ap-
plying all the rules, votes are aggregated and normalized to
determine the distribution across the temporal intents.

In the TDR subtask, our approach is to first classify query
subtopics to the correct temporal intent class with high accu-
racy using a joint classifier (Section 3.1). Using the classified
subtopics in conjunction with the query topic, we produce
a ranked list for each temporal intent class using retrieval
models trained by a listwise learning-to-rank approach. One
of the key features we use is the temporal relevance of a
document. Temporal relevance is a score that estimates the
expected temporal distance of the document from the query
hitting time using the distribution of temporal expressions
in the content (refer Section 3.2). Finally to produce a di-
versified list from the top-k results for each class, we use a
greedy approach that maximizes the earth mover’s distance
between the distribution of temporal references in the result
set.

Outline. The rest of the paper is organized as follows.
In Section 2 we describe our approach for the TID subtask
along with the discussion of the results detailed in Section
2.3.2. In Section 3 we first describe our subtopic classifica-
tion approach in 3.1 and then explain how temporal rele-
vance of a document is computed in 3.2. We then highlight
the features used for the learning-to-rank models in Section
3.4. Our diversification approach using earth mover’s dis-
tance is the subject of Section 3.5. In Section 3.6 we discuss
the experimental setup including the training procedure for
the learning-to-rank models. Finally we discuss our perfor-
mance in the TDR subtask in Section 3.6.2 and highlight
key takeaways in Section 4.

2. TEMPORAL INTENT DISAMBIGUATION
In the TID subtask, given a query (q) and query sub-

mission date (tq) we have to estimate a distribution across
four temporal intent classes (atemporal, past, recent, future).
Thus to estimate this distribution, we use a rule based voting
method that comprises of intent specific rules designed from
the dry run queries. The rules use various query-specific fea-
tures such as verb tense, distance between the date in the

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

233



query and query submission time and the multinomial dis-
tribution of the n-grams extracted from the queries. In this
section, we first describe how the features are extracted from
the queries and then the approach of how the rule based vot-
ing method is used to build the required distribution across
the temporal classes.

2.1 Features extracted for TID

• Time Distance Features: A temporal mention in a
query is a good feature to help disambiguate the tem-
poral intent of a query. For example, “French Open
2012” becomes a strong indicator of past intent given
that tq is “May 1, 2013 GMT+0”. We use the SUTime
Library [5] available part of the Stanford CoreNLP
pipeline to recognize and normalize temporal expres-
sions in the queries. The distance of the normalized
time expressions from the query hitting time is mea-
sured to provide an estimate of the intent.

In the dry run queries only 16 out of 100 contained
time expressions that can be used to estimate the time
distance, this reflects how rare it is to find explicit or
implicit temporal expressions in a search query. Thus
in order to obtain more candidate temporal expressions
for the formal and dry run queries, we used the freely
accessible GTE1 web service detailed in [4]. Given a
query, the GTE web service returns a set of candidate
years extracted from the top 50 web snippets returned
by the Bing Search API.

• Linguistic Features: Verb tense is a strong temporal
indicator for search queries [19]. For example, the verb
“was” in“When was the first Olympics held” is a strong
indicator of past intent. We use the Stanford Part-of-
Speech Tagger library [16] that recognizes verbs along
with the tenses in a sentence using the Penn Treebank
tag set. Verb tenses included in the Penn Treebank
set include past tense, past participle, present tense,
present participle and base verb form. Since the Penn
Treebank set doesn’t include any tags for future tense,
we consider a base verb that is preceded by a modal
verb such as will/shall to be an indicator of future
tense. A query can include multiple verbs with dif-
ferent tenses. Thus we do a syntactic parsing of the
query using the Stanford Parser Library [15] to deter-
mine the main predicate, by selecting the uppermost
verb in the parse tree.

• NGram Features: As a set of baseline features, we
extract the uni-gram and bi-gram terms of the queries
from the training data, which is 73 dry run queries. We
model the per class multinomial distribution of the n-
grams by using the n-grams overall frequency (T ) and
the per class n-gram count (C ). The per class n-gram
count is computed by counting the n-grams per class
(like past) generated from those queries which have a
non-zero past probability in the training data.

p(ng, class) =
C

T
(1)

Each formal run query (q) is represented as a set of
all possible permutations of the uni-gram and bi-gram

1http://www.ccc.ipt.pt/ ricardo/software.html

terms that are extracted from the query. Then the
probability distribution of a query across the temporal
classes is calculated using the following equation.

p(q, class) = argmax
i∈q

∏

ng∈i

p(ng, class) (2)

2.2 Rule Based Voting Method
We designed rules based on the dry run queries, which if

satisfied contributes a vote to a particular temporal class.
Once all the rules are applied, the votes are accumulated for
each temporal class and a probability distribution across the
temporal classes are built using these votes. We apply the
rules in the same order as defined below.

• NGram features provides the probability of a query to
a particular temporal class. We learn a decision tree
model based on regression for the dry run queries using
the NGram features. This learned model is then used
to predict the probabilites for the formal run queries.
The temporal class with the maximum probability out-
put from the learned model gets a vote.

• From the verb tense features, if the tense of a query is
either past, present or future, a vote is assigned to that
respective temporal class [7]. If no tense information
can be extracted from the query, a vote is assigned to
the atemporal class.

• If the temporal mention extracted from the query con-
tains the words (“past ref”, “present ref”or“future ref”),
a vote gets assigned to that temporal class. If the tem-
poral mention is a date and if its earlier or after the
query hitting time, a vote gets assigned to past and
future class respectively.

• If after applying the above rules, the votes across all
the temporal classes are low and their standard devi-
ation is low. We then take the mean of the candidate
years extracted for the query from the GTE service. If
the difference between the mean and the query hitting
time is about 1 year in the past, we give a vote to
recent. If the difference is more than 2 years, a vote
is assigned to the past. If the mean date is after the
query hitting date, a vote is given to future. If there
are no candidate years, atemporal gets a vote.

2.3 Experiments

2.3.1 Temporal Intent Disambiguation Runs

We submitted 2 runs for the TID subtask.

• L3S-TID-E-1: This run uses the rule based voting method
to generate the probability distribution across the tem-
poral classes for a given query.

• L3S-TID-E-2: This run uses the probability distribu-
tion across temporal classes for a query generated only
from the NGram features.

2.3.2 Results and Discussion

The evaluation results in table 1, show that the rule based
voting method does better than the baseline which uses only
NGram features across both performance measures. This
highlights how the linguistic and time distance features helps
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Run Average Absolute Loss Cosine Similarity

L3S-TID-E-1 0.2031 0.7307

L3S-TID-E-2 0.2452 0.6673

Table 1: Evaluation Results of TID Formal Runs

improve the estimation of the temporal intent of a query.
Our method helps determine the correct distribution for
queries that contain linguistic information such as “what
was the great awakening” and “when did elvis die”. How-
ever, for queries that have an implicit/explicit temporal ex-
pression identified, such as, “uk 2009 balance of payments”
or “John Galliano Spring 2011 Mens Preview” the proba-
bilities are spread across all temporal classes with higher
probability for the past intent. This happens since we ag-
gregate the votes for time distance only after accumulating
the votes for NGram and linguistic features. Consequently,
this increases the average absolute loss because these type
of queries clearly indicate a particular temporal intent, thus
for queries that contain temporal expressions only the time
distance rule should be applied.

Using a rule, based on dictionary words such as “future”,
“schedule”, “releases”, “forecast”, “plan” could help estimate
queries that have higher probability of future intent. Certain
queries indicating future intent were misclassified as past
intent because of the ambiguity introduced by the temporal
tagger. For example, “November Calendar printable” and
“December calendar” were resolved to “2012-11”, “2012-12”
respectively.

The probability for atemporal queries like“causes of global
warming”, “light pollution”, “literature critics”, were easily
estimated as all the features contributed votes to the atem-
poral intent and also no candidate years were returned by
the GTE service indicating atemporal nature. However, for
atemporal queries like“consumer economy”, “sherlock holmes”,
the distance of the mean of the candidate years returned by
GTE service indicates past, which causes a misclassification.
Thus we should re-design the rule to also consider the spread
of candidate years across time to understand the atemporal
intent. Also the candidate years returned by the GTE service
is based on search results returned in December 2015, which
won’t be optimal for queries with issuing time of 2013.

Queries like “how long does the flu last”, “the advantages
of hosting the olympic games” are considered to be either
past or recent using the NGram and linguistic features, in
these cases we need additional rules to help disambiguate
the atemporal intent.

3. TEMPORALLY DIVERSIFIED RETRIEVAL
In the TDR subtask, we are given a topic, description and

an indicative search question (subtopic) for each temporal
class and we have to retrieve a list of relevant documents for
each of these classes. We also have to return a list of docu-
ments that are temporally diverse for the same topic. Since
the subtopic class information was not supposed to be used,
we use a classifier to jointly classify the subtopics to the re-
spective intents based on verb tense and dictionary features
detailed in Section 3.1. Once we have a classified subtopic,
we use it for retrieval which is based on a learning-to-rank ap-
proach using features extracted from verb tenses of sentences
in documents, topical similarity of the document, textual rel-
evance returned by statistical language model and temporal

features based on the distribution of time references in the
document with intent specific filters.

Documents provide temporal information in two forms,
publication date and temporal expressions in the content.
Thus in Section 3.2, we describe how to compute the tem-
poral relevance score of a document using the temporal ex-
pressions in the content. We then shortly describe in Section
3.3, how this temporal relevance score is combined with the
topical relevance score in a parameterized sum. Next, we
focus on the features extracted from the document that are
used in learning-to-rank approaches to build different rank-
ing models for each temporal intent (Section 3.4). Finally,
we describe in Section 3.5 the approach for producing the
diversified set of documents across all temporal intents that
uses the set of documents considered relevant for each tem-
poral intent as candidates.

3.1 Subtopic Classification
For each search topic, the workload also contains subtopics

which are indicative search questions for each of the tempo-
ral classes. We use a multiclass SVM classifier2 to classify
subtopics using the features extracted from it. Using this
classifier there is a likelihood that subtopics belonging to
the same topic will be classified to the same temporal in-
tent. Thus we use the confidence score returned from the
SVM classifier to jointly classify the subtopics for a given
topic using a greedy approach.

In this approach we first pick the subtopic-intent pair that
has the maximum confidence score, and then ignore the con-
fidence scores of this intent for the remaining subtopics.
Then we pick the next highest confidence score pair from
the remaining set and proceed as above to determine all
unique subtopic-intent pairs.

The features that are used for the multiclass classifier are
listed below.

• We extract the tense of the subtopic similar to the
approach described in section 2.1 which is used for the
TID subtask.

• We identified certain words from the dry run queries
which were frequently occurring for certain temporal
intents and built a word dictionary. We also included
synonyms of the above identified words and the class
names as well.

• We compute the average expected distance (section
3.2) for the subtopic from the top 20 pseudo relevant
documents that were retrieved.

3.2 Temporal Relevance Score of Document
The temporal relevance estimates the expected distance of

a document in time, that is, the focus time using the tem-
poral distribution of time expressions in the content. Thus
in this section, we describe how we compute this temporal
relevance using the annotated normalized time expressions
τ(d). We map each time expression te in the document d
to a time interval [b, e) at day granularity (e.g., May 2014 is
mapped to [01/05/2014, 31/05/2014]). Then we determine
the temporal distribution of time references in a document
at monthly granularity, that is, each document d is repre-
sented by a set τm(d) of monthly time intervals [tmb, tme).

2https://www.cs.cornell.edu/people/tj/svm light/
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The weight of each monthly time interval is calculated as
follows

w([tmb, tme)) =
∑

te∈τ(d)











cnt(te)
|τ(d)|

, te ∈ [tmb, tme)

cnt(te)
|τ(d)|

· g, [tmb, tme) ∈ te ∈ {tg}

(3)
where cnt(te) is the count of the number of occurrences of
te in the document. The constant tg is used to describe if
a time interval is at a yearly granularity and the constant g
is the weight contributed by this temporal expression to the
time interval [tmb, tme)(i.e.

1
12
).

The intent specific filter (I) for recency (R), past (P) or
future (R) are chosen based on the subtopic classification.
It is modeled as an exponential distribution using dist as
the distance between query issue time and time expression
measured in months (tq − te):

f(te) =











λe−λ|dist| · ✶(dist ≥ 0), if I = R

λeλ|dist| · ✶(dist > 0), if I = P

λeλ|dist| · ✶(dist < 0), if I = F

(4)

where ✶(dist ≥ 0) is an indicator function whose value as-
sumes 1 iff dist ≥ 0. λ is a tunable parameter, which is set to
0.03 in our experiments. The intuition behind this approach
is that temporal expressions close to tq have a higher proba-
bility than older temporal expressions for the recency filter.
While for the past and future filter, temporal expressions
further away from tq have a higher probabilty.

We then use the chosen intent specific filter to transform
the temporal distribution of time references in a document.

h(te) =

{

w(te) · f(te) · |dist|, if I = P or F

w(te) · f(te) ·
1

|dist|
, if I = R

(5)

So the expected distance of the document with respect to
the query hitting time, i.e., temporal relevance score is com-
puted as follows

E(d) = 1
|τm(d)|

∑

te∈τm(d)

h(te) (6)

3.3 Parameterized Sum Method
For all our experiments, we determine a set R of pseudo-

relevant documents (|R|=1000) by employing a unigram lan-
guage model with Dirichlet smoothing (µ = 2000) [20]. We
then re-rank the documents using scores obtained from the
linear combination of the temporal relevance and topical rel-
evance score, defined as follows

Rf = λE(d) + (1− λ)Rc, 0 ≤ λ ≤ 1 (7)

where λ is a tunable parameter and Rc is the relevance score
of the language model.

3.4 Learning-To-Rank Features
In our approach we use a listwise learning-to-rank al-

gorithm optimized for the evaluation measure nDCG@20.
For a detailed description of the different approaches, refer
to [12]. Feature selection is critical for learning-to-rank ap-
proaches, so in this section we describe the various features
that we extract from the query-document pairs.

• Verb Tense Features: We take the noun terms of
the search query into consideration and split the doc-
ument into two sentence types: Snoun those sentences
that contain atleast a noun search term and Snon−noun

those that don’t contain any noun search term. We de-
termine if a sentence talks about the past, present or
future by using the same approach as the linguistic
feature for TID subtask (Section 2.1). We thus have 6
verb tense features:

– the ratio of past, present and future tense w.r.t
Snoun,

– the ratio of past, present and future tense w.r.t
Snon−noun.

These features help determine the language of the doc-
ument, how much of the text talks about the past,
present or future which in turn helps match it to a
particular temporal intent.

• Topical Features: These include 4 similarity based
features using the jaccard similarity on a word level
between:

– search topic and document title,

– search topic and document content,

– search subtopic and document title,

– search subtopic and document content.

These features help determine the topical similarity
between the document, search topic and subtopic. We
also use the document relevance score between the search
query and the document as a feature. The relevance
score obtained from the unigram language model with
Dirichlet smoothing is directly used.

• Temporal Features: These include two features based
on the temporal expressions of the document.

– temporal relevance score computed for a document
as described in Section 3.2.

– temporal density feature which is the ratio of the
number of temporal expressions to the length of
the document. This helps differentiate between
atemporal and temporal documents.

3.5 Earth Mover’s Distance for Diversification
The earth mover’s distance (E) is a measure of distance

between two probability distributions, it is the minimum
cost required to transform one probability distribution to
another. In our case, we measure the E between the tem-
poral distribution of time references from one document to
another. We use E for diversification, so that we get a set of
documents that have diverse temporal distributions which
would in turn give a temporally diversified set. We consider
sets Ri containing candidate documents from the top 100
documents retrieved for the specific intent (i ∈ {atemporal,
recency, past, future}) using the above ranking approaches.
We represent the diversified set of results as RD, to which
we add documents from sets Ri that have maximum E from
the documents already present in RD. During the initial
step, we add a rank 1 document from one of the sets Ri at
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random and initialize E0 with a zero value. Then we com-
pute the E between two temporal distributions A and B as
follows

Ei+1 = (wA(tei) + Ei)− wB(tei)

ETotal =

|τm(A)∪τm(B)|
∑

i=1

|Ei|
(8)

We give preference to top ranked documents to be added to
RD by discounting the ETotal using the rank of the docu-
ment, so the final score that we consider is

Ef =
1

rank
∗ ETotal (9)

3.6 Experimental Setup
We used Lucene3 to build the index for the “LivingKnowl-

edge news and blogs annotated subcollection” corpus [8].
The unigram language model with Dirichlet smoothing im-
plementation of Lucene was used to retrieve the top 1000
pseudo-relevant documents. The query is constructed from
the title of the topic and the subtopic, and then searched
against the title and content fields of the documents. The
features described in section 3.4 are extracted from the tagged
version of a pseudo-relevant document.

Training data. The 10 dry run topics and the 50 for-
mal run topics of Temporalia-1 along with their qrels4 are
used to generate the training data for learning the ranking
models. Each row in the training data is a query-document
pair: the first column is the relevance judgement, the sec-
ond is query id (qid) used to restrict the generation of con-
straints, the subsequent columns are feature/value pairs or-
dered by increasing feature number. We created separate
training datasets for each temporal class, the data is pre-
pared as follows: the query containing topic and subtopic
is used to retrieve the top-1000 pseudo relevant documents
using a language model (LM). The relevance judgements in
the qrels are of the order 2 (really relevant), 1 (relevant)
and 0 (irrelevant). From the pseudo relevant documents,
we selected relevant and irrelevant documents in different
ratios (1:1, 1:2, 1:3) in order to find the right balance of
training examples. Finally we found that the ratio 1:2 (rel-
evant: irrelevant) for preparing the training data performs
best. Each temporal class-specific training data is then used
to learn a ranking model so as to predict document rank-
ing for a formal-run subtopic of the same temporal class.
Besides, we also experimented by combining all the class-
specific training data into one large training set, but the
performance was lower than the class-specific training data.

Ranking Models. The RankLib5 library is used to com-
pare different listwise learning to rank approaches, such as,
AdaRank [18], RankBoost [6] and LambdaMART [17]. We
used the default learning algorithm specific parameters and
optimize for the measure nDCG@20. For the final runs, we
used the AdaRank learning algorithm.

3.6.1 Temporal Diversified Retrieval Runs

We submitted 3 runs for the TDR subtask. For all the
runs the diversification of the results across all temporal in-
tents is carried out using the earth mover’s distance measure.

3https://lucene.apache.org/core/
4http://research.nii.ac.jp/ntcir/permission/ntcir-11/perm-
en-Temporalia.html
5https://sourceforge.net/p/lemur/wiki/RankLib/

• L3S-TDR-E-1: Manual run with manually crafted queries
using the topic and subtopic. The training and test
data (formal runs) is generated from the pseudo-relevant
documents retrieved using LM. The ranking model is
learned based on the class-specific datasets.

• L3S-TDR-E-2: Automatic run in which the subtopics
are classified using the joint classifier described in Sec-
tion 3.1. The pseudo relevant documents are retrieved
using LM and then re-ranked using the parameterized
sum method (Section 3.3). The parameter λ is set
to 0.3, giving more weightage to the textual relevance
score.

• L3S-TDR-E-3: Automatic run in which the subtopics
are classified using the joint classifier described in Sec-
tion 3.1. The training and test data (formal runs)
is generated from the pseudo-relevant documents re-
trieved using LM. The ranking model is learnt based
on the class-specific datasets.

• LM: In this run documents are retrieved using LM.

3.6.2 Results and Discussion

Run D#-NDCG@20 I-rec@20

L3S-TDR-E-1 0.8262 0.9850
L3S-TDR-E-2 0.6852 0.9900

L3S-TDR-E-3 0.8423 0.9850

Table 2: Diversified Results of TDR Formal Runs

The evaluation results in table 3 shows that (1) there is
no significant difference in overall performance between the
manual run (L3S-TDR-E-1) and automatic run with subtopic
classification (L3S-TDR-E-3) which indicates that the joint
classification approach for subtopic classification performs
well. (2) The nDCG@20 performance for the atemporal
class is poor for parameterized sum method when compared
to the learning-to-rank approach by about 19%. This shows
that the topical features based on similarity measures along
with the temporal density feature helps significantly retrieve
more relevant atemporal documents. (3) The nDCG@20
performance for the future intent is higher using parameter-
ized sum method than using learning-to-rank approach by
about 7%, this indicates that using topical features based
on similarity measures and verb-tense features have a deter-
imental effect than only using the temporal relevance score
when retrieving documents for future intent. (4) All our
models perform better than the baseline in terms of rank in-
sensitive metric P@20. However, in terms of nDCG@20 the
performance for future and past class of the baseline outper-
forms all our models, indicating the importance of textual
relevance in retrieving such documents. Our learning-to-
rank models outperform the baseline in nDCG@20 for the
atemporal and recency class, highlighting the significance of
temporal features such as temporal relevance and temporal
density for these classes.

The overall ERR measure is high, indicating that the
1st and 2nd ranked document is relevant for most topics
across all runs. The topic “The right to be forgotten” per-
forms poorly for ERR and nDCG@20 measures across all
subtopics since we apply stopword removal to the topics be-
fore forming a query (e.g.“right forgotten”), which when used
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Run
NDCG@20 P@20

Atemporal Future Past Recency All Atemporal Future Past Recency All

L3S-TDR-E-1 0.7264 0.6511 0.7005 0.7151 0.6983 0.7960 0.7360 0.7710 0.7970 0.7750

L3S-TDR-E-2 0.6109 0.6932 0.7127 0.6758 0.6731 0.7330 0.7790 0.8000 0.7760 0.7720
L3S-TDR-E-3 0.7299 0.6508 0.6998 0.7116 0.6980 0.7960 0.7360 0.7700 0.7930 0.7737

LM 0.7052 0.7151 0.7297 0.6865 0.7076 0.7690 0.7850 0.7940 0.7580 0.7416

Table 3: Per-Class results for all TDR Runs. For every temporal class, the highest value is indicated in bold.

doesn’t retrieve the most relevant documents for this topic
highly enough.

The performance of the diversified results is measured us-
ing D#-nDCG@20 that combines intent recall (I-rec@20 ),
and D-nDCG@20 which is a form of nDCG measure where
the gain is replaced with a global gain value that takes into
consideration the per intent graded relevance for a docu-
ment. Our diversification approach performs well across
learning to rank runs (table 2), since the intent recall is
high across all topics as we consider the top 100 relevant
documents returned for each temporal class and since our
nDCG values are relatively high for the individual tempo-
ral classes as well. The earth mover’s distance works well
in our case since we diversify the candidate documents by
selecting those documents that are highly ranked in the in-
dividual lists and those that are most diverse in the tempo-
ral distribution of the time references. Our method could
be improved, if instead of a random selection for selecting
the first document, we use a method to choose the most
confident document from across the temporal classes. Also,
considering only the top 20 relevant documents from each
intent could improve the D#-nDCG@20 measure.

4. CONCLUSIONS
In this paper we discussed our approaches for solving the

TID and TDR subtask part of the Temporalia-2 task. For
the TID subtask, we used a rule-based voting method that
is comprised of intent specific rules which use query-specific
features such as verb tense of the query, temporal expres-
sion identified from the query and the multinomial distribu-
tion of n-grams in the query. The evaluation results show
that incorporating the linguistic and temporal features helps
improve the estimation of the temporal intent of a query.
Adding a rule, based on dictionary words related to future
could help improve the estimation of queries that have a
higher probability for future intent. For atemporal queries
that have candidate years returned from the GTE service,
rules which determine the spread of years across time is
needed for disambiguation.

In the TDR subtask, we jointly classified all the subtopics
together to get unique subtopic-intent pairs. We then built
separate learning to rank models for each temporal intent
using features extracted from the document. The temporal
relevance score helped improve the performance measures
for future and past intents. The overall performance could
be improved by mining other indicative search questions for
an intent, as well as using the named entity tags to improve
content relevance and to determine important time expres-
sions.

The temporal diversification of results using earth mover’s
distance was an effective approach exploiting the temporal
distribution of time references in the documents. However,
this could be improved by experimenting with smaller candi-

date sets of relevant documents from each individual intent.
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