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Abstract

Our systemusedan empirical methodfor estimat-
ing term weightsdirectly from relevancejudgements,
avoidingvariousstandard but potentiallytroublesome
assumptions.It is commonto assume,for example,
thatweightsvarywith termfrequency(

���
) andinverse

documentfrequency(��� � ) in a particular way, e.g.,����� ��� � , but the fact that there are so manyvariants
of this formula in theliterature suggeststhat there re-
mainsconsiderable uncertaintyabout theseassump-
tions. Our methodis a kind of regressionmethod
where labeledrelevancejudgementsare fit as a lin-
ear combinationof (transformsof)

���
, ��� � , etc.Train-

ing methodsnot only improveperformance,but also
extendnaturally to include additional factor, that is
burstiness. The proposedhistogram-basedtraining
methodprovidesa simpleway to modelcomplicated
interactionsamongfactorssuch as

���
and ��� � .

1 Introduction

An empirical methodfor estimatingterm weights
directly from relevance judgementsis proposedby
[7]. Themethodis designedto makeasfew assump-
tions as possible. It is a kind of regression[4] [1]
where labeledrelevancejudgementsare fit as a lin-
ear combinationof (transformsof)

���
, ��� � , etc., but

avoids potentiallytroublesomeassumptionsby intro-
ducing histogrammethods. Termsare groupedinto
bins. Weightsarecomputedbasedon the numberof
relevantandirrelevantdocumentsassociatedwith each
bin. The resultingweightsusuallylie between	 and��� � , which is asurprise;standardformulaslike

���
� ��� �
wouldassignvalueswell outsidethis range.

Underthevectorspacemodel,thescorefor a doc-
ument � and a query � is computedby summinga
contribution for eachterm

�
over anappropriatesetof

terms,� . � is oftenlimited to termssharedby boththe
documentandthe query (minusstopwords), though
not always(e.g,queryexpansion).


������������ ��������� �! #" ��� � � �$��� � ��� � � � �
Undertheprobabilisticretrieval model,documentsare
scoredby summinga similar contribution for each
term

�
.


%�����&��'�� ��������� �! #")( ��*,+.- � �$/ ��� ( �- � �$/ ��� ( �
In this work, we use 0 to referto termweights.


%�������#� ���$���1� �! #")0 � � �����%���
This paperwill start by showing how to estimate0
from relevancejudgements.Threeparameterizations
will be considered:(1) fit-G, and(2) fit-B, which in-
troducesburstiness.Wearealsointerestedin theinter-
pretationsof theparameters.

In this report, we have borrowed the description
from [7], sinceour systemusesthemethoddescribed
in the paper. The following descriptionis essentially
sameas[7] exceptthedescriptionof queryexpansion.

2 Supervised Training

The statisticaltask is to compute 20 , our bestesti-
mateof 0 , basedon a trainingset.Thispaperwill use
supervisedmethodswherethe training materialsnot
only includea large numberof documentsbut alsoa
few querieslabeledwith relevancejudgements.

We have chosenbigram (2 characters)for term.
Thoughproperlysegmentedwordswill beanotherob-
viouschoice,we areinterestedin bigramsystem.

To makethe training task more manageable,it is
commonpracticeto mapthespaceof all termsinto a
lower dimensionalfeaturespace.In otherwords,in-
steadof estimatinga different 20 for eachterm in the
vocabulary, we canmodel 20 asa function of

���
and��� � andvariousotherfeaturesof terms.In thisway, all

of the termsin a bin areassignedthe weight, 20 . The
commonpractice,for example,of assigning

����� ��� �



3 � : a term

3 � : a document

3 ��� � � �$��� : termfreq= # of instancesof
�

in �
3 � � � � � : docfreq= # of docs� with

��� � � ���4��576
398 : # of documentsin collection

3 ��� � � � � : inversedocumentfreq: : ( ��*#+<;>=�?
�A@
B

3 � � � � � ��� ( � ����C � : # of relevant documents� with��� � � �$���D� ����C
3 � � � � � ��� ( � ��� C � : # of irrelevant documents� with��� � � �$���D� ����C
3 �FE � � � : standardnotion of frequency in corpus-

basedNLP: �FE � � �1� ; ��� � � �$���
39G)� � � : burstiness:G)� � �H�I6 if f

"&J ? �A@;>=�? �A@ is large.

Table 1. Notation

��� � ��� �K	 ��� �L6 ��� �KM ��� �9N ��� 5KO
12.89 -0.37 9.73 11.69 12.45 13.59
10.87 -0.49 8.00 9.95 11.47 12.06
9.79 -0.86 7.36 9.38 10.63 10.88
8.96 -0.60 6.26 7.99 8.99 9.41
7.75 -0.34 4.62 5.82 6.62 7.98
6.82 -1.26 3.94 6.05 7.59 8.98
5.78 -0.83 3.16 5.17 5.77 7.00
4.74 -0.84 2.46 3.91 4.54 5.58
3.85 -0.60 1.58 2.76 3.57 4.55
2.85 -1.02 1.00 1.72 2.55 3.96
1.78 -1.33 -0.06 1.05 2.46 4.50
0.88 -0.16 0.17 0.19 -0.10 -0.37

Table 2. Empirical estimates of 20 as a
function of

���
and ��� � . Terms are as-

signed to bins based on ��� � . The column
labeled ��� � is the mean ��� � for the terms
in each bin. 20 is estimated separatel y for
each bin and each

���
value, based on the

labeled relevance judgements.

Description(functionof term
�
)

1 � � � � � �&� ( �P	Q��R # �&� ( docs� with
��� � � �$���D�K	

2 � � � � � �&� ( �%6,��R # �&� ( docs� with
��� � � �$���D�L6

3 � � � � � �&� ( �PMQ��R # �&� ( docs� with
��� � � �$���D�KM

4 � � � � � �&� ( �PNQ��R # �&� ( docs� with
��� � � �$���D�KN

5 � � � � � �&� ( �POQST�1R # �&� ( docs � with
��� � � �$���U5KO

6 � � � � � �&� ( �P	Q��R # �&� ( docs� with
��� � � �$���D�K	

7 � � � � � �&� ( �%6,��R # �&� ( docs� with
��� � � �$���D�L6

8 � � � � � �&� ( �PMQ��R # �&� ( docs� with
��� � � �$���D�KM

9 � � � � � �&� ( �PNQ��R # �&� ( docs� with
��� � � �$���D�KN

10 � � � � � �&� ( �POQST�1R # �&� ( docs � with
��� � � �$���U5KO

11 # ��� ( docs �
12 # ��� ( docs �
13 freqof termin corpus:�FE � � �1� ; ��� � � ���4�
14 # docs� in collection= 8
15 � � = # docs � with

��� � � �$���U576
21 where:D (description),E (queryexpansion)
25 burstiness:G

Table 3. Training file schema: a recor d
of 25 fields is computed for each term
(ngram) in each query in training set.

weightscanbe interpretedasgroupingall termswith
thesame��� � into abin andassigningthemall thesame
weight,namely

���V� ��� � . Cooperandhis colleaguesat
Berkeley [4] [1] havebeenusingregressionmethodsto
fit 20 asa linearcombinationof ��� � , ( ��*<� ��� � andvari-
ousotherfeatures.Thismethodis alsogroupingterms
into bins basedon their featuresandassigningsimi-
lar weightsto termswith similar features.In general,
term weightingmethodsthat arefit to dataaremore
flexible thanweightingmethodsthatarenotfit to data.

Insteadof multiple regression,though,we choose
a moreempiricalapproach.Parametricassumptions,
when appropriate,can be very powerful (better es-
timatesfrom less training data),but errors resulting
from inappropriateassumptionscanoutweightheben-
efits. In this empirical investigationof term weight-
ing wedecidedto useconservativenon-parametrichis-
togrammethodsto hedgeagainstthe risk of inappro-
priateparametricassumptions.

Termsareassignedto bins basedon featuressuch
as��� � , asillustratedin table2. (Laterwewill alsouseG and/or � � in the binning process.) 20 is computed
separatelyfor eachbin, basedon the useof termsin
relevantandirrelevantdocuments,accordingto thela-
beledtrainingmaterial.

The estimationmethodstartswith a training file
which indicates,amongother things, the numberof
relevant and irrelevant documentsfor eachterm

�
in

eachtraining query, � . That is, for each
�

and � , we
arearegiven � � � � � ��� ( � ����C � and � � � � � ��� ( � ����C � , where� � � � � �&� ( � ����C � is the numberof relevant documents�
with

��� � � �$���W� ����C
, and � � � � � ��� ( � ����C � is the num-



ber of irrelevant documents� with
��� � � ���4�X� ����C

.
The schemafor the training file is describedin table
3. Fromthesetrainingobservationswe wish to obtain
a mappingfrom bins to 0 s that canbe appliedto un-
seentestmaterial. We interpret 0 asa log likelihood
ratio:

20 �ZY �\[D� ��� �U� ( ��*,+ 2- �!Y �\[D� ���</ ��� ( �2- �!Y �\[D� ���</ ��� ( �
wherethenumeratorcanbeapproximatedas:

2- �ZY �][U� ���^/ ��� ( �`_ ( ��* + �
� �ZY �][D� ��� ( � ��� �

28
aPbdc
where � � �ZY �\[D� �&� ( � ��� � is

� � �ZY �\[D� �&� ( � ��� �`R 6/ Y �][ / �! #e]fAgh� � � � � ��� ( � ��� �
Similarly, thedenominatorcanbeapproximatedas:

2- �ZY �][U� ���^/ ��� ( �`_ ( ��*,+ �
� �ZY �][D� ��� ( � ��� �

28 aPbdc
where � � �ZY �\[D� �&� ( � ��� � is

� � �ZY �\[D� �&� ( � ��� �`R 6/ Y �][ / �! #e]fAgh� � � � � ��� ( � ��� �

28 a�bZc is anestimateof thetotalnumberof relevantdoc-
uments.Sincesomequerieshave morerelevantdocu-
mentsthanothers, 28iaPbdc is computedby averaging:

28ia�bZc R 6/ Y �\[ / �! #e]fAg 8ia�bZc

To ensurethat 28 aPbdc S 28 aPbdc � 8 , where8 is thenum-
berof documentsin thecollection,we define 28 a�bdc R8 : 28 aPbdc

This estimationprocedureis implementedwith the
simple awk programin figure 2. The awk program
readseachline of the training file, which containsa
line for eachtermin eachtrainingquery. As described
in table3, eachtraining line contains25 fields. The
first five fieldscontain � � � � � ��� ( � ��� � for five valuesof���

, and the next five fields contain � � � � � ��� ( � ��� � for
the samefive valuesof

���
. The next two fields con-

tain 8 aPbdc and 8 aPbdc . As theawk programreadseachof
theselines from the training file, it assignseachterm
in eachtraining queryto a bin (basedon j ( ��*#+�� � � �lk ,
exceptwhen � �nm 6�	�	 ), andmaintainsrunningsums
of thefirst dozenfieldswhich areusedfor computing� � �!Y �\[D� �&� ( � ��� � , � � �ZY �\[D� ��� ( � ��� � , 28 a�bdc and 28 a�bdc for
five valuesof

���
. Finally, afterreadingall thetraining

material, the programoutputsthe table of 20 s shown
in table2. Thetablecontainsa columnfor eachof the
five

���
valuesandarow for eachof thedozen��� � bins.

tf a b
0 -0.95 0.05
1 -0.98 0.69
2 -0.15 0.78
3 0.53 0.81
4+ 1.32 0.77

Table 4. Regression coefficients for
method fit-G. This table appr oximates the
data in table 1 with 20o_7p � ��� ��S Y�� ��� � � ��� � .
Note that both the inter cepts, p � ��� � , and
the slopes, Y$� ��� � , increase with

���
(with a

minor exception for Y$� O^ST� ).

2.1 Interpolating Between Bins

Recallthatthetaskis to applythe 20 s to new unseen
test data. Onecould simply usethe 20 s in table2 as
is. That is, whenwe seea new term in the testmate-
rial, we find the closestbin in table2 andreport the
corresponding20 value. But sincethe ��� � of a termin
thetestsetcouldeasilyfall betweentwo bins,it seems
preferableto find the two closestbins andinterpolate
betweenthem.We uselinearregressionto interpolate
alongthe ��� � dimension,asillustratedin table4. Table
4 is asmoothedversionof table2 where 20q_rpsS Y � ��� � .
Thereare five pairs of coefficients, p and Y , one for
eachvalueof

���
.

Notethatinterpolationis generallynotnecessaryon
the

���
dimensionbecause

���
is highly quantized.As

long as
���tm O , which it usuallyis, theclosestbin is

anexactmatch.Evenwhen
��� 5uO , thereis very little

room for adjustmentsif we acceptthe upperlimit of20 m ��� � .

Although we interpolatealong the ��� � dimension,
interpolationis notall thatimportantalongthatdimen-
sion either. Figure 1 shows that the differencesbe-
tweenthe testdataandthe trainingdatadominatethe
issuesthatinterpolationis attemptingtodealwith. The
mainadvantageof regressionis computationalconve-
nience;it iseasiertocomputepQS Y � ��� � thantoperform
a binarysearchto find theclosestbin.

Previous work [4] usedmultiple regressiontech-
niques.Althoughour performanceis similar with the
samenumberof parameters.Webelieve thatit is safer
andeasierto treat eachvalueof

���
asa separatere-

gressionfor reasonsdiscussedin table5. In sodoing,
we arebasicallyrestrictingthe regressionanalysisto
suchanextent that it is unlikely to do muchharm(or
muchgood). Imposingthelimits of 	wv 20qvt��� � also
serves the purposeof preventing the regressionfrom
wanderingtoo far astray.



awk ’function log2(x) {
return log(x)/log(2)}

$21 ˜ /ˆD/ { N = $14; df=$15;
# binning rule
if(df < 100) {bin = 0}

else {bin=int(log2(df))};
docfreq[bin] += df;
Nbin[bin]++;
# average df(t,rel,tf), df(t,irrel,tf)
for(i=1;i<=12;i++) n[i,bin]+=$i }

END {for(bin in Nbin) {
nbin = Nbin[bin]
Nrel = n[11,bin]/nbin
Nirrel = N-Nrel
idf = -log2((docfreq[bin]/nbin)/N)
printf("%6.2f ", idf)
for(i=1;i<=5;i++) {

if(Nrel==0) prel = 0
else prel = (n[i,bin]/nbin)/Nrel

if(Nirrel == 0) pirrel = 0
else pir-

rel = (n[i+5,bin]/nbin)/Nirrel
if(prel <= 0 || pirrel <= 0) {

printf "%6s ", "NA" }
else {

printf "%6.2f ", log2(prel/pirrel)} }
print ""}}’

Figure 2. awk program for computing 20 s.

tf p � ��� � Y�� ��� � p + S �Z+ � ( ��*<� 6xS ��� � YZ+
0 -0.95 0.05 -4.1 0.66
1 -0.98 0.69 -1.4 0.66
2 -0.15 0.78 0.18 0.66
3 0.53 0.81 1.3 0.66
4 1.32 0.77 2.2 0.66
5 1.32 0.77 2.9 0.66

Table 5. A comparison of the regression
coefficients for method fit-G with com-
parable coefficients from the multiple re-
gression: 20w�up + S Y + � ��� � S � + � ( ��*<� 6yS ��� �
where p + �z:hO&{|6 , Y + �}	�{ ~�~ and � + ��N�{ � .
The differences in the two fits are par tic-
ularl y large when

��� �z	 ; note that Y$� 	^�
is negligible (0.05) and YZ+ is quite large
(0.66). Reducing the number of parame-
ters from 10 to 3 in this way increases the
sum of square errors, which may or may
not result in a large degradation in preci-
sion and recall. Why take the chance?

B=0 B=1
tf a b a b
0 -0.05 -0.00 -0.61 0.02
1 -1.23 0.63 -0.80 0.79
2 -0.76 0.71 -0.05 0.79
3 0.00 0.69 0.23 0.82
4+ 0.68 0.71 0.75 0.83

Table 6. Regression coefficients for
method fit-B. Note that the slopes and
inter cepts are larger when G ��6 than
when G �r	 (except when

��� �r	 ). Even
though 20 usuall y lies between 0 and ��� � ,
we restrict 20 to 	�v 20�v���� � , just to make
sure .



3 Burstiness

Table6 is like tables4 but thebinningrule notonly
uses��� � , but alsoburstiness( G ). Burstiness[3][5][2]
is intendedto accountfor thefactthatsomeverygood
keywords suchas “K ennedy” tend to be mentioned
quitea few timesin a documentor not at all, whereas
lessgoodkeywordssuchas“except” tendto be men-
tionedaboutthesamenumberof timesnomatterwhat
the documentis about. Since “K ennedy” and “ex-
cept”havesimilar ��� � values,they wouldnormallyre-
ceive similar termweights,which doesn’t seemright.
Kwok [6] suggestedaveragetermfrequency, p�� ��� ��FE � � �Z�,� � � � � , be usedas a tie-breakerfor caseslike
this, where �FE � � �
� ; ��� � � �$��� is the standardno-
tion of frequency in the corpus-basedNLP. Table 6
shows how Kwok’ssuggestioncanbereformulatedin
our empiricalframework. The tableshows theslopes
andinterceptsfor tenregressions,onefor eachcombi-
nationof

���
and G ( G ��6 if f p$� ��� is large. That is,G �L6 if f �FE � � �!��� � � � ���r6#{ ��N�:�	&{ 	�O�� � ��� � ).

4 Summary

Our systemusesan empiricalhistogram-basedsu-
pervisedlearningmethodfor estimatingtermweights,20 . Termsareassignedtobinsbasedonfeaturessuchas
inversedocumentfrequency, andburstiness.A differ-
ent 20 is estimatedfor eachbin andeach

���
by count-

ing the numberof relevant and irrelevant documents
associatedwith thebin and

���
value.Regressiontech-

niquesareusedto interpolatebetweenbins,but careis
takenso that the regressioncannotdo too muchharm
(or toomuchgood).

We are also interestedin the interpretationof the
weights.Empiricalweightstendto lie between0 and��� � . We find theselimits to be a surprisegiven that
standardtermweightingformulassuchas

���
� ��� � gen-
erally do not conformto theselimits. In addition,we
find that 20 generallygrows linearly with ��� � , andthat
the slopeis between0 and1. We interpretthe slope
asa statisticalshrink.Thelargerslopesareassociated
with very robust conditions. It is interestingto com-
parehistogrammethodswith multiple regressionthat
tries to accountfor all of the interactionsat oncein a
singlemultiple regression.

Even thoughselectingthe effective parametersis
still a kind of art, this framework givesa systematic
way to handlethem. We have shown that this as-
sumptionre-invent standardpractice,we areencour-
agedwith this result.
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Figure 1. Empirical weights, 20 . Top
panel sho ws values in previous table .
Most points fall between the dashed lines
(lower limit of 20}��	 and upper limit of20n�X��� � ). The plotting character denotes���

. Note that the line with
��� �KO is above

the line with
��� ��N , which is above the

line with
��� ��M , and so on. The higher

lines have larger inter cepts and larger
slopes than the lower lines. That is, when
we fit 20q_�p � ��� �.S Y�� ��� � � ��� � , with separate
regression coefficients, p � ��� � and Y$� ��� � ,
for each value of

���
, we find that bothp � ��� � and Y$� ��� � increase with

���
.


