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Abstract

A false positive is the mistake of inferring an e↵ect when none exists, and although ↵ controls the
false positive (Type I error) rate in classical hypothesis testing, a given ↵ value is accurate only if the
underlying model of randomness appropriately reflects experimentally observed variance. Hypotheses
pertaining to one-dimensional (1D) (e.g. time-varying) biomechanical trajectories are most often tested
using a traditional zero-dimensional (0D) Gaussian model of randomness, but variance in these datasets
variance is clearly 1D. The purpose of this study was to determine the likelihood that analyzing smooth
1D data with a 0D model of variance will produce false positives. We first used random field theory
(RFT) to predict the probability of false positives in 0D analyses. We then validated RFT predictions
via numerical simulations of smooth Gaussian 1D trajectories. Results showed that, across a range of
public kinematic, force and EMG datasets, the median false positive rate was 0.382 and not the assumed
↵=0.05, even for a simple two-sample t test involving N=10 trajectories per group. The median false
positive rates for experiments involving three-component vector trajectories was p=0.764. This rate
increased to p=0.945 for two three-component vector trajectories, and to p=0.999 for six three-component
vectors. This implies that experiments involving vector trajectories have a high probability of yielding
0D statistical significance when there is, in fact, no 1D e↵ect. Either (a) explicit a priori identification
of 0D metrics or (b) adoption of 1D methods can more tightly control ↵.
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1 Introduction

In classical hypothesis testing p values represent the probability that a random process would produce

an e↵ect larger than the observed one. There are unfortunately many ways in which p value computations

can go astray to yield ‘false positives’ (Knudson, 2005; Kundson and Lindsey, 2014): the mistake of inferring

an experimental e↵ect when none exists in reality. This paper deals with one specific pitfall in p value

computations which has not previously been quantified and is relevant to many branches of Biomechanics:

zero-dimensional (0D) p values for one-dimensional (1D) (e.g. time varying) data.

Imagine a simple experiment which yields five scalar 1D force trajectories for each of two groups (Fig.1b).

Classical hypothesis testing can be conducted using either a “0D” or a “1D” approach (Pataky et al., 2015).

Zero-dimensional analysis: One could analyze the data using a 0D summary metric like local maxima

(Fig.1a). In this case a one-tailed two-sample t test of the maxima yields t=2.357, p=0.023 and one would

reject the null hypothesis at ↵=0.05. More completely, the 0D residuals (Fig.1c) represent the variance

about the group means, and one judges the e↵ect size x (Fig.1a) against this variance. If the null hypothesis

(x=0) were true, random 0D data with the same variance would produce a distribution of t values over

an infinite number of identical experiments (Fig.1e) and only 2.3% of those values would be greater than

the observed t=2.357. The null hypothesis is rejected because the observed t value exceeds the threshold

t

⇤
0D corresponding to ↵ (Fig.1e,g). This t⇤0D value can be rapidly computed in nearly all statistical software

packages, or it can be computed by iteratively simulating thousands of t tests on randomly generated samples

of 0D Gaussian data.

One-dimensional analysis : One could alternatively analyze the data using 1D methods (Lenho↵ et al.,

1999; Pataky et al., 2015) (Fig.1, right panels). Analogous to the 0D procedure, the 1D residuals (Fig.1d)

embody the variance about mean trajectories, and the null hypothesis is the null di↵erence trajectory:

x(q) = 0, where q is time or the 1D measurement domain. If the null hypothesis were true, random 1D

data with the same variance and same smoothness would produce a distribution of t trajectory maxima over

an infinite number of identical experiments (Fig.1f), and in this case random 1D data would produce the

observed 0D e↵ect of t=2.357 with a probability of approximately 55%, which is well above ↵. In other

words, random 1D data produce particular t values with generally much greater probability than do random

0D data. The null hypothesis is not rejected because the observed maximum t value, across the whole

trajectory, does not exceed the threshold t

⇤
1D corresponding to ↵ (Fig.1f,h). The t

⇤
1D value can be readily

calculated using random field theory (RFT) procedures (Adler and Taylor, 2007; Friston et al., 2007), or it

can be computed by iteratively simulating thousands of t tests on randomly generated samples of smooth

2



1D Gaussian data (Fig.2) (Pataky, 2016).

The 0D and 1D procedures have yielded opposite hypothesis testing results, so which is correct? The

answer is easy: both are correct but both cannot be simultaneously correct within a predefined ↵ level. If,

prior to conducting an experiment, one explicitly identified that particular 0D metric as the sole metric of

empirical interest then the empirical question is inherently 0D and the 0D result is correct. If, however,

one measured 1D data and did not specify that particular 0D metric prior to the experiment then the

empirical question is inherently 1D and the 1D result is correct. Failing to specify a 0D metric prior to a 1D

experiment and then adopting 0D methods has been termed ‘regional focus bias’ (Pataky et al., 2013) and

is a potential source of false positives. False positive prevalence for 1D biomechanics datasets has previously

been estimated for 0D procedures (Knudson, 2005) but not, to our knowledge, in the context of 0D vs. 1D

procedures.

The purpose of this study was to quantify the false positive rates that could be expected in real 1D

biomechanical datasets when employing 0D statistical inference. To that end we analyzed nine public

datasets (Table 2) which represent a variety of experimental tasks (walking, running, cutting, cycling) and

data modalities (forces, kinematics, EMG). Based on the data’s temporal smoothness we estimated the

likelihood of producing false positives using a simplified experimental design: a two sample t test with N=10

for each group. Analyses for more complex designs like ANOVA are addressed in the Discussion (§4.3). The

key theoretical concept we shall attempt to convey is that two parameters — the mean (µ) and standard

deviation (�) — completely describe 0D Gaussian behavior, and that only one additional parameter — 1D

smoothness (FWHM) (Fig.2) (Appendix A, B)— is needed to completely describe 1D Gaussian behavior.

To clarify our “0D” and “1D” terminology we shall also employ the term: “nDmD”, where n and m

are the dimensionalities of the measurement domain and dependent variable, respectfully (Table 1). In

nDmD datasets the physical nature of the variables changes across the m components but not across the nD

measurement domain. Biomechanics studies often measure 1DmD data but use 0D1D models of randomness

to define critical statistical thresholds, and this paper quantifies false positive rates associated with that

approach. Throughout this paper “0D” and “1D” represent to “0D1D” and “1DmD”, respectively.

We emphasize that this paper focusses on just a single statistical issue: the probability of false positives

in a single 0D1D two-sample t test conducted on 1DmD data. We use only the two-sample t test because (a)

this simple test su�ciently demonstrates the magnitude of the false positives problem and (b) the problem

is exacerbated in more complex designs like ANOVA. We acknowledge that many other issues must be

considered when conducting statistical analyses including: small sample sizes, non-sphericity, normality,
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outliers, etc. Just as it is useful to consider each of these issues individually, we feel it is equally useful to

consider 0D vs 1D analysis individually because this issue is relevant to all 1D data analyses but has not

been explicitly addressed in the literature.

2 Methods

All analyses were implemented in Python 2.7 (van Rossum, 2014) using Canopy 1.4 (Enthought Inc.,

Austin, USA) and the open-source software package ‘rft1d’ (Pataky, 2016) (www.spm1d.org/rft1d). For

readers unfamiliar with Python, MATLAB source code (The MathWorks, Natick, USA) replicating the

study’s main analyses and results is provided as Supplementary Material (Appendix C).

2.1 Experimental data smoothness estimations

Since 1D smoothness determines the height that random 1D trajectories reach (Fig.2), we first estimated

the smoothness of 1D biomechanical trajectories from nine public datasets (Table 2). Each dataset contained

1D scalar and/or vector time series spanning a normalized interval of 0 – 100%. All data were analyzed in

their publicly available form and no extra signal processing was conducted. Detailed descriptions of the data

are available in the original papers and in the public datasets themselves.

After computing residual trajectories (Fig.1d) as the di↵erence between group/subject means (as appro-

priate for each dataset), we then calculated the residuals’ smoothness using a robust FWHM estimation

procedure (Kiebel et al., 1999) (Appendix D). The ‘FWHM’ is the full-width at half-maximum of a Gaus-

sian kernel (Appendix A) which, when convolved with completely uncorrelated Gaussian data (Appendix

B) yields random 1D trajectories with the same smoothness as the observed 1D residuals. E↵ectively the

estimated FWHM is simply the mean temporal gradient normalized by residual magnitude. This FWHM

estimation procedure has been validated elsewhere for 1D data (Pataky, 2016) and a similar validation is

available in the MATLAB Supplementary Material (Appendix C). Subsequent analyses consider the full

range of estimated FWHM values.

2.2 Theoretical false positive rates

2.2.1 False positive rate for random 0D1D data

The probability that random 0D1D data, or equivalently: 0D univariate Gaussian data, would produce

a t value which exceeds an arbitrary height u is given by the survival function:
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where ⌫ is the degrees of freedom and � is the gamma function. Note that, given a height u, P0D(t > u) is

dependent on only sample size as manifested in the parameter ⌫.

Classical hypothesis testing on 0D1D data is conducted by setting Eqn.1 to ↵:

P0D(t > t

⇤
0D) = ↵ (2)

and then solving for the critical threshold t

⇤
0D . If the experimentally observed t value exceeds t⇤0D then the

null hypothesis is rejected. To be clear, false positives occur in 0D analysis of 0D data when random 0D

data exceed t

⇤
0D , and this occurs at a rate of ↵ by definition.

2.2.2 False positive rate for random 1D1D data

The probability that random 1D1D data, or equivalently 1D univariate Gaussian trajectories, produce t

trajectories which reach arbitrary heights u is (Worsley et al., 2004; Friston et al., 2007):
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where tmax is the trajectory maximum, S is the trajectory length (constant for all trajectories in one dataset,

usually S=100) and W is the FWHM representing trajectory smoothness. Note that, relative to the 0D case

(Eqn.1), just one additional parameter (S/W ) is needed to describe the probabilistic behavior of tmax.

The probability that 1D1D data will reach the 0D threshold for significance (t⇤0D ) is thus simply:

False positive rate {0D1D analysis, 1D1D data} = P1D(tmax > t

⇤
0D) (4)

To our knowledge this false positive rate has not been previously reported. We thus calculated Eqn.4 as a

function of ⌫ for three ↵ values: 0.01, 0.05 and 0.10, and also over the range of the experimentally estimated

FWHM values.

Last, we computed the false positive rate for the case of completely uncorrelated data (Fig.2a) using the

Bonferroni correction:
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PBonf
�
tmax > t

⇤
0D

�
= 1� (1� ↵)100 (5)

Note that Eqn.5 is accurate only for the case of 100 independent tests and is therefore inaccurate when

1D data are smooth. We nevertheless use this Bonferroni result as a reference, to demonstrated that 1D

results converge to this result as 1D trajectories become increasingly rough.

2.2.3 False positive rate for random 1DmD data

We last considered three separate cases of 1DmD data: one, two and six vector trajectories where each

vector has three components. Equivalently, these are 1DmD multivariate Gaussian trajectories with: m=3,

m=6 and m=18, respectfully. For example, m=6 could represent an experiment involving two joints’ three

rotations. For each case we assumed independently varying vector components, thereby yielding:

False positive rate {0D1D analysis, 1DmD data} = 1�
⇣
1� P1D(tmax > t

⇤
0D)

⌘
m

(6)

Note that Eqns.4 and 6 are equivalent when m=1.

2.3 Theoretical validations

We validated all theoretical results using 0D and 1D Gaussian random data generators as implemented

in SciPy (Jones et al., 2001) and rft1d (Pataky, 2016), respectively (c.f. Appendix E). Specifically, we

generated 100,000 random datasets then conducted one t test for each dataset, thereby yielding 100,000 t

values or 100,000 t trajectories. To validate theoretical predictions (Eqns.1, 3) we calculated the percentage

of the 0D t values and 1D tmax values to exceed arbitrary thresholds u.

For 0D data we repeated these simulations for two sample sizes (⌫=4, ⌫=48), and for the 1D case

we additionally repeated simulations for ten di↵erent FWHM values to span the range of experimentally

observed smoothness values. Last, we repeated all 1D simulations for the aforementioned multivariate cases

of one-, two- and six three-component vector trajectories which could represent the analysis of a single joint

in three dimensions, the synergistic function of the hip and knee and all the three main joints of the lower

limb, respectively.
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3 Results

3.1 Experimental data smoothness

Residual 1D trajectories from all datasets, two of which are depicted in Fig.3, were qualitatively consistent

with simulated smooth Gaussian 1D trajectories (Fig.2). Quantitative consistency between 1D residuals and

Gaussian 1D trajectories has been demonstrated elsewhere (Pataky et al., 2015).

Residual smoothness estimates yielded minimum, median and maximum FWHM values of: 6.2%, 16.5%

and 67.0%, respectively, across all datasets (Table 3). Kinematic residuals were smoothest on average,

followed by force and then EMG residuals. Half of all trajectory variables analyzed lay within a range of

FWHM=[11.9%, 29.5%] and ninety percent of all trajectory variables lay within a range of FWHM=[9.4%,

36.5%] (Appendix F). Most of the experimental trajectories investigated therefore lay in the smoothness

range depicted in Fig.2b through Fig.2e.

3.2 Theoretical false positive rates and validations

The 0D and 1D survival functions (Eqns.1 and 3, respectively) are depicted in Fig.4 for two di↵erent

sample sizes (⌫=4 and ⌫=48). Considering first the 0D survival functions, it is clear that 50% of tests on

random 0D data yield t values larger than zero, implying that 50% are less than zero. Next, the critical

threshold is sample-size dependent: t

⇤
0D =1.67 and 2.13 for ⌫=4 and 48, respectively (↵=0.05). For these

two sample sizes Fig.4 shows that the maximum t value produced by random 1D1D Gaussian trajectories

will reach these critical heights (t⇤0D ) with much greater probability. For the median observed smoothness

of FWHM=16.5%, that probability is p=0.431 and 0.376 for ⌫=4 and 48, respectively. Simulating random

Gaussian 0D and 1D data (depicted as dots in Fig.4) validated all results.

For two-sample t tests with N=10 in each group (⌫ = 2N � 2 = 18), false positive rates were greater

than ↵ for all smoothness values (Fig.5), and this rate approached the Bonferroni rate (depicted as stars in

Fig.5) as the FWHM approached zero. The 1D false positive rate converged to the 0D ↵ only for FWHM=1

because an infinitely smooth 1D trajectory is equivalent to a 0D scalar.

Last, Fig.6 depicts results for two-sample experiments involving 1DmD data (i.e. m-component vector

trajectories). For 1D3D data, Fig.6 suggests that the probability of a false positive is approximately p=0.90

when FWHM=10%. For 1DmD data where m�6, Fig.6 suggests that false positives are nearly certain

irrespective of trajectory smoothness. For the smoothest observed data (FWHM=67.0), the probability of a

false positive was estimated to be p=0.145 and p=0.940 for for 1D1D and 1D18D data, respectfully (Table
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4). This implies that methods which control 1D false positive rates should also control false positive rates

associated with multivariate data when multivariate data are measured and analyzed.

4 Discussion

4.1 Main implications

The convention of ↵=0.05 implies that one accepts a 5% false positive rate when conducting classical

hypothesis testing. The main result of this study was that smooth, random 1D trajectories generally produce

false positives in 0D analyses with a probability much higher than ↵. Even for the best case — maximum

smoothness (FWHM=67.0) and one scalar trajectory — false positive rates were nearly three times greater

than ↵ (p=0.145, Table 4). For the median smoothness observed across all datasets (FWHM=16.5), the

false positive rates for three-component vector trajectories was greater than p=0.76. In the worst case

— maximum roughness (FWHM=6.2) and two or more three-component vectors — the false positive rate

exceeded p=0.999. Since Biomechanics studies often measure and analyze multiple three-component vector

trajectories (e.g. 3D joint angles and moments at the hip, knee and ankle during gait), these results imply

that false positives are nearly certain when conducting 0D analyses of typical 1D datasets. Inflated false

positive rates in 0D analyses of 1D data have previously been suggested (Lenho↵ et al., 1999; Pataky et al.,

2015; Robinson et al., 2015) but to our knowledge have not been previously quantified.

We stress that these results in no way invalidate published 0D analyses of 1D data most obviously because

large e↵ects are generally discoverable irrespective of the analysis procedure; clearly a somewhat stronger

signal in Fig.1h would cross both 0D and 1D thresholds for significance. Second, as a general limitation of

classical hypothesis testing: significance does not imply practical meaning and vice versa. Last, all results

are valuable regardless of their magnitude if they lead to subsequent independent scrutiny and verification

through repeated experimentation.

4.2 Context of ideal hypothesis testing

An ideal hypothesis-driven experiment (Fig.7)a involves formulating a testable null hypothesis, from

which the independent variables (IVs), dependent variables (DVs) and often the experiment itself directly

emerge. When dealing with complex systems it can be di�cult to follow that procedure because it may

be di�cult to formulate specific hypotheses prior to conducting the experiment. In this case, exploratory

analyses (Fig.7)b provide an extended framework for valid hypothesis testing. In particular, the investigator
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can freely choose arbitrary measurements, processing procedures, IVs, DVs and tests provided the reported

results are confirmed by applying the identical procedures to an independent dataset. In other words,

exploratory analyses are useful for narrowing the empirical scope of the study and to generate specific null

hypotheses to be tested on independent data.

Biomechanics studies often adopt a hybrid of the aforementioned hypothesis testing and exploratory

procedures (Fig.7)c. The result is a unfortunately a procedure which contains critical scientific flaws. The

fundamental problem is that hypothesis tests are 0D1D (see Table 1), but this is incommensurate with the

dimensionality of the a priori DV which is 1DmD. In other words, models of 0D1D randomness cannot

describe the probabilistic behavior of 1DmD data (Fig.1), so statistical tests cannot pertain to the collected

1DmD data. The relative absence of 1DmD procedures in the Biomechanics literature is, in our opinion,

a major oversight. Access to 1DmD theory and procedures would help future studies converge to ideal

hypothesis testing and exploratory procedures.

To summarize, the recipe below will ensure that ideal classical hypothesis testing is conducted when

analyzing 1DmD data (Table 1):

1. Did I formulate a specific null hypothesis regarding a specific 0D1D dependent variable prior to con-

ducting the experiment?

2. If yes to #1, then I must use 0D1D hypothesis testing methods and I mustn’t report 1DmD data

except qualitatively because 1DmD data are irrelevant to the hypothesis.

3. If no to #1, then I must use 1DmD methods and mustn’t report 0D1D data except qualitatively

because 0D1D data are irrelevant to the hypothesis.

4.3 Limitations

The false positive results (Table 4) pertain directly only to two-sample experiments involving ten tra-

jectories in each group, and these values will change for di↵erent sample sizes and di↵erent designs. We

nevertheless found qualitatively identical trends after repeating these analyses for a large variety of designs

(one-sample, regression, one-way and two-way ANOVA and MANOVA). In particular, false positive rates

increased with the number of measured trajectories in all designs, and numerical values were only slightly dif-

ferent from those in Table 4. For example, one-way ANOVA with three groups and ten trajectories per group

yielded a false positive rate of p=0.433, which is just slightly higher than the two-sample case (p=0.382).

We report only two-sample results for brevity.
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A second consideration is that we conducted univariate analysis of multivariate (vector) trajectories using

two-sample t tests even though we should have conducted multivariate analysis using Hotelling’s T2 test (Cao

and Worsley, 1999; Pataky et al., 2013). We report univariate results to be consistent with the Biomechanics

literature’s high prevelance of univariate analyses of multivariate data (Knudson, 2005).

A third apparent limitation is that one is not obliged to analyze maxima (Fig.1d). For example, the

maximum or ‘peak’ does not necessarily lie within a priori temporal windows of empirical interest in sports

maneuvers (Besier et al., 2001; Besier et al., 2003) so other metrics may be chosen to represent those move-

ment phases. False positive rates for non-maxima would be lower than those reported here. We’d nevertheless

argue that choosing non-maxima is scientifically unjustified for the following reasons: if one has an a priori

hypothesis regarding a 0D variable, then it is irrelevant whether that variable is a maximum, minimum, or

intermediate value because only that 0D variable must be analyzed. The issue of maxima vs. non-maxima

therefore pertains only to 1D analyses. For 1D analysis the statistical goal is to quantify the probability

that random 1D trajectories would produce an e↵ect as large as the observed e↵ect, and this by definition

pertains to the maximum signal.

A fourth, and real limitation is the broad issue of classical vs. Bayesian inference. This paper considered

only classical inference. Bayesian inference a↵ords a much broader class of statistical inferences and is

generally regarded to supersede classical inference as a more objective means of scientific inquiry (Kruschke,

2013). Since the Biomechanics literature almost exclusively adopts classical inference (Knudson, 2005) we

leave Bayesian inference for future work.

A fifth limitation is that the present analyses assumed isotropically smooth residual trajectories (Fig.3).

This may not be a good assumption for some datasets which have mixed-frequency signals. As an example,

ground reaction forces during running typically have high-frequency impact signals followed by compara-

tively low-frequency propulsive forces (Cavanagh and Lafortune, 1980). Fortunately, there are two factors

mitigating potential problems associated with anisotropic smoothness. First, it is possible to correct for

anisotropic smoothness simply by estimating the trajectory length which yields constant smoothness (Wors-

ley et al., 1999). Second, the unbiased smoothness estimation approach adopted herein (Kiebel et al., 1999)

assures that FWHM estimates are robust to minor anisotropy. Regardless, research is needed to estimate

the prevalence and seriousness of smoothness anisotropy in biomechanical trajectories.

A general limitation of 1D methods is sensitivity, which is the ability of a statistical test to detect a

true e↵ect. Statistical thresholds are naturally higher for 1DmD analyses than for 0DmD analyses (Fig.1)

so sensitivity is generally lower in 1D procedures. However, in our experience 1D procedures usually have
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su�cient sensitivity because e↵ect sizes are usually large in biomechanics datasets, even for small datasets

(Pataky et al., 2015). In fact it could be argued that sensitivity is much lower in 0D vs. 1D analyses because

0D analyses fail to consider the entire dataset and therefore cannot detect all signals. Regardless, in order

to ensure adequate sensitivity one should generally conduct power analysis before proceeding with a full

experiment. Procedures for 0D1D power analysis are well known and procedures for nDmD power analysis

are described elsewhere (Friston et al., 2007). Additionally, a simple way to boost sensitivity when dealing

with 1DmD data is to first conduct 1D analyses, then identify a 0D variable of interest and last conduct a

separate experiment on independent subjects using 0D analysis of the identified variable (Table ??).

A second general limitation of 1D methods is complexity. 1D procedures are naturally more complex

than 0D procedures and are usually more di�cult both to learn and to deploy. Exacerbating the complexity

problem is a lack of suitable reference material. While many textbooks detail the di↵erences between

0D1D and 0DmD procedures (Rencher and Chistensen, 2012), none of which we are aware details 1DmD

procedures. Some books detail subsets of 1D1D procedures (Ramsay and Silverman, 2005; Zhang, 2013), and

others thoroughly summarize 3D3D and 4D1D procedures (Friston et al., 2007) procedures, but these contain

many concepts which are unneeded in 1DmD data analysis. Regardless of reference material availability,

we feel that complexity is an unavoidable necessity: 1DmD methods are the least complex methods for

controlling false positives in 1DmD datasets. A side benefit of learning 1DmD methods is that all aspects

of simpler analyses become clearer; from an nDmD perspective typical 0D1D procedures are simply the

special case: n=0, m=1, and all concepts relevant to 0D1D analysis (e.g. ANOVA, normality, outliers,

non-sphericity, etc) also apply directly to nDmD data analysis.

Perhaps the most important limitation of 1D techniques is software availability. No commercial statistical

software package of which we aware implements 1D procedures. The most prominent open-source software

packages to implement nD procedures, including packages like SPM8 (Friston et al., 2007), are all tailored

for n=3 or n=4, making them somewhat bulky and overly complex for 1D datasets. A few open-source

packages tailored specifically for 1D analysis exist including: FDA (Ramsay and Silverman, 2005), spm1d

(Pataky, 2012) and rft1d (Pataky, 2016), but all are still at relatively early stages of development. Clear in-

terfaces to 1D procedures in commercial packages would remove a major barrier to 1D procedure accessibility

in Biomechanics.
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4.4 Summary

Conducting scalar 0D analyses of 1D data without clear a priori specification of the 0D scalar produces

false positives at relatively high rates (p>0.38 and p>0.76 for 1D scalar trajectories and 1D three-component

vector trajectories, respectively). The most robust protection against false positive results is good experi-

mental design focussing on the testing of a small number of specific hypotheses whose variables are clearly

defined a priori. Since 0D analysis of ambiguous 0D variables fails to consider 1D randomness, 0D techniques

cannot control false positive rates (↵) in experiments whose hypotheses pertain to 1D data. To solve the

problem one should either (i) explicitly identify 0D variables prior to conducting an experiment or (ii) adopt

1D procedures.
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Table 1: Dataset dimensionality terminology. An “nDmD” dataset contains an m-dimensional
vector or tensor measured over an n-dimensional spatiotemporal domain.

Example

n m n domain m domain

0 1 ground impact instant knee flexion

0 3 instant of max propulsion ground reaction force

1 1 gait cycle time knee flexion

1 2 gait cycle time left and right knee flexion

1 3 stance phase ground reaction force

2 1 foot contact surface pressure

3 1 femur von Mises stress

3 6 femur strain tensor



Table 2: Dataset overview. N is the total of number of trajectories. ⇤Note: the Kautz et al.
(1991) dataset contains 26 trials but six are duplicates. Variables: COP = center of pressure,
EMG = electromyography, GRF = ground reaction force.

Source N Tasks Variables Link

Besier et al. (2009) 43 Walking,
Running

GRF, Muscle
forces

simtk.org/home/muscleforces

Caravaggi et al. (2010) 30 Walking plantar arch de-
formation

spm1d.org/Downloads.html

Dorn et al. (2012) 8 Running GRF simtk.org/home/runningspeeds

Fregley et al. (2012) 19 Walking GRF, COP,
Knee implant
forces

simtk.org/home/kneeloads

Kautz et al. (1991) 20⇤ Cycling pedal dynamics isbweb.org/data/kautz/

Murley et al. (2014) 5 Walking EMG ncbi.nlm.nih.gov/pubmed/24618372

Neptune et al. (1999) 20 Cutting Kinematics,
EMG

isbweb.org/data/rrn/index.html

Pataky et al. (2008) 600 Walking GRF spm1d.org/Downloads.html

Schwartz et al. (2008) 161 Walking Kinematics ncbi.nlm.nih.gov/pubmed/18565753



Table 3: Smoothness estimation results, summary across all datasets. FWHM values represent
1D residual smoothness (Appendix F) and higher FWHM values reflect smoother residuals. The
FWHM represents Data unit: % of the 1D trajectory length. Refer to Fig.2 for a qualitative
representation of similar smoothness values.

Data modality Min Median Max Mean ± SD

Kinematics 10.8 33.1 67.0 34.7 ± 14.1

Forces 6.2 14.3 32.4 16.1 ± 7.1

EMG 7.2 11.8 15.6 12.1 ± 2.5

Overall 6.2 16.5 67.0 21.9 ± 13.6



Table 4: False positive results for two-sample t tests with N=10 per group; summary of results
from Figs.5&6. The three FWHM columns represent the minimum, median, and maximum
value observed across all datasets (Table ??). Vector data are assumed to contain three inde-
pendent components each.

Type of 1D data Reference FWHM=6.2 FWHM=16.5 FWHM=67.0

One scalar Fig.5 p = 0.699 p = 0.382 p = 0.145

One vector Fig.6 p = 0.973 p = 0.764 p = 0.374

Two vectors Fig.6 p = 0.999 p = 0.945 p = 0.609

Six vectors Fig.6 p = 1.000 p = 0.999 p = 0.940



Figure 1:   Overview of 0D vs. 1D statistical analyses. (a,b) 0D data extracted from 1D dataset (unit: 
decanewton). (c,d) Residuals with 1D residual maxima highlighted. (e,f) Theoretical and simulated probability 
density functions; 1D densities correspond to the 1D maximum (RFT= random field theory). Simulations 
validate the theoretical predictions and involved 100,000 random residuals (Gaussian densities) and 100,000 
two-sample t tests using Gaussian residuals (t densities). (g,h) Hypothesis testing results; the observed t value 
exceeds the α-defined t* value for 0D analysis but not 1D analysis so the null hypothesis is rejected for 0D but 
not 1D analysis.



Figure 2:   Simulated 1D Gaussian random fields. (a) Uncorrelated Gaussian data. (b-e) Data from panel (a) 
but smoothed with Gaussian kernels of varying FWHM (see Appendix A).  Circles depict trajectory maxima 
whose FWHM-dependent probabilistic behavior Random Field Theory (RFT) describes (Adler and Taylor 
2007).  (f) Infinitely smooth 1D random fields are equivalent to 0D random scalars; RFT results converge to 
0D results as FWHM approaches ∞.



Figure 3:   Example residuals from two public datasets. (a,b) Original data. (c,d) Residuals; here the 
differences between individual trajectories and the mean trajectory. The estimated smoothness values for (c) 
and (d) were FWHM=19.6% and FWHM=18.9%, respectively.



Figure 4:   Survival functions for the t statistic for different degrees of freedom (ν=4 and ν=48) when the 
underlying data are (i) 0D Gaussian scalars (Eqn.1) or (ii) smooth 1D Gaussian trajectories with the median 
observed smoothness of FWHM=16.5% (Eqn.3). Solid lines depict theoretical probabilities and dots depict 
validation results. The broken horizontal line depicts the classical hypothesis testing threshold for significance, 
and broken vertical lines depict the critical t values for the two 0D cases. The intersection of those vertical lines 
with the 1D curves gives the true false positive rate (approximately 37% and 47%, respectively) if one regards 
the residuals as 1D rather than 0D (Fig.1c,d).



Figure 5:   Probability of false positives for two-sample t tests (N=10) if using a 0D randomness model and if 
analyzing the maximum 1D t value.   Star symbols (FWHM=0) depict the case of completely uncorrelated 
trajectories  (Eqn.4).



Figure 6:   Probability of false positives for two-sample t tests (N=10) for three-component vectors with 
independently varying components. 



a priori  nDmD null 
hypothesis

Collect nDmD data
(hypothesis driven)

Conduct nDmD test

(a)  Ideal hypothesis testing (b)  Ideal exploratory analysis (c)  Biomechanics’ hybrid approach

Process data

Collect nDmD data

Formulate post hoc  
nDmD null hypothesis

Collect nDmD data

Formulate ad hoc 0D null 
hypothesis

Visualize results

Conduct 0D test
(Same dataset)

Visualize results

Ideal hypothesis testing
(independent dataset)

Process data
(hypothesis driven)

Process data

Figure 7:   General procedures for hypothesis testing and exploratory analysis.  In Biomechanics the 
dimensionalities of the test and the data are incommensurate.



Appendix A. Full width at half maximum (FWHM)

The FWHM parameter can be used to describe the smoothness of experimentally observed

1D residuals (Fig.1d, main manuscript). Most generally, the FWHM describes the shape of a

Gaussian kernel (Fig.A1), which is typically defined as:

g(x) =
1

�
p
2⇡

e�
(x�µ)2

2�2 (A.1)

Here µ and � are its mean and standard deviation, respectively. Gaussian kernels can

alternatively be expressed in terms of the FWHM (Fig.A2) through the following identity:

FWHM = 2�
p
2 log 2 ⇡ 2.4� (A.2)

The FWHM is somewhat more-intuitive than � for describing 1D field smoothness because

it is linked directly to kernel height: the kernel loses half of its maximum height over a dis-

tance of 0.5 FHWM units (Fig.A2). More specifically, the FWHM represents the width of a

Gaussian kernel which, when convolved with uncorrelated Gaussian data (Appendix B), yields

1D Gaussian trajectories with the same smoothness as the observed 1D residuals.

Random field theory (RFT) (Adler & Taylor, 2007; Friston et al. 2007) regards experi-

mentally observed 1D residuals as 1D random fields, and uses the estimated FWHM value to

describe the probabilistic behavior of an infinite number of identically smooth fields. Thus,

once one knows or estimates the FWHM, one can use RFT to calculate the maximum 1D

di↵erences / e↵ect that random 1D fields would produce in arbitrary experiments.

While � could be used in place of the FWHM to describe field smoothness, the main

manuscript uses the FWHM parameter preferentially over � because: (i) � is typically used

to represent population standard deviation, and (ii) the literature convention is to use FWHM

(Friston et al. 2007).



Figure A1: Gaussian kernels.

Figure A2: Breadth parameters for Gaussian kernels: � and FWHM.



Appendix B. Convolution and random 1D Gaussian fields

This Appendix describes one procedure for generating smooth 1D Gaussian fields. Consider

the functions f(q) and g(q0) which are defined on one-dimensional (1D) domains q and q0,

respectively (Fig.B1a,b). Convolution is a procedure which slides g(q0) over f(q) (Fig.B1c) to

yield an ‘overlapping area’ function h(q) (Fig.B1d). Convolving f(q) with a Gaussian kernel

— also called “Gaussian filtering” — yields a similar but smoother result (Fig.B2). In the

context of the main paper the functions f(q), g(q0) and h(q) represent the experimental data,

a smoothing kernel, and the smoothed data, respectively.

Figure B1: Convolution of two square waves. (a) Stationary function. (b) Moving function.
(c) Depiction of g(q0) moving across f(q). (d) Convolution result: colored circles depict the
overlapping area between f(q) and g(q0) when the right edge of g(q0) reaches the position q.



Figure B2: Convolution of a square wave with a Gaussian pulse.

When the data f(q) are more like an experimental time series but consist of completely un-

correlated random Gaussian values (Fig.B3a) then convolving with a Gaussian kernel (Fig.B3b,c)

yields a smooth Gaussian random field (Adler & Taylor, 2007) (Fig.B3d). The broader the

smoothing kernel, the smoother the resulting random field (Fig.B4). Kernel breadth is param-

eterized by its full-width-at-half-maximum (FWHM) (Appendix A) and the FWHM parameter

is central to 1D probability results (Friston et al. 2007).



Figure B3: Convolution of uncorrelated Gaussian data (a) with a Gaussian kernel (b–c) yields
a Gaussian random field (d).

Figure B4: Identical to Fig.B3, but with a broader kernel (b) which yields a smoother random
field (d).



Appendix C. MATLAB functions and scripts

The attached MATLAB functions and scripts (Table C1) replicate the paper’s main re-

sults. Note that these MATLAB files are meant primarily for exploring concepts of 1D anal-

yses through Random Field Theory (RFT) (Adler and Taylor, 2007). We encourage readers

interested in actually conducting 1D analyses to access our free-and-open-source software at

www.spm1d.org. The spm1d software package contains 1D functionality for standard tests in-

cluding t tests, regression and ANOVA, with multivariate and repeated-measures functionality

currently in-development.

Table C1: Overview of attached MATLAB files.

Category File name Summary

Functions (1D)
estimate fwhm.m Unbiased estimates of 1D field smoothness

randn1d.m Random 1D Gaussian field generator
rft Tsf.m RFT survival function for the t statistic

Functions (0D)
spm invBcdf.m Inverse � cumulative distribution function
spm invTcdf.m Inverse t cumulative distribution function
spm Tcdf.m Cumulative distribution function for the t statistic

Data Schwartz2008.mat 1Public dataset from Schwartz et al. (2008)

Scripts (FWHM)
sA0 fwhm verbose.m Verbose smoothness estimation

sA1 fwhm.m Smoothness estimation using estimate fwhm

sA2 fwhm validate.m Validation of estimate fwhm using known FWHM

Scripts (random)
sB0 randn1d verbose.m Verbose random field generation

sB1 randn1d.m Random field generation using randn1d

sB2 randn1d meaning.m The meaning of ‘Gaussian 1D random field’

Scripts (results)
sC0 falsepos.m Verbose estimate of false positive rate.

sC1 validate onesample.m Validation of rft Tsf.m for one-sample tests
sC2 validate twosample.m Validation of rft Tsf.m for two-sample tests

The first three functions embody the core functionality of RFT-based 1D t tests. The

second three functions embody 0D functionality as implemented in the open-source software

package SPM8 (www.fil.ion.ucl.ac.uk/spm); MATLAB users who have access to the Statis-

tics Toolbox may which to use the equivalent 0D three functions: “betaincinv”, “tinv” and

“tcdf”, respectively. Neither MATLAB nor any other commercial software package of which

1
Redistributed with author’s permission.



we are aware implements the first three (1D) functions.

The attached dataset from Schwartz et al. (2008) is redistributed with permission of the

author; if you use these data in your own work please cite the original Schwartz et al. (2008)

article. This dataset is attached to demonstrate how we computed the paper’s smoothness

results (Appendix F). All other datasets can be accessed using the links provided in Table 1

(main manuscript).

Last, the scripts are grouped in three sets of files labeled “sA⇤”, “sB⇤” and “sC⇤” which

correspond to smoothness, 1D randomness and false positive results, respectively. All scripts

and functions are commented for clarity. If any section of any of these scripts and functions is

unclear, please contact us for support through our site at www.spm1d.org.



Appendix D. Estimating 1D residual smoothness

This Appendix summarizes the smoothness estimation procedures of Kiebel et al. (1999).

While that paper describes the procedure for 3D data, the procedure is conceptually identical

for 1D data. The 1D domain could be time, space or any other continuous variable, but for

writing convenience we shall consider only 1D temporal trajectories.

The ultimate goal is to estimate the temporal smoothness of experimentally observed 1D

residuals (Fig.1d, main manuscript) using a single scalar parameter: the FWHM (Appendix A).

That single FWHM value represents the breadth of a Gaussian kernel which, when convolved

with uncorrelated Gaussian time series (Appendix B) would yield random trajectories which

have the same smoothness as the observed residuals. The procedure is depicted in Fig.D1 and

is described in detail below.

Figure D1: Overview of the FWHM estimation procedure of Kiebel et al. (1999). The residual
data (a) are from the cycling normal pedal force of Kautz et al. (1991). SS = sum-of-squares.



Imagine that there are J residual trajectories which are each sampled at Q discrete time

points and that the jth residual trajectory is denoted “rj(q)”. The first step is to compute the

temporal gradient at each point q for each of the J trajectories (Fig.D1b):

r0j(q) ⌘
drj(q)

dq
(D.1)

The gradients can be estimated most easily using the di↵erences between adjacent samples

(i.e. rj(q + 1) � rj(q)), but could also be done using alternative procedures. Practically,

di↵erences in gradient estimation procedures will likely have negligible e↵ects on the ultimately

estimated FWHM value. Regardless of the procedure, gradient estimation yields a total of J

gradient trajectories.

Next, the true gradient magnitude at point q is estimated as the sum-of-squares of the

observed gradients (Fig.D1c):

SS[r0](q) =
JX

j=1

⇣
r0j(q)

⌘
2

(D.2)

In order to normalize across datasets and experiments the sum-of-squared residual values

is also needed (Fig.D1d):

SS[r](q) =
JX

j=1

⇣
rj(q)

⌘
2

(D.3)

The estimated gradients are then normalized by the residual magnitudes (Fig.D1e):

�(q) =
SS[�](q)

SS[r](q)
(D.4)

Last, the FWHM trajectory (Fig.D1f) is given as:

FWHM(q) =

s
4 log 2

�(q)
(D.5)

where an unbiased estimate of the true FWHM is simply the mean of the FWHM trajectory:



ˆFWHM =
1

Q

QX

q=1

FWHM(q) (D.6)

Note that estimated FWHM values are generally di↵erent at each point q in the 1D field

(Fig.D1f). Smoothness which is non-constant across the field is termed ‘anisotropic’. In order

to deal with this issue let’s consider ‘apparent’ vs. ‘real’ anisotropy. If the anisotropy is merely

apparent, then Eqn.D.6 is valid. To understand why, consider a 0D random variable x which

comes from a population with constant variance. Although the population variance is constant,

random samples of x will yield di↵erent sample variances. Nevertheless, sample variance is an

unbiased estimate of the true population variance. Similarly, even when the true FWHM is

constant, randomly sampled 1D data will yield sample FWHM estimates which vary not only

from sample to sample but also from point to point in the 1D field. Thus the mean FWHM

value is an unbiased estimate of the true population FWHM when the anisotropy is merely

apparent. Note also this FWHM estimation procedure has been validated for 1D data elsewhere

(Pataky, 2015).

‘True anisotropy’ is a theoretically less trivial problem which exists when di↵erent field

regions actually do have di↵erent population-level smoothnesses. As an example, consider

impacts in running ground reaction forces: the initial impact phase is generally associated

with higher signal frequencies than the midstance and push-o↵ phases, so in this situation

the true population FHWM is likely di↵erent in the di↵erent phases. There is fortunately an

easy solution to the problem (Worsley et al. 1999). If there are Q points in the field, one

simply computes the field length Q0 for which smoothness is isotropic. Since the procedures

are validated in Worsley et al. (1999), and since this anisotropy correction has no e↵ect on the

main paper’s conclusions regarding 0D vs. 1D false positives, we leave the issue of anisotropic

smoothness for future projects where assuming isotropic smoothness may have less trivial e↵ects

on analyses’ results.



Appendix E. Generating smooth 1D Gaussian trajectories

This Appendix describes how to generate smooth 1D Gaussian trajectories in MATLAB

(The MathWorks, Natick, USA) by summarizing the mathematical theory and code of Penny

(2008). Interested readers are encouraged to consult Penny (2008) for a variety of additional

background details regarding Random Field Theory and its applications. The target audience

for this Appendix is anyone with (a) familiarity with linear algebra basics and MATLAB

programming, and (b) a desire to generate their own random 1D trajectories for validating

and/or exploring Random Field Theory predictions.

Penny W (2008) Mathematics for Brain Imaging (Course Notes), Chapter 3: “Random Field Theory”.

Retrieved on 12 Feb 2015 from http://www.fil.ion.ucl.ac.uk/

~

wpenny/mbi/

Smooth Gaussian trajectories can be generated using the convolution procedure described

in Appendix B but in most programming languages it is considerably easier to use a single

matrix multiplication to achieve the same result:

y = Cz (E.1)

where, if Q is the number of trajectory nodes:

• y is the (Q⇥ 1) smooth 1D Gaussian trajectory

• C is the (Q⇥Q) convolution matrix which embodies the correlation between neighboring

points in the 1D trajectory

• z is a (Q⇥ 1) trajectory of uncorrelated Gaussian values (Fig.B3a)



In MATLAB z can be generated as follows:

>> Q = 101;

>> z = randn(Q,1);

The convolution matrix C requires a bit more work. First note that a Gaussian covariance

function with unit power is defined as:

r(d) = exp

✓
� d2

2s2

◆
(E.2)

where:

• d is the distance between the current node and a reference node in the trajectory. If

Q=101 then d=0.01 for adjacent nodes, and d=0.01n for two nodes which are n nodes

apart.

• s is the trajectory smoothness which linearly scales with the FWHM (Appendix A) as:

FWHM = s(Q� 1)
p
4 log 2 (E.3)

The convolution matrix C embodies this covariance (Eqn.E.2) simultaneously for all points

in the trajectory. To assemble C in MATLAB first define the number of trajectory nodes and

the smoothness:

>> Q = 101; % number of trajectory nodes

>> FWHM = 10; % smoothness (FWHM units)

>> s = FWHM / ( (Q-1) * sqrt( 4*log(2) ) ) %smoothness (s=0.060 for FWHM=10)

and then build a distance matrix D as follows:



>> dq = 1 / (Q -1); % inter-node distance

>> x = dq * (1:Q); % trajectory position

>> X = repmat(x, Q, 1); % temporary holder of trajectory positions

>> D = X - repmat(x’, 1, Q); % matrix of distances from diagonal nodes

The (i, j)th element of the resulting matrix represents the distance between nodes i and j:

>> D(1:5, 1:5)

ans =

0 0.0100 0.0200 0.0300 0.0400

-0.0100 0 0.0100 0.0200 0.0300

-0.0200 -0.0100 0 0.0100 0.0200

-0.0300 -0.0200 -0.0100 0 0.0100

-0.0400 -0.0300 -0.0200 -0.0100 0

Next apply Eqn.E.2 to yield the covariance matrix A:

>> A = exp( -0.5 * D.^2 / s^2);

This covariance matrix can be visualized using the ‘pcolor’ command (Fig.E1):

>> pcolor(A)

>> colorbar



Figure E1: Visualization of the covariance matrix A for Q=101 and FWHM=10.0. The value
of the (i, j)th matrix element represents the correlation values at 1D trajectory nodes i and
j. When i=j the correlation is defined as 1.0, and since the data are smooth adjacent nodes’
values are positively correlated. The farther apart the nodes the weaker their correlation.

Last, to generate data which have the covariance structure depicted above in Fig.E1, the

convolution matrix C (Fig.E2) is assembled by first calculating the covariance matrix’s eigen-

solution:

>> [V,U] = eig(A);

where V and U are A’s eigenvectors and eigenvalues, respectively, and then projecting the

positive eigenvalues as follows:

>> U = diag( U );

>> U( U < 0 ) = 0;

>> C = V * diag( sqrt( U ) ) * V’ ;



Figure E2: Visualization of the convolution matrix (Eqn.E.2) for Q=101 and FWHM=10.0.

This convolution matrix C needs to be computed only once for each smoothness value. It

can then be used to generate single smooth Gaussian trajectories (Fig.E3) as follows :

>> y0 = C * randn(Q,1);

>> y1 = C * randn(Q,1);

>> y2 = C * randn(Q,1);

>> plot( y0 )

>> plot( y1 )

>> plot( y2 )



Figure E3: Three example 1D Gaussian trajectories.

Alternatively many random trajectories (Fig.E4) can be generated like this:

>> J = 50; % number of trajectories

>> Z = randn(Q, J); % uncorrelated Gaussian data

>> Y = C * Z; % (Q x J) array containing J separate random trajectories

>> plot( Y )

Figure E4: Fifty example 1D Gaussian trajectories.



For the analyses in the main manuscript we generated J=10 trajectories for each of two

groups, computed the two-sample t trajectory using the usual definition of the two-sample

t statistic, then repeated 100,000 times for each smoothness (FWHM) value. This yielded

100,000 t trajectories for each FWHM value. Last, we validated Eqns.3&4 (main manuscript)

by extracting the maximum t value (t
max

) for each trajectory and then counting the number

of t
max

values which exceeded particular heights u.



Appendix F. FWHM estimation results

This Appendix lists the smoothness estimation results for all nine datasets (Table 1, main

manuscript). First the 1D residuals for each dataset were calculated by subtracting the mean 1D

trajectory as depicted in Fig.3, main manuscript. Next 1D residual smoothness was estimated

as the FWHM (Appendix A) using the procedures of Kiebel et al. (1999) as summarized in

Appendix D. Results are organized below into kinematic, force and EMG variables in Tables

F1, F2 & F3, respectively.

Table F1: Smoothness estimates for the kinematics datasets. Smoothness was quantified using
the FWHM (Appendix A)

Category Source Task Variable FWHM (%)

Joint rotations

Besier et al. (2009) Walking
Hip flexion 51.5
Knee flexion 32.6

Angle dorsiflexion 30.8

Besier et al. (2009) Running
Hip flexion 64.4
Knee flexion 33.6

Angle dorsiflexion 33.5

Neptune et al. (1999) Cutting

Ankle supination/pronation 23.9
Ankle dorsi/plantar flexion 36.4
Knee extension/flexion 36.7

Knee adduction/abduction 21.4
Knee internal/external rotation 46.1

Hip extension/flexion 40.9
Hip adduction/abduction 33.6

Hip internal/external rotation 10.8

Schwartz et al. (2008) Walking

Pelvic Up/Dn 14.2
Pelvis Ant/Pst 33.5
Pelvic Int/Ext 15.6
Hip Flx/Ext 19.6
Hip Add/Abd 13.9
Hip Int/Ext 17.8
Knee Flx/Ext 10.5
Ankle Dor/Pla 9.2
Foot Int/Ext 15.1

Center of pressure Fregley et al. (2012) Walking
Anterior/posterior 24.4
Medial/lateral 65.2

Other
Kautz et al. (1991) Cycling Pedal angle 33.1

Caravaggi et al. (2010) Walking Plantar arch angle 18.8



Table F2: Smoothness estimates for the dynamics datasets. Results from Pataky et al. (2008)
are based on unsmoothed data.

Category Source Task Variable FWHM (%)

Ground reaction force

Dorn et al. (2012) Running
Anterior / Posterior 8.8
Medial / Lateral 9.5

Vertical 11.1

Fregley et al. (2012) Walking
Anterior / Posterior 8.4
Medial / Lateral 8.2

Vertical 6.2
Neptune et al. (1999) Cutting Vertical 11.9
Pataky et al. (2008) Walking Vertical 6.2

Muscle forces

Besier et al. (2009) Walking

Semimembranosus 16.4
Semitendinosus 15.1

Biceps femoris (long head) 16.7
Biceps femoris (short head) 13.7

Rectus femoris 9.3
Vastus medialis 12.5

Vastus intermedius 12.9
Vastus lateralis 12.9

Medial gastrocnemius 15.1
Lateral gastrocnemius 13.4

Besier et al. (2009) Running

Semimembranosus 29.1
Semitendinosus 29.3

Biceps femoris (long head) 32.4
Biceps femoris (short head) 27.8

Rectus femoris 17.9
Vastus medialis 20.5

Vastus intermedius 21.6
Vastus lateralis 21.8

Medial gastrocnemius 25.0
Lateral gastrocnemius 27.2

Joint implant forces Fregley et al. (2012) Walking

Knee: posterior-medial 14.7
Knee: anterior-medial 11.7
Knee: anterior-lateral 12.3
Knee: posterior-lateral 11.9

Other Kautz et al. (1991) Cycling
Pedal normal force 19.8

Pedal tangental force 15.3
Crank torque 12.7



Table F3: Smoothness estimates for the EMG datasets. Results from Murley et al. (2014)
are based on average time series and FWHM values were estimated relative to the average
cross-task trajectory.

Source Task Variable FWHM (%)

Murley et al. (2014) Walking

Tibialis posterior 10.3
Peroneus longus 10.8
Tibialis anterior 7.2

Medial gastrocnemius 7.9

Neptune et al. (1999) Cutting

Vastus lateralis 13.0
Rectus femoris 15.5
Biceps femoris 15.6

Medial hamstring 14.3
Tibialis anterior 14.2

Medial gastrocnemius 11.8
Gluteus maximus 13.8
Gluteus medius 11.8
Adductor magnus 11.6
Vastus medialis 12.8
Peroneus longus 10.7
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