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Abstract

Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown

that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-

parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The

primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between

0D and 1D methods is much more important than the distinction between parametric and non-parametric

procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap

exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize

these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired,

two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-

parametric CIs were qualitatively identical to RFT CIs, and all were very di↵erent from 0D CIs. Second,

1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six

datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-

dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D

models of randomness are generally biased unless one has explicitly specified an a priori 0D variable,

and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for

analysis when one’s hypothesis explicitly or implicitly pertains to whole 1D trajectories.
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1 Introduction

Biomechanical processes are often described using one-dimensional (1D) kinematic and force trajectories.

Since these trajectories can be complex, it can be di�cult to objectively specify an a priori method for

analyzing those trajectories. Many studies therefore adopt an ad hoc approach: visualize the trajectories and

then extract some summary scalar — which was not specified prior to the experiment — to test statistically.

Unfortunately this approach is biased for the following reasons: all statistical analyses require a model of

randomness — from that model one computes the probability that random data would produce the observed

result (i.e. the p value). If one’s a priori hypothesis pertains to zero-dimensional (0D) scalars, then a 0D

model of randomness is appropriate. However, if one’s hypothesis pertains to 1D trajectories, then objectivity

obliges one to employ a 1D model of randomness — one which describes how random 1D trajectories behave.

Since probabilistic conclusions stemming from 0D and 1D models generally di↵er (Pataky et al., 2013), it is

biased to test a 1D hypothesis using a 0D model.

A randomness model may separately be categorized as either parametric or non-parametric. Parametric

models are constructed by first assuming the nature of the random distribution (usually Gaussian), and then

computing a small number of parameters (usually the mean and standard deviation — SD) which charac-

terize that distribution and thus its random behavior. In contrast, non-parametric models (Good, 2005) are

generally not based on any specific distribution, and are instead constructed using experimental data. When

the data do indeed come from a Gaussian distribution, then the parametric and non-parametric models

converge (Appendix A), and when the data are non-Gaussian parametric procedures are generally not valid.

There are thus four categories of randomness models to consider: 0D parametric, 0D non-parametric, 1D

parametric and 1D non-parametric.

In the Biomechanics literature four relevant approaches have emerged: (i) error clouds — often surround-

ing a mean trajectory (McGinley et al., 2009) (ii) the bootstrap confidence interval (CI) (Olshen et al., 1989;

Lenho↵ et al., 1999; Peterson et al., 2000; Duhamel et al., 2004), (iii) functional data analysis (Ramsay and

Silverman, 2005), and (iv) random field theory (RFT) (Adler and Taylor, 2007; Pataky et al., 2013). Method

(ii) is non-parametric and the rest are parametric. Since (iii) and (iv) may be regarded as equivalent from

a hypothesis-testing perspective (Appendix B), this paper focusses on only RFT; RFT may be considered

simpler because it requires fewer parameters.

The theoretical inadequacy of (i) error clouds, including the SD cloud, is fortunately easy to address:

they do not stem from a randomness model. While error clouds objectively quantify trajectory variability,

experimental design complexities conspire to dissolve the connection between variability and probability
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(Schwartz et al., 2004). Since error clouds cannot support probabilistic claims they must be regarded as

descriptive or exploratory in nature.

Unlike error clouds, (ii) CIs do stem from randomness models. Nevertheless it has been shown that 1D

CIs are invalid when based on 0D randomness (Lenho↵ et al., 1999; Duhamel et al., 2004). The 1D bootstrap

CI (Olshen et al., 1989; Lenho↵ et al., 1999; Duhamel et al., 2004) is a viable solution because it models

1D randomness in the behavior of the trajectory-wide maximum under random resamplings. The available

literature has explored 0D parametric CIs vs. 1D non-parametric CIs (Lenho↵ et al., 1999; Duhamel et al.,

2004; Gravel et al., 2010; Dixon et al., 2013; Cutti et al., 2014), and has also explored 0D vs. 1D hypothesis

testing using RFT (Pataky et al., 2013), but to our knowledge there has previously been no systematic

comparison of 0D vs. 1D procedures, parametric vs. non-parametric results, and CIs vs. hypothesis testing.

The primary purpose of this study was to elucidate the theoretical framework of 0D vs. 1D statistical

procedures. Specifically, we sought to clarify that choosing 0D vs. 1D procedures is statistically much more

important than choosing parametric vs. non-parametric procedures because di↵erences in 0D vs. 1D results

are generally much larger than di↵erences in parametric vs. non-parametric results. We also sought to clarify

that, in contrast to 1D CIs which are complex and non-generalizable, 1D hypothesis testing results can be

presented consistently across all experimental designs.

2 Methods

2.1 Datasets

Three simulated and three experimental datasets consisting of J scalar trajectory responses normalized to

Q discrete points were analyzed (Table 1). Since the simulated datasets are artificial readers are encouraged

to judge their relevance to real data.

Datasets A and B (Fig.1) mimic a one-sample experiment. These datasets were constructed by adding

ten smoothed, amplified Gaussian noise trajectories (Fig.1a) to two true population means (Fig.1b). Dataset

B’s slightly larger signal at time=80% is evident in both the resulting datasets (Fig.1c,d) and their summary

statistics (Fig.1e,f).

Dataset C (Fig.2) mimics a regression design with one independent variable x. To ten true signals

(Fig.2a), whose maxima were perfectly correlated with x (Fig.2b), we added smooth Gaussian noise (Fig.2c)

to yield the final dataset (Fig.2d). The ten responses were divided into two groups (Fig.2a) to compare

categorical and continuous treatments of x.
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Dataset D (Fig.3a) (Neptune et al., 1999) consisted of within-subject mean knee flexion trajectories in

side-shu✏e vs. v-cut tasks during stance. Dataset E (Fig.3b) (Besier et al., 2009) consisted of stance-phase

medial gastrocnemius forces during walking in 16 Controls vs. 27 Patello-Femoral Pain (PFP) patients, as

estimated by Besier et al. from EMG-driven forward-dynamics simulations. Dataset F (Fig.3c) (Dorn et al.,

2012) consisted of left-foot anterior/posterior ground reaction forces (GRF) in one subject running/sprinting

at four di↵erent speeds.

2.2 General statistical calculations

For simplicity this study focusses on the t statistic. All calculations employed a Type I error rate of

↵=0.05 and were implemented all in Python 2.7 using Canopy 1.4 (Enthought Inc., Austin, USA) and the

open-source software package ‘spm1d’ (Pataky, 2012).

2.2.1 0D and 1D t statistics

Definitions of 1D t statistics are trivial extensions of their 0D definitions to a 1D domain q, where q

represents time in the aforementioned datasets. For example, the 1D one-sample t statistic is:

t(q) =
y(q)

s(q)/
p
J

(1)

where y, s and J are the sample mean, sample standard deviation, and sample size, respectively. This 1D

t trajectory can be assembled simply by computing the t statistic value separately at each time point q,

thereby approximating the continuous t(q) trajectory just like computing the mean separately at each point

approximates the continuous mean trajectory. Definitions of the t statistic for other designs are provided as

Supplementary Material (Appendix C).

2.2.2 Parametric 0D and 1D critical thresholds

The critical 0D t statistic t

⇤
0D is given as the solution to:

P (t > t

⇤
0D) =

Z 1

t⇤
0D

f0D(x)dx = ↵ (2)

where f0D(x) is the usual 0D t statistic’s probability density function (Appendix D) and P (t > t

⇤
0D) is the

probability that the t statistic will exceed t

⇤
0D if the underlying data are 0D Gaussian. In classical hypothesis

testing the null hypothesis is rejected if the observed 0D t value exceeds t⇤0D.
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The critical 1D test statistic t

⇤
1D is given by RFT (Adler and Taylor, 2007) as the solution to:

P

⇣
t(q)max > t

⇤
1D

⌘
= 1� exp

 
�
Z 1

t⇤
1D

f0D(x)dx� ED

!
= ↵ (3)

where t(q)max is the maximum value of the 1D t trajectory and where ED is the smoothness-dependent Euler

density function (Worsley et al., 2004; Friston et al., 2007). Analogous to the 0D form, Eqn.3 represents the

probability that t(q)max exceeds t

⇤
1D when the underlying data are smooth 1D Gaussian, and in classical

hypothesis testing the null hypothesis is rejected if the observed t(q)max value exceeds t⇤1D.

Last, we computed the critical 0D Bonferroni threshold t

⇤
0D Bonf as the solution to:

P (t > t

⇤
0D Bonf) =

Z 1

t⇤
0D Bonf

f0D(x)dx = 1� (1� ↵)(1/Q) (4)

Note that the Bonferroni threshold assumes Q independent tests. For smooth 1D data this is clearly a

poor assumption because neighboring values in time are correlated. We nonetheless include t

⇤
0D Bonf in our

initial analyses to demonstrate that it is too extreme; provided the 1D trajectories are smooth, the three

critical thresholds are related as follows: t

⇤
0D < t

⇤
1D < t

⇤
0D

Bonf

. Note that although t

⇤
0D

Bonf

considers the

entire 1D domain q, it only uses the 0D probability density function and fails to consider 1D smoothness;

therefore only the RFT threshold (Eqn.3) is labeled “1D”.

2.2.3 Non-parametric 0D and 1D critical thresholds

Two non-parametric methods — the bootstrap and the permutation method (Good, 2005) — were used to

estimate both t

⇤
0D and t

⇤
1D. Descriptions of the 0D bootstrap and permutation methods are provided as Sup-

plementary Material (Appendix E). The 1D bootstrap is described in detail elsewhere (Lenho↵ et al., 1999).

The 1D permutation method followed Nichols and Holmes (2002) and is summarized in Fig.4a–c. Note that

nD parametric and nD non-parametric methods are conceptually identical in that both describe random

nD behavior to yield t

⇤
nD. Moreover, the nD non-parametric results are expected to converge to the nD

parametric results when the underlying data are nD Gaussian (Appendix A).

2.2.4 0D and 1D confidence intervals

Substituting the critical 0D threshold t

⇤
0D into Eqn.1 yields the height h of the one-sample 0D CI:

h0D = t

⇤
0D

sp
J

(5)
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CI heights for two-sample and regression-designs similarly follow from the design-dependent definitions

of the t statistic (Table 3, Appendix F). Heights of 1D CIs are given simply by substituting t

⇤
1D for t⇤0D in

CI height calculations.

2.3 Specific dataset analyses

For Datasets A and B we sought to compare 0D vs. 1D, parametric vs. non-parametric, bootstrap vs.

permutation and CI vs. hypothesis testing results. We thus computed seven di↵erent critical one-sample t

values for both datasets: (#1–#3) parametric versions of t⇤0D, t
⇤
1D and t

⇤
0D Bonf, then both bootstrap and

permutation versions of both (#4,#5) t

⇤
0D and (#6,#7) t

⇤
1D. We then constructed the associated CIs and

qualitatively compared all CIs and hypothesis testing results.

For Dataset C we sought to demonstrate two points: (1) since this is a regression design, neither 0D

nor 1D CIs are suitable when the datum is the mean 1D trajectory, (2) unlike 1D CIs, 1D hypothesis

testing results can be presented identically across designs. We first constructed the narrowest possible CIs

(0D CIs) to emphasize that even these cannot capture probabilistic meaning in regression designs. Next

we qualitatively compared two-sample and regression hypothesis testing results for 0D, 1D parametric, 1D

non-parametric and 0D Bonferroni thresholds.

For Datasets D–F we sought to emphasize both (i) the generalizability of 1D hypothesis testing proce-

dures, and (ii) the similarities between 1D parametric and 1D non-parametric results in real 1D experimental

datasets. Since the bootstrap is unsuitable for arbitrary hypothesis testing (Good, 2005) we conducted only

1D parametric and 1D permutation tests whose results we compared qualitatively.

3 Results

3.1 0D vs. 1D methods (Datasets A and B)

The three 0D CIs were qualitatively identical, and the three 1D CIs were also qualitatively identical,

but the 0D CIs were considerably di↵erent from both the 1D CIs and the 0D Bonferroni CI (Fig.5a,b).

The cause of these di↵erences is the underlying randomness model. The 0D parametric model assumes 0D

Gaussian randomness, and the 0D non-parametric procedures discretely approximate the same randomness.

Similarly, the 1D (RFT) parametric model assumes 1D Gaussian randomness and describes the behavior

of the trajectory maximum, and the 1D non-parametric procedures discretely approximate the same 1D

randomness.
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The 0D Bonferroni result assumes 0D randomness, but also corrects for Q=101 independent tests across

the time domain. Since the data are temporally smooth, adjacent time samples are clearly not independent

and thus the Bonferroni correction is overly conservative as has been noted previously (Duhamel et al., 2004).

One-sample hypothesis testing results (Fig.5c,d) mirrored the CI results (Fig.5a,b). In particular, both

the 0D CIs and the 0D hypothesis testing results reached significance at approximate times of 15% and

75%. In contrast, the 1D CIs and 1D hypothesis testing results reached significance only for Dataset B and

only at 75% time (p=0.037). The Bonferroni-corrected results failed to reach significance in any dataset,

emphasizing its overly conservative nature. These results emphasize that CIs are equivalent to one-sample t

tests, and also that the threshold-crossing behavior is somewhat clearer for the hypothesis tests (Fig.5d).

3.2 CIs vs. hypothesis tests (Dataset C)

One-sample 0D CIs failed to separate the groups (Fig.6a). Nevertheless both 0D regression (Fig.6b) and

a 0D two-sample test (Fig.6c – lower threshold) reached significance. This disagreement is explained by

the CI’s complex design-dependence (Table 3). In contrast to CIs, both the two-sample test and regression

results could be presented in an identical, unambiguous format as a t trajectory with critical thresholds

(Fig.6c,d). This result emphasizes that 1D CIs are less generalizable than 1D hypothesis testing.

Note that, even if the 0D CIs in Fig.6a had been constructed more robustly using a 1D two-sample

model, the results would be incorrect because the independent variable (x) is continuous. In this case the

two-sample results fail to reach significance (Fig.6c) but the regression results do (Fig.6d).

3.3 Parametric vs. non-parametric 1D methods (Datsets D–F)

For each of the experimental datasets, 1D parametric and 1D non-parametric results were qualitatively

identical (Fig.7). In particular, (i) the null hypothesis was rejected in all cases, (ii) essentially the same supra-

threshold temporal windows were identified, and (iii) similar probabilities were obtained for suprathreshold

clusters. Unlike CI results, these results are reportable in an identical manner across arbitrary experimental

designs, further emphasizing the generalizability of 1D hypothesis testing.
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4 Discussion

4.1 0D vs. 1D methods

This study’s results suggest most broadly that choosing between 0D and 1D methods is likely much more

important than choosing between parametric and non-parametric methods when analyzing 1D biomechan-

ical data. From the discrepancies amongst the 0D and 1D results (Figs.5–6) it is clear that 0D procedures

inaccurately model smooth 1D trajectory variance (Fig.1a, Fig.2c) which characterizes most 1D biomechan-

ical datasets (Duhamel et al., 2004). One may therefore be tempted to ask: “which is the correct method?”

That question is important and easy to answer: both 0D and 1D methods are correct, but they cannot both

be simultaneously correct. Since a method’s validity rests on its assumptions’ justifiability, and since 0D

and 1D methods make di↵erent assumptions (i.e. 0D randomness vs. 1D randomness), they cannot both be

valid for the same dataset. A 0D procedure is perfectly justifiable if one formulates a specific 0D hypothesis

prior to conducting a 1D experiment, and then analyzes only those specific 0D data (Pataky et al., 2013); in

this case 1D probabilistic methods would be unjustified. On the other hand, if one does not have a specific

0D hypothesis, then by definition one’s hypothesis implicitly pertains to the whole 1D trajectory, in which

case we’d argue that only 1D procedures are justifiable. More simply, one’s a priori hypothesis must drive

one’s analysis and not the other way around.

4.2 Parametric vs. non-parametric procedures

The choice between parametric and non-parametric procedures had negligible e↵ects on the current results

(Fig.5–7) suggesting that RFT’s assumption of 1D Gaussian randomness was a reasonable one. We have

separately observed similar agreement between parametric and non-parametric 1D procedures for a much

greater variety of 1D Biomechanics data, including EMG time series (Robinson et al., 2015), suggesting that

the choice between 0D and 1D models appears to be more important than the choice between parametric

and non-parametric models.

The main advantage of (parametric) RFT procedures is that, since they assume an analytical model of

1D randomness, they are very fast. Non-parametric procedures are generally much slower because they build

randomness models iteratively based on experimental data. As examples, for the relatively small Dataset B

our RFT and 1D permutation implementations required an average of 0.020 s and 0.130 s, respectively. For

the larger Dataset E, the durations were 0.023 s and 5.5 s, respectively.

The main disadvantage of RFT procedures is that, like 0D parametric procedures since it assumes a
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Gaussian model of randomness, and that assumption may be violated. One should therefore check adherence

to the normality assumption when employing parametric procedures, either explicitly through a test for

normality, or implicitly by checking for agreement between parametric and non-parametric results. However,

such normality checks may be moot: 1D biomechanical trajectories are generally smoothed prior to analysis

(Bisseling and Hof, 2006; Kristianslund et al., 2013), and smoothing, by definition, mitigates outliers and

drives the data toward normality. Non-parametric 1D procedures are generally valid irrespective of the

underlying distribution.

A second disadvantage is that parametric procedures are less flexible than non-parametric procedures. In

particular, it has been shown that SD continuum smoothing can enhance the signal:noise ratio because point-

by-point SD estimations are generally poor, especially for small sample sizes (Nichols and Holmes, 2002).

Such smoothing is valid for non-parametric but not parametric procedures.

4.3 CIs vs. hypothesis tests

The present CI results (Fig.5a,b) agree with previous findings that 1D CIs better model 1D vari-

ance than do 0D CIs (Lenho↵ et al., 1999; Duhamel et al., 2004; Gravel et al., 2010; Cutti et al., 2014). Al-

though those studies’ 1D methods were limited to the 1D bootstrap, our results suggest that the 1D CI can

also be constructed in at least two additional ways: parametrically using RFT, and non-parametrically using

the permutation procedure of Nichols and Holmes (2002).

Also unlike previous studies, this study’s results (Figs.5–6) suggest that 1D CIs are a poorer choice than

hypothesis tests, primarily because CIs are suitable only for very simple one- and two-sample designs. Even

within those simple designs, CIs have complex design- and datum-dependent interpretations (Table 3), so

when reporting 1D CIs graphically one must explicitly specify both the design and the datum one employed

to construct the CI. We’d argue that this unnecessarily complicates cross-study comparisons. In contrast, 1D

hypothesis testing accommodates arbitrary experimental designs and yet presents 1D results in a much more

consistent manner across studies (Fig.7). It has been shown elsewhere that 1D hypothesis testing results can

be presented identically for multivariate (vector) trajectories (Pataky et al., 2013) and thus most generally

to MANCOVA (Worsley et al., 2004).

The primary advantage of CIs is that they present probabilistic results in the context of the original

data, with identical units (Batterham and Hopkins, 2006). This clearly makes the CI valuable for data

visualization and exploration. However, since CIs embody no unique probabilistic information relative to

hypothesis testing (Table 3), and since CIs are di�cult or impossible to interpret in arbitrary experimental
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designs (Fig.6), we’d argue that hypothesis testing should preferentially be adopted where possible.

4.4 Limitations of 1D methods

A key assumption of all 1D methods is that trajectories have been appropriately smoothed and regis-

tered (i.e. temporally normalized) (Sadeghi et al., 2003). This may be important considering that smoothing

algorithm particulars can non-trivially a↵ect biomechanical interpretations (Bisseling and Hof, 2006; Kris-

tianslund et al., 2013), and that nonlinear registration procedures can substantially reduce 1D trajectory

variability (Sadeghi et al., 2003). Nevertheless, since these assumptions pertain to data processing and not to

statistical inference, they are not unique to 1D analyses, so should be scrutinized for both 0D and 1D analyses.

As a rule of thumb, if one is confident that one’s mean trajectories are unbiased by smoothing/registration

particulars, then by definition 1D inference procedures are valid.

As an anecdotal exploration of (mis-)registration e↵ects, consider that Dataset F appears to contain

misregistered early-stance posterior GRF extrema (Fig.3c). In this particular case adopting a nonlinear

registration procedure has only moderate quantitative e↵ects on the results and no real qualitative e↵ect

(Appendix G). Nevertheless, registration — and more generally the assumption of data homology — requires

continued scrutiny for both 0D and 1D analyses.

Partially mitigating both smoothing and registration-related e↵ects is RFT’s generalizability to nD con-

tinua (Friston et al., 2007; Pataky, 2010). Since both smoothing and registration are generally parameteriz-

able (e.g. smoothing kernel width) the 1D test statistic continuum can be extended to (K+1) dimensions,

where K is the number of smoothing/registration parameters (Worsley et al., 1996). Analysis of the re-

sulting (K+1)-dimensional test statistic continuum would constitute a systematic sensitivity analysis of

smoothing/registration assumptions.

Last, a potentially serious limitation of 1D methods exists for routine biomechanical analyses. Many

studies measure a variety of variables including, for example: 3D angles at multiple joints, 3D reaction

forces, and electromyographical time series. While 1D methods can handle multivariate trajectories in

general (Pataky et al., 2013), the main problem is that statistical power reduces as the number of 0D or 1D

variables increases and the sample size remains small. There is no statistical theory of which we are aware

that can maintain statistical power in the face of both small sample sizes and an arbitrarily large barrage

of 1D measurements. Exploratory analyses (e.g. 1D mean and SD interpretations) may be necessary to

formulate specific, feasibly testable hypotheses regarding sub-components of such datasets.
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4.5 Summary

This study’s results suggest that 0D methods inaccurately model the behavior of smooth, random 1D

trajectories. Since one’s primary scientific reporting obligation is to specify the probability with which

random data could produce the observed result, these results also suggest that 1D methods should be used

to analyze 1D data except when one has a specific 0D hypothesis prior to conducting an experiment. Finally,

as compared with 1D CIs, 1D hypothesis tests represent a simpler, more generalizable basis for forming

probabilistic conclusions regarding smooth 1D biomechanical trajectories. While parametric 1D (RFT)

procedures may be preferable because of their speed, non-parametric 1D procedures may be necessary when

deviations from normality are non-negligible.
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Table 1: Dataset overview. J and Q are the numbers of responses and time nodes, respectively.

Dataset J Q Model Link

Simulated

A 10 101 One-sample t test

www.spm1d.org/Downloads.htmlB 10 101 One-sample t test

C 10 101 Linear regression

Experimental

D 8 101 Paired t test http://isbweb.org/data/rrn/

E 43 100 Two-sample t test https://simtk.org/home/muscleforces

F 8 100 Linear regression https://simtk.org/home/runningspeeds



Table 2: Statistical procedures and randomness models used in this paper. Here µ and �
are the population mean and standard deviation, respectively. The parameters Q and W are
the number of trajectory nodes and the trajectory smoothness, respectively (see text). The
Bonferroni procedure assumes Q independent tests, and the RFT procedure assumes Q/W
independent trajectory processes.

Number Class Procedure Randomness model Parameters
1 Parametric Uncorrected 0D Gaussian µ, �
2 Parametric Bonferroni-corrected 0D Gaussian µ, �, Q
3 Parametric RFT-corrected 1D Gaussian µ, �, Q/W
4 Non-parametric Uncorrected bootstrap 0D empirical None
5 Non-parametric Uncorrected permutation 0D empirical None
6 Non-parametric Corrected bootstrap 1D empirical None
7 Non-parametric Corrected permutation 1D empirical None



Table 3: Significance threshold definitions for confidence intervals (CIs) and hypothesis tests
(see also Appendix F). The Type I error rate ↵ defines the critical threshold t⇤ which, in turn,
defines the design-dependent CI height h that is added to a datum: either one sample’s mean
(yA) or the mean di↵erence (�y). Paired and two-sample t tests assume yA � yB. Regression
CIs are possible only when the datum is the regression slope or intercept. The key point is
that, while the CI height is design dependent and the datum ambiguous, the hypothesis testing
threshold is always t⇤ and its datum is always zero.

Confidence intervals Hypothesis tests

Datum: yA �y 0

One-sample t test yA � h1 > 0 t1 > t⇤

Paired t test
yA � hp > yB

yA � 1

2
hp > yB +

1

2
hp

�y � hp > 0 tp > t⇤

Two-sample t test
yA � h2 > yB

yA � 1

2
h2 > yB +

1

2
h2

�y � h2 > 0 t2 > t⇤

Regression tr > t⇤



FIGURES

Figure 1. Datasets A and B (both simulated).  (a) Smooth 1D Gaussian noise (FWHM=25%). (b) 
True population mean trajectories.  (c,d) Final datasets: sum of true signals and noise.  (e,f) 
Summary statistics: means with SD clouds.



Figure 2. Dataset C (simulated).  (a,b) True simulated signals exhibiting a perfect linear 
correlation between the independent variable and signal maxima; data are divided into two 
groups for a subsequent comparison between a two-sample t test and regression.  (c) Smooth 1D 
Gaussian noise (FWHM=25%).  (d) Final dataset: sum of true signals and noise.



Figure 3. Experimental datasets.   (a)  Dataset D (Neptune et al. 1999):  cross-subject mean knee 
angle trajectories with SD clouds in side-shuffle vs. v-cut maneuvers.  (b) Dataset E  (Besier et al. 
2009): cross-subject mean medial gastrocnemius force trajectory, as estimated from dynamic 
simulation, with SD clouds.  (c)  Dataset F (Dorn et al. 2012): cross-trial horizontal ground 
reaction force trajectories in one subject during running/sprinting at various speeds.



Figure 4. Non-parametric inference overview. (a) Original simulated data and two other of the 20 
total permutations; the 20th permutation is the opposite of the original.  (b) Test statistic (t) 
trajectories for each permutation. (c) The maximum t value from each t trajectory forms the 
primary permutation PDF, from which the critical value t* was computed as the 95th percentile to 
ensure that only α=5% of all permutations exceed t*.  (d) The original t trajectory exceeds t*, 
which provides sufficient evidence to reject the null hypothesis. To qualify the rejection decision, 
the maximum suprathreshold cluster integral from each t trajectory was extracted to form a 
secondary permutation PDF, from which specific cluster-level p values were computed. (e) Final 
hypothesis testing results. Here the original t trajectory was the only one of all 20 permutations to 
produce a suprathreshold cluster, so that cluster’s p value is 1/20=0.05. Had RFT-based 
parametric inference been conducted on these data the results would have been: t*=5.303, 
p=0.014.



Figure 5. Results for Datasets A and B.  (a,b) Seven different confidence intervals (CIs) are 
depicted (see Table 1) as labeled in the two legends. Dark vertical bars highlight key temporal 
windows discussed in the text.  (c,d)  Hypothesis testing results for four different tests; the null 
hypothesis is rejected at α=0.05 if the test statistic trajectory (thick black line) traverses the 
depicted threshold. In panel (d), the p value is the RFT result, describing the frequency with 
which smooth Gaussian trajectories are expected to produce a supra-threshold cluster of that 
temporal extent.



Figure 6. Results for Dataset C. (a) Separate one-sample CIs for Groups 1 and 2, using an 
uncorrected threshold.   (b) Regression results on only y maxima; these results are uncorrected 
and therefore invalid if the null hypothesis pertains to the whole trajectory.  (c)  A two-sample t 
test comparing Group 1 and 2 means.  (d) Linear regression between x and y(q).



Figure 7. Hypothesis testing results for the experimental data. The top, middle and bottom panel 
rows depict results for Datasets D (paired), E (two-sample) and F (regression), respectively (see 
Fig.4). The left and right panel columns depict parametric and non-parametric results, 
respectively. Critical thresholds (t*) and cluster-level probability values (p) are shown. The main 
points are that: (i) parametric and non-parametric results are qualitatively identical, and (ii) unlike 
CIs, hypothesis testing results can be presented identically for all experimental designs.
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Appendix A Parametric vs. non-parametric hypothesis testing

The main di↵erence between parametric and non-parametric hypothesis testing is that the

former parameterizes probability density functions (PDFs) (Appendix D) and the latter does

not. This distinction exists at two levels:

• Experimental data: parametric hypothesis testing assumes that the data are drawn from

a population with a known, parameterizable PDF (usually the Gaussian distribution),

but non-parametric procedures generally makes no such assumption.

• Test statistic: parametric procedures base inferences on parameterized test statistic PDFs

which are analytically derived from the population PDF, but non-parametric procedures

generally base inferences on empirically derived test statistic PDFs.

Below we consider these points in detail.

Parametric PDFs

The fundamental PDF upon which most parametric inference is based is the normal (Gaus-

sian) distribution, which is parameterized by the true population mean µ and true population

standard deviation � (Fig.A1):

f(x) =
1

�

p
2⇡

e

� (x�µ)2

2�2 (A.1)

Figure A1: Gaussian probability density functions.



If we assign numerical values to µ and �, then we can compute arbitrary probabilities using

Eqns.D.1 and D.2 (Appendix D). For example, if µ=0 and �=1, then the survival function

(Eqn.D.2) predicts P (x>0.0)=0.500 and P (x>2.0)=0.023. These probabilities respectively

imply that 50% of random values drawn from this distribution are expected to be greater

than zero, and only 2.3% are expected to be greater than 2.0. To re-emphasize the meaning of

‘parametric’, we note that two simple parameters (µ and �) completely specify the probabilistic

behavior of Gaussian data.

The Gaussian PDF (Eqn.A.1) is nevertheless seldom used directly when conducting statis-

tical inference. One reason is that the Gaussian PDF describes a random variable x, which is

analogous to the raw data we measure experimentally. Most experiments are less interested in

x itself than in averages (one-sample tests), average di↵erences (two-sample tests), and corre-

lations between x and an independent variable (regression tests). To address these empirical

pursuits, the parametric approach funnels the Gaussian PDF into a particular experimental

design, and generates predictions regarding what Gaussian data would do in that particular

setting, over an infinite number of identical experiments.

Another reason the Gaussian PDF is not used directly for statistical inference is that µ and

� are true population parameters, but we rarely know these true values because we rarely have

access to the entire population. We instead have to estimate µ and � using a sample drawn

from that population, but those estimates are imperfect, especially if the data are not sampled

randomly. Even when the data are sampled randomly, estimates of µ and � worsen as sample

size decreases (Fig.A2), and parametric inference must account for this sample size-dependent

behavior. Student solved this problem in 1908 through use of PDF which depends only on

sample size:

f(x) =
�
�
⌫+1

2

�
p
⌫⇡�

�
⌫

2

�
✓
1 +

x

2

⌫

◆� ⌫+1
2

(A.2)

Here ⌫ is the degrees of freedom and � is the gamma function. The ⌫ parameter specifies

the number of values which can vary freely in a particular statistic’s computation. For example,

in the one-sample t test (Table F2) there are J responses, but not all response values can vary

freely. In particular, after one estimates the mean, there are only (J � 1) responses which can

vary freely to produce the same mean, so the SD estimate is normalized using (J � 1) rather

than J (Table F2).

Equation A.2 is the analytical result obtained when Gaussian data (Eqn.A.1) are funneled

into t statistic equations (Table F2). In other words, Gaussian data behave in a sample-size

dependent manner (Fig.A3) when the sample is smaller than the population size.



Figure A2: Variability of population parameter estimates as a function of sample size. The
true mean and SD were 0 and 1, respectively. These results were constructed by simulating
106 samples of each sample size, computing each sample’s mean and SD, then computing the
SD of each parameter across all 106 samples.

Figure A3: Comparison of various t PDFs with the standard normal PDF (µ=0, �=1). The
PDFs in panels (a) and (b) are identical, but panel (b) zooms in on one part of the PDF for
clarity.

The t PDF approaches the standard normal PDF (µ=0, �=1) as ⌫ increases (Fig.A3b).

Equivalently and conversely, large t values become increasingly likely as sample size decreases.

Although the e↵ect of ⌫ may appear small in Fig.A3, consider the following numerical results:

P (x>3.0)=0.020 when ⌫=4, but P (x>3.0)=0.00384 when ⌫=18. This implies that Gaussian

data are approximately five times more likely to produce t values larger than 3.0 for ⌫=4 vs.

⌫=18.

Last, let us consider a full numerical example, which we shall repeat with non-parametric

analyses below. Imagine that an experiment yields Group A and Group B responses of {1.14,



1.21, 1.25, 1.43, 1.57} and {1.37, 1.52, 1.61, 1.74, 1.54}, respectively. A two-sample independent

t test (⌫=8) yields t=2.378. From Eqns.D.2 and A.2 we may conclude that Gaussian data are

expected to produce a t value this large with a probability of p=0.022 over many random

samplings.

To summarize, the t statistic’s PDF (Eqn.A.2) is completely specified by one parameter: ⌫,

and that PDF is derived from the Gaussian PDF (Eqn.A.1), which is also parametric. More

generally, parametric procedures use a small number of parameters to specify both the PDF

from which experimental data are assumed to have been randomly drawn, and the test statistic

PDF upon which statistical inference is based.

Non-parametric PDFs

Non-parametric PDFs are identical to parametric PDFs in the sense that they describe

the behavior of randomly sampled data. The main di↵erence is that non-parametric PDFs

generally make no assumptions regarding the distribution from which data are drawn, and

instead build PDFs empirically, directly from experimental data. If the underlying data are in

fact Gaussian distributed, then non-parametric PDFs converge to parametric PDFs (Fig.A4)

and non-parametric results converge to parametric results (Appendix E). If experimental data

deviate from Gaussian behavior then parametric approaches based on the Gaussian PDF (like

the t PDF) are generally not valid.

To emphasize these points it is su�cient to describe one non-parametric approach to PDF

construction. Below we describe a simple two-sample permutation procedure similar to the one

used in the main manuscript, but somewhat di↵erent from the one-sample procedure described

in Appendix E . Returning to the numerical example above, the two-sample permutation

approach starts by labeling the original data as follows:

Label A A A A A B B B B B

Value 1.14 1.21 1.25 1.43 1.57 1.37 1.52 1.61 1.74 1.54

As we saw before, this particular labeling (AAAAA–BBBBB) yields t=2.378. To build the

permutation PDF, we simply permute these ten labels and recompute the t statistic for each

permutation. For example, labels of BAAAA–ABBBB and BBAAA–AABBB yield t=1.208

and t=0.154, respectively. Repeating for many or all label permutations builds a permutation

PDF (Fig.A4). In this example there are ten labels, but once we choose positions for the five

A labels, the positions of the five B labels are decided. There are thus
�
10

5

�
= 10!/(5!5!) =

252 unique permutations. Assembling all or a large number of permutation t values forms

a permutation PDF (or empirical PDF), from which probability values can be computed as

follows:



P(t � u) =
Number of permutation values greater than or equal to u

Number of permutations
(A.3)

Since this example has 252 permutations, the minimum possible p value is 1/252 = 0.004.

Of those 252 permutations, this example yields a total of eight which satisfy t � u, includ-

ing a maximum t value of 4.804 for a labeling of: AAAAB–ABBBB. Thus the p value is

8/252=0.0318, which is similar to the parametric p value of 0.022. This indirectly suggests

that the parametric approach’s assumption of normality is a reasonable one.

Which p value is correct, the parametric or non-parametric one? Both are correct, but their

meanings are di↵erent. The interpretation of the parametric p value is as follows: if there were

truly no di↵erence between Groups A and B and if the population data are Gaussian distributed

then a t value as large as the observed value would be expected in 2.2% of an infinite number of

identical experiments. The interpretation of the non-parametric p value is: if there were truly

no di↵erence between Groups A and B and the group labels were assigned randomly to the

data then only 3.18% of relabelings would yield a t value as large as the observed value. The

primary di↵erence between the two approaches is thus that the parametric p value assumes

that the population distribution is Gaussian but the non-parametric p value does not.

Figure A4: Comparison of parametric and non-parametric PDFs for the two-sample t test
example described in the text. Here ⌫=8 completely parameterizes the parametric PDF. The
non-parametric PDF is a histogram of the t values computed from all 252 permutations.



Appendix B Functional data analysis and random field theory

Functional data analysis (FDA) (Ramsay and Silverman 2005) emerged in the 1990s as a

tool for statistically analyzing one-dimensional continua or “functions”. By regarding experi-

mentally sampled continua as continuous functions, FDA shows that experimental data can be

well-approximated by a set of mathematically precise basis functions, including for example:

splines and Fourier series. Representing the data in this manner opens up a wide range of

analysis possibilities for describing continua, covariance between continua, etc. Although FDA

was initially developed primarily as an exploratory tool of 1D continuum variance, over the

years it has expanded to a wide array of statistical uses including classical hypothesis testing

in arbitrary experimental designs through a variety of inference techniques.

Random field theory (RFT) (Adler and Taylor 2007) was initially developed in the 1970s

to extend the (0D) Gaussian distribution to n-dimensional continua with arbitrary geometrical

bounds. RFT shows, for example, how smooth 1D Gaussian continua exhibit particular geomet-

ric features (like maximum continuum height) with known probability. Statistical Parametric

Mapping (SPM) emerged in the 1990s to apply RFT to experimentally measured continua

(Friston et al. 2007). In the case of unbroken 1D continua, SPM estimates just one parameter

more than is estimated for common 0D analyses — the ratio of continuum length to smooth-

ness — then uses RFT to make probabilistic conclusions, like the probability that smooth 1D

Gaussian data will yield a t continuum which reaches a height of 3.0 in a two-sample experi-

ment. Directly related to classical hypothesis testing, SPM can use RFT to compute the critical

height t⇤ above which only ↵% of t continua would reach if those t continua were produced by

smooth 1D Gaussian continua in an infinite number of identical experiments.

From a classical hypothesis testing perspective for 1D data, there is thus only one di↵erence

between FDA and RFT. Whereas FDA inference procedures are widely flexible, with a varying

number of parameters, RFT inference is based on a single parameter: the continuum length-

to-smoothness ratio. Since they can both describe random 1D continua, they may be regarded

as equivalent for the purposes of the present paper. The main manuscript focusses on separate

issues: 0D vs. 1D, parametric vs. non-parametric, and confidence interval vs. hypothesis

testing procedures. While we could have used FDA address these issues, we opted for RFT

simply because we find RFT easier to describe.



Appendix C Extending the t statistic to the time domain

The 1D t statistic is assembled simply by computing the 0D t statistic separately at each

time point q. Since all 1D t statistic definitions are therefore trivial extensions of their 0D

definitions to the 1D domain q, they are listed here only for completeness. The t statistic

continua for the one-sample, paired and two-sample designs are respectively:

t(q) =
y(q)

s

1

(q)/
p
J

t(q) =
�y(q)

s

p

(q)/
p
J

t(q) =
�y(q)

s

2

(q)
q

1

J

A

+ 1

J

B

(C.1)

For regression against a continuous independent variable x, the model is:

y(q) = �

1

(q)x+ �

0

(q) + "(q)

where �

1

, �
0

and " are the slope, intercept and prediction error, respectively. Least-squares

estimates of the slope and intercept (denoted �̂

1

and �̂

0

, respectively) produce the following

prediction for the jth response:
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Finally, the regression t statistic is:

t(q) =
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(q)
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(C.2)



Appendix D Probability density functions (PDFs)

A PDF is a continuous function f(x) which, when integrated over an interval [x
0

, x

1

],

specifies the probability that a random variable x adopts a value in that interval:

P(x
0

< x < x

1

) =

Z
x1

x0

f(x)dx (D.1)

The probability that x adopts a specific value x̂ is zero because there are an infinite number

of other values it could adopt. The probability that x lies in the interval [x
0

, x
1

] is at least zero

and at most one. All PDFs additionally share the trivial constraint that x lies in the interval

[�1, 1]. These three constraints can be expressed as follows:

P (x = x̂) = 0

0  P (x
0

< x < x

1

)  1

P (�1 < x < 1) = 1

The key probability for classical hypothesis testing is the survival function — the probability

that x exceeds (or ‘survives’) an arbitrary threshold u:

P(x > u) =

Z 1

u

f(x)dx (D.2)

When Eqn.D.2 is set to ↵, then u becomes a “critical threshold”; an experimentally observed

value x̂ which exceeds this threshold leads to null hypothesis rejection.

Random Field Theory (RFT) (Adler and Taylor, 2007) provides the foundation for gener-

alizing Eqn.D.2 to the case of Gaussian nD continua. An important RFT probability is:

P(x
max

> u) =

Z 1

u

f(x)dx (D.3)

where x

max

is the maximum continuum value. For classical hypothesis testing on 1D continua,

setting Eqn.D.3 to ↵ and solving for u yields the critical threshold for the null hypothesis

rejection decision.



Appendix E Bootstrap and permutation techniques

The purpose of this appendix is to clarify (a) the similarities and di↵erences between the

bootstrap and permutation confidence intervals (CIs), and (b) the role of both techniques

in the broader context of parametric and non-parametric hypothesis testing. Note that the

bootstrap has been advocated in the Biomechanics literature for trajectory-level analysis. The

permutation technique is used in the main manuscript because it is more generalizable than the

bootstrap. Interested readers may wish to consult Good (2005) for a more thorough treatment

of these topics for 0D datasets, and to Nichols and Holmes (2002) for a discussion of how these

techniques extend to 1D and higher-dimensional data.

Sections E.1 and E.2 below analyze the following eight-response dataset:

117 104 110 122 119 90 110 97

Section E.1 computes CIs for this dataset using three di↵erent techniques, and Section

E.2 conducts one-sample hypothesis testing using four di↵erent techniques. Table E1 below

summarizes the results of those analyses. Considering these results briefly, it is clear that all

techniques produce similar, albeit non-identical CIs and p values. To emphasize why these

results are similar but not identical, Section E.3 repeats the three CI techniques for thousands

of random (Gaussian) datasets to demonstrate why all techniques may be regarded as theoret-

ically equivalent when the data are normally distributed. This Appendix thus shows that it

is su�cient in the main manuscript to compare a single parametric technique (which assumes

normality) to a single non-parametric technique (which does not assume normality).

Table E1: Confidence intervals (CI) and one-sample hypothesis tests computed using four
di↵erent techniques, based on the dataset above.

Class Technique 95% CI One-sample test
Non-parametric Bootstrap [ 98.4, 117.5 ] p = 0.07559
Non-parametric Permutation [ 98.9, 118.3 ] p = 0.06250
Non-parametric Wlicoxon p = 0.06735

Parametric Student’s t [ 99.3, 117.9 ] p = 0.06411



E.1 Confidence intervals (CIs)

E.1.1 Bootstrap CI

A simple bootstrap CI can be computed as follows:

(a) Compute the sample mean (in this case: 108.625).

(b) Label the responses as follows:

A B C D E F G H
117 104 110 122 119 90 110 97

(c) Resample with replacement: select a random set of labels, allowing labels to repeat, then

compute the mean for the resampled data. For example, a labeling of “AABBBCDE” has

responses: [117, 117, 104, 104, 104, 110, 122, 119], and a sample mean of: 112.125.

(d) Repeat (c) many times and store all sample means. Stop either when (i) all possible

resamplings have been made (i.e. AAAAAAAA through HHHHHHHH), or when (ii) a

specified number of iterations (e.g. 1000) has been completed.

(e) After all sample means have been accumulated, find the value C

upper

above which only

2.5% of all estimates traverse, and the value C

lower

below which only 2.5% of all estimates

traverse. The CI is [C
lower

, C
upper

].

As specified in Table E1 above this procedure yields a CI of [98.4, 117.5].

E.1.2 Permutation CI

A simple permutation CI can be computed as follows:

(a) Compute the sample mean (in this case: 108.625) .

(b) Subtract the sample mean from all responses, then label each observation as “+1”:

+1 +1 +1 +1 +1 +1 +1 +1
8.375 –4.625 1.375 13.375 10.375 –18.625 1.375 –11.625

(c) Resample without replacement: permute using either a “+1” or a “–1” label for each

response, then multiply each response by each label. For example, a labeling of “+1 +1

+1 –1 –1 –1 +1 –1” produces the new sample “8.375 –4.625 1.375 –13.375 –10.375 18.625

1.375 11.625”. For each new sample compute the one-sample t statistic. If there are n

responses, there are 2n possible labelings (256 in this case).



(d) Repeat (c) many times and store all t statistic values for all resamplings. Stop either when

(i) all possible resamplings have been made (i.e. “+1 +1 +1 +1 +1 +1 +1 +1” through

“–1 –1 –1 –1 –1 –1 –1 –1”), or when (ii) a specified number of iterations (e.g. 1000) has

been completed.

(e) After all t statistic values have been accumulated, find the critical height above which only

2.5% of t statistic values traverse, then compute the CI according to Appendix F.

This results in a CI of [98.9, 118.3] (Table E1).

E.1.3 Parametric CI

The parametric CI can be computed using the critical height h

⇤, which is defined via the

one-sample t statistic distribution (see Appendix F, and in particular the “One-sample” row

of Table F3). This procedure yields a CI of [99.3, 117.9], which is very similar to both the

bootstrap and permutation results.

E.1.4 Comparison of CI results

All three techniques yield similar, but non-identical results. Since the parametric technique

assumes that the data come from a normal (Gaussian) distribution, all CI techniques should, by

definition, converge to the identical value when (a) the data are normal and (b) the sample size

is large. The di↵erent techniques will only produce precisely the same result when the sample

size is infinitely large, as we will see in Section E.3 below. Investigators must therefore judge

whether the discrepancies amongst the techniques is negligible or non-negligible. Evidence

of departure from normality, for example, would be a good reason to choose one of the non-

parametric techniques. For the results above (Table E1), the discrepancies amongst the di↵erent

CI techniques are likely negligible for most applications. The main point is that the three CI

techniques are theoretically equivalent when the data are normally distributed.

E.2 Hypothesis tests

Thorough descriptions of one-sample hypothesis tests using the bootstrap, permutation,

Wilcoxon and parametric (one-sample t test) techniques can be found in many statistics text-

books so in interest of brevity are not repeated here. Additionally, as will be shown in Appendix

F, CIs are equivalent to one-sample hypothesis tests, so re-describing the techniques here would

be redundant. This section therefore just focusses on the results in Table E1 above.

Like the CI results, all four hypothesis test procedures produce similar, but non-identical

p values. For classical hypothesis testing, the null hypothesis would not be rejected for any of

the four tests at ↵=0.05. The next section explores why these four approaches are theoretically

equivalent (when the data are normal) even when the results are not precisely equivalent.



E.3 Convergence of CIs

Repeating the bootstrap, permutation and parametric CI procedures on thousands of ran-

dom datasets (drawn from the Gaussian distribution) of increasingly larger sample sizes yields

the results in Fig.E1. The two non-parametric CIs clearly converge to the parametric CI as

sample size increases, implying theoretical equivalence amongst the three procedures (when the

data are normally distributed).

Figure E1: Convergence of the CI for three estimation procedures. These results were obtained
by: (i) producing a random sample from the Gaussian distribution of the given sample size,
with a mean of 100 and a variance of 10, (ii) estimating the CI using the three procedures
indicated (Bootstrap, Permutation, Parametric), and (iii) repeating 500 times for each sample
size. Single results depict the mean values across the 500 repetitions.

Summary

This Appendix has shown that there is fundamentally little di↵erence between the bootstrap

and permutation approaches, but that they might produce non-negligibly di↵erent numerical

results in certain situations, like when sample sizes are very small. The larger point is that the

bootstrap procedure is not particularly unique, as has been implied in the literature. Instead

the bootstrap procedure yields a solution which can also be obtained using other techniques,



and its scope is also relatively limited in the broader context of generalized hypothesis testing

(Fig.E2).

One-sample

CI-1

Parametric Non-parametric

Student’s t Permutation
Bootstrap
Wilcoxon

Others

Paired

CI-2a

Student’s t Permutation
Bootstrap
Wilcoxon

Others

Two-sample

CI-2b

Student’s t Permutation
Wilcoxon

Others

Regression

CI-3

Student’s t Permutation
Others

ANOVA

Fisher–
Snedecor F

Permutation
Others

(No CI)

Figure E2: Context of the bootstrap (for both 0D and 1D tests). Light grey, white and
dark grey boxes respectively depict: experimental designs, statistical inference procedures, and
confidence intervals (CI).



Appendix F Confidence interval design dependence

Confidence intervals (CIs) are defined as:

CI = y

0

± h

⇤ (F.1)

where y

0

is a datum and h

⇤ is the design-dependent critical height. More specifically, h⇤ is

given by a critical t value and simple algebraic manipulation of the design-dependent t statistic

definition.

To clarify, first consider that design-dependent mean and SD definitions (Table F1) yield

design-dependent t statistic definitions (Table F2). Next, given t

⇤ one may compute the design-

dependent h

⇤ (Table F2). Last, after choosing a datum y

0

, there are various acceptable null

hypothesis rejection criteria (Table F3).

The main point is that hypothesis testing employs a single unambiguous criterion: (t > t

⇤),

irrespective of the particular design, making it easy to compare results across experiments. In

contrast, CIs are both design- and datum-dependent.

Clearly h

⇤ is valuable for data visualization because it represents the null hypothesis rejec-

tion criterion in the same units as the original data. However, it is also clear that h⇤ must be

computed with careful attention to both the datum and the design, and can only be interpreted

by readers if the precise datum and design are made explicit. The main manuscript therefore

argues that hypothesis testing is simpler.

Table F1: Mean and standard deviation (SD) definitions for one-sample, paired and two-sample
designs. For simplicity equal variance is assumed in the two-sample case.

Design Mean SD

One-sample y =
1

J

P
yj s1 =

r
1

J � 1

P
(yj � y)2

Paired �y =
1

J

P
(yAj � yBj) sp =

r
1

J � 1

P⇣
(yAj � yBj)��y

⌘2

Two-sample �y = yA � yB s2 =

s
(JA � 1)s2A + (JB � 1)s2B

JA + JB � 2



Table F2: Design-dependence of the CI’s critical height h⇤ .

Design t Mean h

⇤

One-sample t1 =
y

s1/
p
J

y = t

s1p
J

h

⇤
1 = t

⇤ s1p
J

Paired tp =
�y

sp/
p
J

�y = t

spp
J

h

⇤
p = t

⇤ spp
J

Two-sample t2 =
�y

s2

q
1
JA

+ 1
JB

�y = t2s2

q
1
JA

+ 1
JB

h

⇤
2 = t

⇤
s2

q
1
JA

+ 1
JB

Table F3: Design- and datum-dependence of h⇤-based null hypothesis rejection criteria. All
criteria assume y

A

� y

B

.

Design Datum (y0) Criterion: zero Criterion: mean Criterion: tail

One-sample y y � h

⇤
1 > 0 — —

Paired �y �y � h

⇤
p > 0 — —

yA — yA � h

⇤
p > yB yA �

h

⇤
p

2
> yB +

h

⇤
p

2

Two-sample �y �y � h

⇤
2

2
> 0 — —

yA — yA � h

⇤
2 > yB yA � h

⇤
2

2
> yB +

h

⇤
2

2



Appendix G Dataset F reanalyses

Here we reanalyze the Dataset F dataset using (i) two-tailed inference, and (ii) nonlinear

registration followed by two-tailed inference. Regarding two-tailed inference: the results in

the main manuscript (Fig.7De,f) are based on one-tailed inference at ↵ = 0.05. One-tailed

inference has only a single positive critical threshold (i.e. t

⇤
> 0). Two-tailed inference has

two thresholds: +t

⇤ and �t

⇤, and excursion beyond either threshold warrants null hypothesis

rejection. Moreover, +t

⇤ is higher than in a one-sample test; +t

⇤ for two-tailed inference at

↵ is equivalent to t

⇤ for one-tailed inference at ↵/2. Results suggest that, although two-tailed

found highlighted a temporal of significant negative correlation between GRF and walking speed

(Fig.G2a), two-tailed inference did not a↵ect the main manuscript’s null-hypothesis rejection

decision.

Regarding nonlinear registration: we used a simple piecewise linear registration approach

(Kneip et al. 2000) to align the first two local extrema in Datasets F, which occurred be-

tween approximately 10% and 25% stance (Fig.G1a), resulting in reduced temporal variability

of those extrema (Fig.G1b). Non-linear registration also produced slightly amplified supra-

threshold t signals with respect to the original data. However, this a↵ected neither the null

hypothesis rejection decision nor the general biomechanical interpretation. In particular, both

original and registered results suggest negative correlation between posterior GRF and running

speed in early stance, and positive correlation in late stance. Misregistration e↵ects may be

non-negligible in other datasets (Sadeghi et al.2003).

References:
Kneip A, Li X, MacGibbon KB (2000). Curve registration by local regression, Canadian Journal of Statistics

28(1): 19–29.

Sadeghi H, Mathieu PA, Sadeghi S, Labelle H (2003). Continuous curve registration as an intertrial gait

variability reduction technique, IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(1):

24–30.



Figure G1: Dataset F, (a) original and (b) registered trajectories.

Figure G2: Dataset F, two-tailed results for (a) original and (b) registered data.
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