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Abstract. Stream reasoning is an emerging research area focusing on
the development of reasoning techniques applicable to streams of rapidly
changing, semantically enhanced data. In this paper, we consider data
represented in Description Logics from the popular DL-Lite family, and
study the logic foundations of prediction and explanation over DL-Lite
data streams, i.e., reasoning from finite segments of streaming data to
conjectures about the content of the streams in the future or in the past.
We propose a novel formalization of the problem based on temporal
“past-future” rules, grounded in Temporal Query Language. Such rules
can naturally accommodate complex data association patterns, which
are typically discovered through data mining processes, with logical and
temporal constraints of varying expressiveness. Further, we analyse the
computational complexity of reasoning with rules expressed in different
fragments of the temporal language. As a result, we draw precise de-
marcation lines between NP-, DP- and PSpace-complete variants of our
setting and, consequently, suggest relevant restrictions rendering predic-
tion and explanation more feasible in practice.

1 Introduction

A data stream is a temporally ordered collection of data, representing the flow
of information through a certain channel over time [1]. Semantic applications
generating and consuming such streams of rapidly changing data are becoming
increasingly common, with domains ranging through scientific, medical, finan-
cial, urban, and many others. As has been argued by many authors, the shift
of the paradigm from traditional, static data to streaming information requires
deep revisions and advancements in the area of automated reasoning. On the one
hand, the capacity and velocity of data streams present a serious technological
challenge for the existing reasoning systems, tailored towards static data models
and softer latency requirements. On the other one, the real-time and real-world
nature of streaming information encourages investigations into novel forms of
reasoning, going beyond the basic, deductive query answering — forms, which
could support the construction of versatile analytical tools for enhancing the
understanding and utilization of knowledge conveyed in data streams [2,3]. This
latter research agenda motivates directly our presented work.
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In this paper, we study the logic foundations of two non-deductive types of
inference over data streams: prediction and explanation, i.e., reasoning from fi-
nite segments of streaming data to conjectures about the content of the streams
in the future and in the past. Thus defined notions of prediction and explanation
are variations of their well-established analogs in philosophy of science, where
they are often related to the classical problem of causality.1 There, to predict is
to identify the expected effects of existing causes, while to explain — inversely —
to find possible causes of the observed effects [4]. In systems managing real-time
information, prediction is of major importance as an inference guiding decision
making processes based on the currently available data. Meanwhile, explanation
is pivotal to comprehending the situation which underlies and justifies the ob-
served data, which often requires procuring the relevant chain of circumstances
leading to it or abstracting the data into higher-level knowledge. Both modes
of inference are essential for achieving situation awareness in a real-time infor-
mation system [5]. Although prediction (and to a lesser degree explanation) has
been addressed in the context of streaming data, the focus of the relevant work
lies predominantly on the data mining level, i.e., on the methodology of learn-
ing the association patterns occurring in the data and extrapolating them via
statistical techniques to yet unobserved data [3,6]. On the contrary, virtually no
attention has been given to predictive and explanatory reasoning in its strictly
logical sense, as a symbolic inference, on the knowledge representation level. This
is a critical gap whenever streams of semantically rich data are considered, as in
such scenarios bridging the statistical and semantic view on the data is instru-
mental to designing robust reasoning techniques. To the best of our knowledge,
in this work we present the first insights and results on logical and computational
aspects of prediction and explanation over semantic data streams.

Following the popular paradigm of ontology-based data access, we consider
data expressed as Description Logic (DL) axioms, accessed through an onto-
logical layer expressed in DLs from the popular DL-Lite family [7]. Further,
we define a special type of temporal “past-future” rules, grounded in Temporal
Query Language [8]. Such rules can naturally accommodate complex data asso-
ciation patterns, identified in the data mining phase, with logical and temporal
constraints of varying expressiveness. Based on this foundation, we propose a
novel formalization of the two studied types of inference, as abduction of a data
sequence satisfying the consequent or, respectively, the antecedent of a temporal
rule. We analyse the computational complexity of such tasks over rules expressed
in different fragments of the temporal language, and as a result, we draw precise
demarcation lines between NP-, DP- and PSpace-complete variants of the prob-
lem. Building on these findings, we discuss relevant restrictions to the prediction
and explanation tasks which can render the reasoning feasible in practice.

The paper is organized as follows. In the next section, we recap preliminaries
of DLs and conjunctive query answering. In Section 3, we systematically intro-
duce all temporal components of the framework, including data streams, Tempo-
ral Query Language and temporal rules. Then, in Section 4, we define prediction

1 See http://plato.stanford.edu/entries/scientific-explanation/.
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and explanation and motivate our proposal. In Section 5, we present the com-
plexity results and, further, discuss their consequences on the main problem.
The proofs of the results are included in the appendix. An overview of related
work and concluding remarks are presented in the last two sections.

2 Preliminaries

A Description Logic (DL) language is given by a vocabulary Σ = (NI,NC,NR)
and a set of logical constructors [9]. The vocabulary consists of countably infinite
sets of individual names (NI), concept names (NC) and role names (NR). An ABox
A is a finite set of assertions A(a) and r(a, b), for a, b ∈ NI, A ∈ NC and r ∈ NR. A
TBox T is a finite set of terminological axioms, e.g., concept and role inclusions,
whose precise syntax is determined by the given DL. The semantics is given in
terms of DL interpretations I = (∆I , ·I), defined as usual [9]. An interpretation
I is a model of T and A, denoted as I |= T ,A, iff it satisfies every axiom in T
and A. If T and A have a common model they are said to be consistent.

Abiding by the nomenclature of ontology-based data access paradigm, we
consider the ABox as data and the TBox as the ontology, which provides an
additional semantic layer over the data, thus enriching the querying capabili-
ties. A conjunctive query (CQ) over a DL vocabulary Σ is a first-order formula
∃y.ϕ(x,y), where x,y are sequences of variables, from a countably infinite set
of variables NV. The sequence x denotes the free (answer) variables in the query,
while y the quantified ones. The formula ϕ is a conjunction of atoms over NC,NR

of the form A(u), r(u, v), where u, v ∈ NV ∪ NI are called terms. By term(q) we
denote the set of all terms occurring in a CQ q and by avar(q) the set of all its
answer variables. We call q grounded whenever avar(q) = ∅. A grounded CQ q
is satisfied in I iff there exists a mapping µ : term(q) 7→ ∆I , with µ(a) = aI

for every a ∈ NI, such that for every A(u) and r(u, v) in q it is the case that
µ(u) ∈ AI and (µ(u), µ(v)) ∈ rI . We say that q is entailed by a TBox T and an
ABox A, denoted as T ,A |= q iff q is satisfied in every model of T and A. An
answer to q is a mapping σ such that σ : avar(q) 7→ NI. By σ(q) we denote the
result of uniformly substituting every occurrence of x in q with σ(x), for every
x ∈ avar(q). An answer σ is called certain over T ,A iff T ,A |= σ(q). The set of
all certain answers to q over T ,A is denoted by cert(q, T ,A). By QΣ we denote
the class of all conjunctive queries over the vocabulary Σ.

In this paper, we focus on logics from the DL-Lite family [7], such as DL-
LiteR, DL-LiteF or DL-LiteA, underlying the OWL 2 QL ontology language
profile 2, for which CQs enjoy the so-called first-order rewritability property,
defined as follows.

Definition 1 (FO rewritability [7]). For every CQ q ∈ QΣ and a TBox T ,
there exists a FO formula qT such that for every ABox A and answer σ to q, it
holds that σ ∈ cert(q, T ,A) iff db(A) 
 σ(qT ), where db(A) denotes A considered
as a database/FO interpretation and 
 is the FO satisfaction relation.

2 See http://www.w3.org/TR/owl2-profiles/.
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Recall, that given T in any of such DLs and a grounded q, the FO rewriting
qT of q is a union of possibly exponentially many CQs, including q. The number
of these CQs is bounded by `(T )`(q), where `(†) denotes the size of the input †
measured in the total number of symbols used. Every CQ q′ in qT is of the size
linear in `(q) and is such that T ∪ {q′} |= q. The query entailment problem is
NP-complete in the combined complexity, even when the TBox is empty, while
checking consistency of T ,A is in PTime [7].

Regardless of this default focus, many of the results presented here can be
naturally extended to other DLs exhibiting similar characteristics, such as other
members of the DL-Lite family or logics in the EL family [10].

3 Temporal data and queries

We consider a discrete, linear flow of time (Z, <), with integers representing
time instants ordered by the smaller-than relation. An interval over Z is a set
I = [I−, I+] = {i ∈ Z | I− ≤ i ≤ I+}, where I− ≤ I+ ∈ Z ∪ {−∞,+∞} denote
the beginning and the end of I, respectively. We assume that N = [0,+∞].

Definition 2 (A-sequence). An A-sequence A = (Ai)i∈I is a sequence of
ABoxes, for some interval I over Z.

A-sequences represent collections of datasets ordered temporally w.r.t. the
underlying time flow. The ordering of the ABoxes follows the smaller-than or-
dering of their indices. An A-sequence A is said to be consistent with a TBox T
if every ABox in it is consistent with T . Consider A-sequences A = (Ai)i∈I and
B = (Bi)i∈J . We use the following notation:

– A ⊆ B (A = B) iff I ⊆ J (I = J) and Ai = Bi for every i ∈ I,
– T ,A |= B (A |= B) iff J ⊆ I and T ,Ai |= Bi (Ai |= Bi) for every i ∈ J ,
– A⇀ B iff there exists a mapping f : I 7→ J , such that:
• i < j iff f(i) < f(j), for every i, j ∈ I,
• Ai = Bf(i), for every i ∈ I,

– A ]B, whenever I ∩ J 6= ∅, to denote the A-sequence (Ci)i∈I∪J such that:
• Ci = Ai, for every i ∈ I \ J ,
• Ci = Bi, for every i ∈ J \ I,
• Ci = Ai ∪ Bi, for every i ∈ I ∩ J ,

– A≤n (A≥n), for n ∈ I, to denote the A-sequence (Ai)i∈I′ ⊆ A, such that
I ′ = [I−, n] (I ′ = [n, I+]).

The notion of data stream adopted here specializes that of ontology stream,
as introduced in [11], by considering temporal variability only on the data (ABox)
level, while prohibiting changes on the ontology (TBox) level.

Definition 3 (Data stream). A data stream under a TBox T is an A-sequence
A = (Ai)i∈Z consistent with T , with a designated subsequence Aω ⊆ A, called
the recorded segment of A, where ω is a finite interval over Z. For the current
time n ∈ Z, we call A≤n the past, and A≥n the future of A.
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In full generality, a data stream is then an infinite sequence of datasets con-
sistent with a fixed TBox. Obviously, in practical scenarios, one can effectively
know and manage only a finite fragment of the past of a given stream, while
remaining agnostic about its future. What we call above the recorded segment
of A is precisely this finite, accessible portion of the stream.

Next, we recall a variant of Temporal Query Language, proposed in [8], to
be used for accessing data streams. It is a lightweight combination of Linear
Temporal Logic (LTL) [12] with CQs, where CQs are embedded in the temporal
language using the epistemic semantics.

Definition 4 (Temporal Query Language). The temporal query language
(TQL) over a class of conjunctive queries QΣ is the smallest set of formulas
induced by the grammar:

φ ::= [q] | ¬φ | φ ∧ φ | φUφ | φSφ

where q ∈ QΣ. By avar(φ) we denote the set of free variables in φ. A TQL
formula φ is called grounded whenever avar(φ) = ∅. The entailment relation for
grounded TQL formulas w.r.t. an A-sequence A = (Ai)i∈I under a TBox T in
time i ∈ I is defined inductively as follows:

T ,A, i |= [q] iff T ,Ai |= q,
T ,A, i |= ¬φ iff T ,A, i 6|= φ,
T ,A, i |= φ ∧ ψ iff T ,A, i |= φ and T ,A, i |= ψ,
T ,A, i |= φUψ iff there exists j ∈ I with j > i such that

T ,A, j |= ψ and T ,A, k |= φ for every k ∈ I
with i < k < j,

T ,A, i |= φSψ iff there exists j ∈ I with j < i such that
T ,A, j |= ψ and T ,A, k |= φ for every k ∈ I
with i > k > j.

An answer to a TQL formula φ is a mapping σ : avar(φ) 7→ NI. By σ(φ)
we denote the result of uniformly substituting every occurrence of x in φ with
σ(x), for every x ∈ avar(φ). An answer σ is called certain over T ,A at i ∈ I iff
T ,A, i |= σ(φ). The set of all such answers is denoted by certi(φ, T ,A).

Observe that given the epistemic interpretation of the embedded CQs, [q]
reads as “q is entailed in the given time instant”, for a grounded CQ q. We can
immediately paraphrase this interpretation by invoking FO rewriting of q, in the
sense of Definition 1. Note that the following correspondences immediately hold:

T ,A, i |= [q] iff T ,Ai |= q iff db(Ai) 
 qT .

Consequently, the negation ¬[q] is naturally interpreted as negation-as-failure,
reading “it is not true that q is entailed in the given time instant”. This warrants
the following equivalences:

T ,A, i |= ¬[q] iff T ,Ai 6|= q iff db(Ai) 6
 qT .
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These observations are critical for the work presented in this paper, as they allow
to study satisfaction of TQL formulas by decoupling the temporal component
of the problem from the CQ component, and addressing the latter, without loss
of correctness, by applying the standard FO rewriting techniques and results,
recalled in Section 2. Importantly, such lightweight combination of languages
allows also for a modular reuse of existing temporal reasoners and highly opti-
mized, efficient query answering engines [8].

LTL with operators U and S, standing for (strict) until and since, which
captures precisely the temporal component of TQL, is known to be expressively
complete over (Z, <) [13]. Apart from the full TQL, in what follows we consider
also some of its strict subsets. By TQL∃ we denote the fragment in which the
syntax of U- and S-formulas is restricted to the form >Uφ and >Sφ, where > is a
constant symbol denoting the logical truth. This restriction corresponds to LTL
with operators sometime in the future and sometime in the past, in place of U
and S. Further, with TQL+ we refer to the positive fragment of TQL, i.e., TQL
without the negation operator. Finally, by TQL∃,+, we denote the intersection
of TQL∃ and TQL+.

Following the temporal separation approach of Gabbay [13], we consider TQL
formulas belonging to two disjoint categories:

– past-present : formulas without the operators of type U,
– future-present : formulas without the operators of type S.

By the semantics of TQL, it follows that for any TQL formula φ, TBox T ,
A-sequence A = (Ai)i∈I , and time point n ∈ I, the equivalences below hold:

– certn(φ, T ,A) = certn(φ, T ,A≤n), whenever φ is past-present,
– certn(φ, T ,A) = certn(φ, T ,A≥n), whenever φ is future-present.

Given the distinction above, we define the notion of temporal rules, which is
closely related to Gabbay’s concept of executable temporal logic [13]. Temporal
rules straightforwardly embody the “declarative past–imperative future” pattern
over TQL.

Definition 5 (Temporal rules). A temporal rule in TQL is an expression of
the form:

ψ ⇒ φ

where ψ, φ are TQL formulas such that ψ is past-present and φ is future-present.
The rule ψ ⇒ φ is satisfied for a substitution % = σ∪σ′, for some σ : avar(ψ) 7→
NI and σ′ : avar(φ) 7→ NI agreeing on avar(ψ) ∩ avar(φ), over a TBox T and
an A-sequence A = (Ai)i∈I , at time n ∈ I iff σ ∈ certn(ψ, T ,A) implies σ′ ∈
certn(φ, T ,A).

Temporal rules are equipped with well-defined semantics and allow for rela-
tively easy control of the expressiveness-complexity trade-off, due to their close
relationship with LTL. They are also a natural formalism for expressing asso-
ciation rules discoverable in time series data by means of various data mining

6



techniques. This sort of association rules typically combine diverse data patterns
with logical and temporal constraints [14]. Although lacking some essential prob-
abilistic and real-time features, not present in the basic variants of LTL, tem-
poral rules can arguably provide a robust logic foundation for target learning
languages over streaming DL-Lite data. As an example, we present a prototyp-
ical temporal association rule used in a climate application predicting droughts
in certain regions of India [15]

Climate application example: Consider a temporal rule ψ ⇒ φ encoding a cor-
relation between several measurements and weather phenomena occurring in
specific geographic locations, in a specific order, known to be a good predictor
of drought. The rule is defined by the TQL formulas:

ψ = (¬[∃y.(HeavyRainIn(y) ∧ locIn(y,north))] S [∃y, z.(SST (y, low) ∧NAO(z, high)])
∧ [locIn(x,northeast)]

φ = > U ([DroughtIn(x)] ∧ ([DroughtIn(x)] U [SevereDroughtIn(x)]))

It states that if at some point in the past the SST (sea surface temperature)
was found out to be low, the NAO (North Atlantic Oscillation) was high, and
since then there has been no heavy rain recorded in North province, then at
some point in the future there will be drought in x, whenever x is located in
Northeast, which will persist until severe drought occurs in x. 2

4 Prediction and explanation

By adopting temporal rules as the language of association patterns in streaming
data, we are able to formulate very intuitive and clear-cut definitions of predic-
tion and explanation over data streams: a prediction (explanation) is a possible
future (past) of the data stream, which entails the consequent (antecedent) of a
temporal rule, given its antecedent (consequent) is entailed by the recorded seg-
ment. This meaning of the two types of inference is schematically depicted in
Figure 1 and further made precise in the following two definitions. We consider
a data stream A under a TBox T , with the recorded segment Aω ⊆ A, where ω
is a finite interval over Z.

Definition 6 (Prediction). Let ψ ⇒ φ be a temporal rule and σ ∈ certn(ψ, T ,
Aω), for a time n ∈ ω. A prediction at n from ψ ⇒ φ and σ over T ,Aω is an
A-sequence D = (Di)i∈[n,+∞] such that σ′ ∈ certn(φ, T ,Aω ] D), for some σ′

agreeing with σ on avar(ψ) ∩ avar(φ).

Definition 7 (Explanation). Let ψ ⇒ φ be a temporal rule and σ ∈ certn(φ, T ,
Aω), for a time n ∈ ω. An explanation of σ at n based on ψ ⇒ φ is an A-sequence
D = (Di)i∈[−∞,n] such that σ′ ∈ certn(ψ, T ,Aω ]D) for some σ′ agreeing with
σ on avar(ψ) ∩ avar(φ).

From a high-level perspective, prediction and explanation are classifiable as
strictly different types of inference in that the former is deductive (following from
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Fig. 1. Prediction and explanation over data streams.

the antecedent to the consequent), while the latter abductive (from the conse-
quent to the antecedent) [4]. Technically, however, it is strikingly apparent that
the gist of both inferences is essentially the same and comes down to solving two
identical subproblems: 1) verifying that a certain TQL formula (ψ in prediction
and φ in explantation) is entailed by the recorded segment, thus triggering the
particular inference, and 2) finding an A-sequence which entails the second TQL
formula in the temporal rule (φ in prediction and ψ in explantation). As far as
the former task, reducible to deductive entailment, is relatively well-understood,
and hence is only shortly addressed in the next section, the latter has not yet
been formulated in the literature, and is the central problem studied in the
remainder of this paper. The problem has a strongly abductive flavour and is
conceptualized here based on the nomenclature coined in [16,17,18].

Definition 8 (A-sequence abduction). An A-sequence abduction problem
is a tuple (T ,A, φ), where T is a TBox, A = (Ai)i∈I is an A-sequence, for some
I−, I+ ∈ Z, and φ is a grounded future-present (resp. past-present) TQL for-
mula. A solution to (T ,A, φ) is an A-sequence D = (Di)i∈J with J = [I−,+∞]
(resp. J = [−∞, I+]), such that A]D is consistent with T , and T ,A]D, 0 |= φ.
The solution D is called:

– �e-minimal iff for every solution D′, if D |= D′ then D′ |= D,
– �b-minimal iff for every solution D′, if T ,A]D |= D′ then T ,A]D′ |= D,
– �s-minimal iff for every solution D′, if D′ ⇀ D then D = D′.

As usually in the context of abductive reasoning, we employ several min-
imality criteria which help to reduce the solution space to a computationally
manageable level. The first two are generalizations of criteria known in the clas-
sical, atemporal abduction. Intuitively,�e-minimality (for entailment) places the
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. . . −2 −1 0 1 . . .

locIn(l1,north) locIn(l1,north) locIn(l1,north) locIn(l1,north)
locIn(l2,northeast) locIn(l2,northeast) locIn(l2,northeast) locIn(l2,northeast)

DroughtIn(l2) SevereDroughtIn(l2)
SST (m1, low) RainIn(l1)
NAO(m2, high)

Table 1. Data stream in the climate application example.

1 2 3 4 . . .

D1: DroughtIn(l2) SevereDroughtIn(l2)

D2: RainIn(l1) DroughtIn(l2) SevereDroughtIn(l2)

D3: SevereDroughtIn(l2) SevereDroughtIn(l2)

D4: DroughtIn(l2) DroughtIn(l2) SevereDroughtIn(l2)

. . . −5 −4 −3 −2

D5: SST (m1, low)
NAO(m2, high)

D6: SST (m1, low) locIn(l2,northeast)
NAO(m2, high)

D7: SST (m1, low)
NAO(m2, high)

Table 2. Predictions (up) and explanations (down) in the climate application example.

precedence over solutions which are logically weakest — they assume the least
possible data in every given state — irrespectively of the background knowl-
edge. The �b-minimality (for entailment w.r.t. background knowledge) takes
also into account the assumed TBox and ABox. Observe that �b-minimality is
strictly stronger than �e-minimality, i.e., whenever a solution D is �b-minimal
it must be �e-minimal, while the converse does not hold in general. Note that
whenever a problem has a solution at all, it must have a �b-minimal (and thus
an �e-minimal) solution. The �s-minimality criterion (for structure) is a novel
one, tailored specifically for abduction problems, whose solutions are sequential
structures. It ensures the identified sequence D has no redundant subsequences.
To rephrase it, D is not minimal in the sense of �s whenever one can obtain a
solution distinct from D simply by removing some ABoxes from D.

The minimality criteria, discussed above, are consequently applied to pre-
dictions and explanations. In fact, the abductive procedures developed in the
next section are complete for �s- and �e-minimal solutions, and in practice,
we also tend to favor �b-minimal solutions, as more basic. For a more intuitive
illustration of the two tasks and the minimality criteria we elaborate further on
the climate application scenario, introduced in the previous section.
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Climate application example cntd.: Let ψ ⇒ φ be the temporal rule as be-
fore, grounded with the substitution σ = {x 7→ l2}. Consider TBox T =
{SevereDroughtIn v DraughtIn, HeavyRainIn v RainIn} and data stream A
with the recorded segment Aω ⊆ A, where ω = [−2, 1], defined as in Table 1.
Table 2 presents several predictions from ψ ⇒ φ and σ, at time 1 (D1-D4) and
explanations of σ based on ψ ⇒ φ, at time −2 (D5-D7). To put equivalently,
these are possible solutions to the A-sequence abduction problems (T ,A1, φ)
and (T ,A−2, ψ), respectively. Note, that all empty and hidden cells in the ta-
ble are empty ABoxes. Observe that D1 and D5 are both �s- and �b-minimal.
Equivalently, Solutions D2 and D6 are still �s-minimal but not �e-minimal,
and hence not �b-minimal either. In the case of D2 axiom RainIn(l1) ∈ D1,
although not undermining the prediction, is not necessary for the solution to
hold. In D6, axiom locIn(l2,northeast) ∈ D−2 is simply redundant, as it is al-
ready present in the data stream. Prediction D3 is �s-minimal and �e-minimal,
yet not �b-minimal. Note that considering the background knowledge constraint
SevereDroughtIn v DraughtIn, axiom DraughtIn(l2) is logically weaker than the
assumed SevereDroughtIn(l2) ∈ D2, and could be possibly used to replace the
latter in the solution. Finally, D4 and D7 are �b-minimal but not �s-minimal,
as both can be turned into distinct solutions by subtracting the state D2 from
the former and either of the empty states D−3 or D−2 from the latter.

5 Complexity of reasoning

In this section, we study the combined complexity of reasoning problems com-
prising different variants of prediction and explanation tasks. The proofs are
included in the appendix. Note that a “recognition” result with respect to a
minimality criterion signals that the underlying decision procedure is complete
but not necessarily sound, i.e. the identified solutions might require an addi-
tional check for being minimal in the given sense. A “computation” result implies
soundness as well [18].

We start by considering ABox abduction, i.e., the task of abducing a minimal
ABox ensuring entailment and non-entailment of selected CQs, which is later
generalized to sequences of such problems.

Definition 9 (ABox abduction). An ABox abduction problem is a tuple Ω =
(T ,A, P,N), where T is a TBox, A an ABox, and P,N ⊆ QΣ are sets of
grounded CQs. An ABox D is called a solution to problem Ω iff A∪D is consistent
with T and:

1. T ,A ∪D |= [q], for every q ∈ P ,
2. T ,A ∪D |= ¬[q], for every q ∈ N .

Note, that �e- and �b-minimality criteria transfer immediately from Defini-
tion 8, on considering a single ABox as an A-sequence with exactly one element.
The �s-minimality does not apply in the context of ABox abduction. The results
obtained here rest on and extend some of those presented in [18].
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Lemma 1 (Solving ABox abduction problems). Let Ω be an ABox abduc-
tion problem and D an �e-minimal solution to Ω. Then:

1. computing D for Ω = (T , ∅, P, ∅) is in PTime, if T = ∅ or D is �b-minimal,
2. recognizing D for Ω = (T ,A, P, ∅) is NP-complete, if T 6= ∅ or A 6= ∅,
3. computing D for Ω = (T ,A, P,N) is DP-complete, if P 6= ∅ and N 6= ∅,

even when A = ∅ and irrespective of deciding �b-minimality,

where D is fixed up to renaming individuals in the included ABoxes.

The PTime result in the first case follows by observing that the addressed
ABox abduction problems can be solved immediately by grounding the conjuncts
of the CQs. Solving the second type of problems might involve NP-complete CQ
entailment checks and/or a nondeterministic choice from an exponential number
of queries in the FO rewriting of a CQ. For the last case, recall that DP denotes
the intersection of the classes of NP and coNP problems. The result is due to the
simultaneous presence of positive and negative CQs, which requires entailment
and non-entailment checks, with the latter in coNP.

Next we focus on solving A-sequence abduction problems in TQL. Since
technically abduction for future-present formulas is symmetric to abduction for
past-present formulas, we only study the former setting, noting that all results
transfer automatically to the latter. The central challenge to be addressed is
that solutions to such problems are in principle of infinite length, which makes
their computation generally impossible in finite time. However, we are able to
identify certain finite structures which can be unambiguously unfolded into the
corresponding A-sequences. Thus, rather than searching for A-sequences directly,
we focus on finding their finite representations, called A-structures.

Definition 10 (A-structures). An A-structure is a tuple S = (S,S0,→),
where S is a finite set of ABoxes, S0 ∈ S is the initial ABox, and →: S 7→ S is
a transition function. The unfolding of S is an A-sequence S0, . . . ,Si,Si+1, . . .,
where for every i ∈ N, Si ∈ S and Si → Si+1.

The key to the abductive algorithms we develop here is ensuring existence
of an upper bound on the size of the A-structures that are to be found. Tech-
nically, the proofs rest on the construction of so-called quasimodels, which link
A-structures with the input abductive problems. Intuitively, a quasimodel s =
(si)i∈N is an abstraction of an infinite sequence of temporal states entailing a
given A-sequence. Each si-th element (ti,A(ti)) in that sequence consists of the
set ti of subformulas of φ that must be entailed in i and the minimal ABox
A(ti) that must hold at i for φ to be true at time 0. Particularly instrumental
are special quasimodels called ultimately periodic, which consist of a finite initial
sequence called the head, followed by an infinite repetition of some terminal sub-
sequence of the head, called the period. We show that every �e- and �s-minimal
solution to an A-sequence abduction problem corresponds to an ultimately pe-
riodic quasimodel, which can be further associated with an A-structure of a
particular size, linear in the length of the head of the quasimodel.
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For A-sequence abduction over full TQL formulas the relevant A-structures
are consist of at most exponentially many states in the size of the given abduction
problem. This resonates closely with the “small model” property of LTL, which
rests on similarly defined bounds [12]. Recall that by `(†) we denote the total
size of the input †.

Lemma 2 (A-sequence vs. A-structure). Let D be an �e- and �s-minimal
solution to an A-sequence abduction problem Ω = (T ,A, φ), where A = (Ai)i∈I
and φ is a TQL formula. Then there exists an A-structure S = (S,S0,→) whose
unfolding is D, such that |S| = f(`(Ω)), for some function f(x) ∈ O(2x).

The basic algorithm which recognizes �e- and �s-minimal solutions to A-
sequence abduction problems is an adaptation of Sistla and Clarke’s decision
procedure for LTL [12]. In principle, the underlying computation model has
to be changed from finite-state automata to finite-state transducers, i.e., Turing
machines using additional write-only output tapes, as a recognized solution needs
to be effectively presented. This revision, however, does not affect the complexity
of the algorithm, which remains PSpace-complete, irrespectively of the possibly
exponential size of solutions.

Theorem 1 (Recognizing A-sequence solutions). Recognizing an �e- and
�s-minimal solution to an A-sequence abduction problem Ω = (T ,A, φ), where
φ is a TQL formula, is PSpace-complete.

In case of TQL∃ and TQL+ we are able to show that the upper bound on
the size of the relevant A-structures is smaller — in fact, linear in the size of the
input.

Lemma 3 (A-sequence vs. A-structure for TQL∃,TQL+). Let D be an
�e- and �s-minimal solution to an A-sequence abduction problem Ω = (T ,A, φ),
where A = (Ai)i∈I and φ is a TQL∃ or TQL+ formula. Then there exists an
A-structure S = (S,S0,→) whose unfolding is D, such that |S| ≤ f(`(φ)), for
some f(x) ∈ O(x).

Given the linear size of the solutions, the worst case complexity of recogniz-
ing A-sequence solutions for TQL∃ drops to DB. In this case, it is sufficient to
guess a linearly long head of a candidate quasimodel and verify it satisfies all the
necessary structural conditions. As states in the quasimodel can contain posi-
tive and negative occurrences of CQs, the abduction of the respective minimal
ABoxes is DB-complete.

Theorem 2 (Recognizing A-sequence solutions for TQL∃). Recognizing
an �e- and �s-minimal solution to an A-sequence abduction problem (T ,A, φ),
where φ is a TQL∃ formula, is DB-complete.

In case of TQL+, the complexity of abductive reasoning is even smaller,
in fact NP-complete, as no negative CQs have to be considered. Reducing the
TQL language further down to TQL∃,+ does not yield any additional gain, even
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when �b-minimality is considered. This is a consequence of the non-determinism
involved in choosing the order in which U-formulas are fulfilled in the consecutive
states. In the worst case, all permutations must be considered, which enables
reduction from the NP-hard Hamiltonian path problem.

Lemma 4 (Recognizing A-sequence solutions for TQL+,TQL∃,+). Rec-
ognizing a �e- and �s-minimal solution to an A-sequence abduction problem
Ω = (T ,A, φ), where φ is a TQL+ or TQL∃,+ formula, is NP-complete. The
result holds even for �b-minimal solutions and when A = ∅.

Note that in most cases computing A-sequence solutions, as opposed to rec-
ognizing them, is bound to be of a higher complexity due to the necessity of
conducting pairwise comparisons between exponentially many alternatives.

As the last task considered in this section, we address entailment of TQL for-
mulas by finite A-sequences. As explained in Section 4, this problem corresponds
to deciding whether the antecedent of a temporal rule, in case of prediction, or
its consequent, in explanation, is entailed by a given fragment of the recorded
segment. In the following theorem, we show that the problem is DP-complete in
general or NP-complete in a special case, where the difference is determined by
the presence of lack of negative CQ occurrences.

Theorem 3 (Entailment by finite A-sequences). Let T be a TBox and A =
(Ai)i∈I an A-sequence, where I is a finite interval over Z. Deciding T ,A, n |= φ,
for some n ∈ Z, is DP-complete iff φ is a grounded TQL or TQL∃ formula, and
NP-complete iff φ is a grounded TQL∃,+ formula.

The analysis above shows that prediction and explanation are computation-
ally hard in general, but can be made easier by progressively simplifying the as-
sumed setting. Notably, by restricting the expressiveness of temporal operators
and eliminating negation from the underlying TQL, the complexity of reasoning
can be reduced from PSpace- to NP-complete. The remaining non-determinism,
warranting NP-hardness, can be mostly attributed to the size of FO rewritings
of CQs and the number of alternative orders in which U/S-subformulas are to
be fulfilled over time. Can these too be tamed granting an even lower complex-
ity? Most likely, yes. We suspect that by considering �b-minimal solutions and
allowing only formulas whose structure unambiguously determines the order of
fulfilment of U/S-subformulas, the combined complexity of prediction and expla-
nation should drop further to PTime. Less assumptive predictions and explana-
tions (such as based on the �b-minimality criterion) and a simpler language for
learning temporal association rules might moreover offer conjectures of a higher
likelihood, thus offering another reward for the lost expressiveness.

6 Related work

To the best of our knowledge, prediction and explanation in the conceptual and
technical sense considered here have not been addressed in the literature. Lecue
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and Pan study prediction over ontology streams in [3], but clearly follow the data
mining approach to the problem, focusing on detection of statistical correlations
in data and their future projections. Such a perspective is orthogonal to ours,
as here we deal exclusively with the knowledge representation and reasoning
level, assuming that relevant association rules are already given and symbolically
expressed as temporal rules. In the report [5], Thirunarayan et al. propose to
use abductive logic programming for generating explanations, understood as
abstractions of quantitative data into qualitative descriptions, as an integral
component of a situation awareness framework over the Semantic Sensor Web.
Although the preliminary nature of this proposal does not allow for a detailed
comparison with ours, it clearly follows a similar motivation and formal direction.

Other types of reasoning services over semantic streaming data, not of im-
mediate relevance to this work, have been considered in a number of papers,
e.g., [1,11,2]. Yet more remotely related work deals with prediction and tempo-
ral association rule mining in the field of relational databases [6,14], aspects of
abductive reasoning in temporal logics [19], logics for causal reasoning [20], and
prediction and explanation in other AI contexts [4].

7 Conclusions and outlook

In this paper, we have introduced a novel formalization of predictive and ex-
planatory reasoning over DL-Lite data streams, and delivered a number of re-
sults characterizing the computational complexity of both tasks using different
variants of the underlying temporal rule formalism. We believe that the ap-
proach we propose, which allows for studying prediction and explanation from
the purely logical and computational perspective, is vital for the development
of robust stream reasoning techniques applicable to semantically rich data, as
it introduces a symbolic layer which can usefully mediate between the semantic
and statistical view on the data.

An especially promising direction of advancing this work further is to investi-
gate the use of other temporal logics for expressing temporal rules, in particular
those offering real-time and probabilistic features, e.g., PCTL [21]. Arguably,
such rules could be tighter aligned with typical models of causal reasoning [20]
and the practice of temporal association rule learning [14]. As an alternative to
the probabilistic approach, a qualitative one, based on defeasible semantics [22],
could be also potentially useful. Considering the implementation prospects, a
natural and technically feasible approach is likely to be found in combining tem-
poral databases, recently supported via SQL:2011 [23], with existing reasoning
tools enabling execution of temporal logic programs, such as MetateM [24].
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Appendix

Below we present full proofs of the results included in Section 5.

A.1 ABox abduction

Lemma 1 (Solving ABox abduction problems). Let Ω be an ABox abduc-
tion problem and D an �e-minimal solution to Ω. Then:

1. computing D for Ω = (T , ∅, P, ∅) is in PTime, if T = ∅ or D is �b-minimal,
2. recognizing D for Ω = (T ,A, P, ∅) is NP-complete, if T 6= ∅ or A 6= ∅,
3. computing D for Ω = (T ,A, P,N) is DP-complete, if P 6= ∅ and N 6= ∅,

even when A = ∅ and irrespective of deciding �b-minimality,

where D is fixed up to renaming individuals in the included ABoxes.

Proof. (1) To compute a solution, up to renaming individual names, it suffices
to ground the conjuncts of every q ∈ P , replacing the existentially bounded
variables with fresh constants. If the resulting ABox D is consistent with T
— a condition verifiable in time polynomial in the size of T , P — then D is
the unique �b-minimal solution and the unique �e-minimal solution whenever
T = ∅. For the former conclusion, observe that grounding any other CQ than
q in qT for any q ∈ P must result in a non-�b-minimal solution, while for the
latter, that qT = q for every q ∈ P , and so grounding q is the only way to
ensure entailment db(D) |= q. Note also, that grounding distinct variables with
the same constant is always redundant, given the restriction of identifying D
up to renaming of constants. E.g., for q = ∃x, y.(C(x) ∧ D(y)), the grounding
{C(a), D(a)} is redundant as it can be obtained from {C(a), D(b)} by renaming
b 7→ a, but not vice versa.

(2) The upper bound transfers from the case of T 6= ∅ and A 6= ∅, proved
in [18] as one type of the recognition problems for negative query explanations.
Note that the number of distinct �e-minimal solutions must be bounded by
`(T )`(P )·`(A)`(P ), where the first factor is the number of CQs in the FO rewriting
of a CQ, and the second one is the number of possible groundings of a CQ, and so
it is at most exponential in the size of the input. The hardness for T 6= ∅ can be
shown by reduction from the 3-SAT problem. Let f = c1 ∧ . . .∧ cn be a formula
in CNF, where each ci = Li1 ∨ Li2 ∨ Li3 and every Lik is a literal. We fix CQ
q = ∃x.(C1(x)∧. . .∧Cn(x)), where Ci is a fresh concept name associated with the
clause ci, and define TBox encoding the clauses {Li1 v Ci, Li2 v Ci, Li3 v Ci}
and the disjontness axioms for the complementary literals Lp v ¬Lp where Lp
is a concept name associated with atom p and Lp with ¬p. Then the formula
f is satisfiable iff there exists a solution to the problem (T , ∅, {q}, ∅) in which
only concepts Lp, Lp occur. Note, that the latter condition can be verified in time
linear inD, and so it does not add to the complexity of the problem. The hardness
for A 6= ∅ can be shown by reduction from the graph homomorphism problem.
Given graphs G = (V,E), G′ = (V ′, E′) we want to decide whether there exists
a function h : V 7→ V ′ such that (v, u) ∈ E implies (h(v), h(u)) ∈ E′. We encode
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graph G′ as the ABox A, using a single role edge and unique individual names
representing vertices, and G as the query using the same role and existentially
bounded variables for the vertices. Then a requested homomorphism exists iff
D = ∅ is recognized as a �e-minimal solution.

(3) Observe that whenever D is an �e-minimal solution to (T ,A, P,N) for
N = ∅, then for any N 6= ∅ it must be either still a �e-minimal solution or it
is not a solution at all. The DP algorithm for an arbitrary problem (T ,A, P,N)
first generates a candidate solution D by means of the NP algorithm used in (2),
and then ensures it is a minimal one (in either sense �e or �b) by executing
a coNP procedure which attempts to find an alternative solution (D)′ refuting
the minimality of D. Finally, it checks that for every q ∈ N it is the case that
T ,A ∪ D 6|= q. The latter problem is clearly coNP-complete, considering NP-
completeness of CQ answering in the considered DL-Lite languages. Naturally,
this holds even when A = ∅. For hardness we consider any language L ∈ NP ∩
coNP, i.e., such that L = L1 ∩ L2 with L1 ∈ NP and L2 ∈ coNP. Naturally, for
any input x, it must be that x ∈ L iff x ∈ L1 and x ∈ L2. But then there must
exist a pair of polynomial reductions R1, R2 from L1 and L2 to some instances
of CQ entailment and non-entailment problems. Note that by involving suitable
vocabulary renaming, both target problems can use the same D and T . Hence,
finding an ABox requested in the lemma must be at least as hard as deciding
x ∈ L. o

A.2 Types, state types, quasimodels

To simplify the proofs of the remaining results, without loss of generality we
assume all A-sequence abduction problems to be fixed at time 0, i.e., such that for
Ω = (T ,A, φ) with A = (Ai)i∈I it is the case that I = [0, I+] for some I+ ∈ N.
The solutions to such problems are consequently A-sequences D = (Di)i∈N.
Further, we introduce some auxiliary nomenclature. Consider an A-sequence
abduction problem Ω = (T ,A, φ). Let sub(φ) denote the set of all subformulas
of φ and their complements. We assume that all occurrences of double negation
symbols in sub(φ) are removed and we write ¬ψ to refer to the complement of
formula ψ ∈ sub(φ). A type for φ is a set t ⊆ sub(φ) such that:

– ψ ∧ ϕ ∈ t iff {ψ,ϕ} ⊆ t, for every ψ ∧ ϕ ∈ sub(φ),
– ψ ∈ t iff ¬ψ 6∈ t, for every ψ ∈ sub(φ).

By T we denote the set of all types for φ. Clearly, |sub(φ)| ≤ 4`(φ) and so
|T | ≤ 24`(φ). A state type is a pair s = (t,A(t)), where t ∈ T and A(t) is an
ABox. A quasimodel for Ω is a sequence of state types s = (si)i∈N, such that
for si = (ti,A(ti)), with i ∈ N specified as below, it holds that:

– φ ∈ ti, for i = 0,
– ϕUψ ∈ ti iff there exists j > i such that ψ ∈ tj and ϕ ∈ tk for every
i < k < j, for every ϕUψ ∈ sub(φ) and i ∈ N,

– A(ti) is a �e-minimal solution to (T ,Ai, P,N), where P = {q | [q] ∈ ti} and
N = {q | ¬[q] ∈ ti}, for every i ≤ I+,
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– A(ti) is a �e-minimal solution to (T , ∅, P,N), where P = {q | [q] ∈ ti} and
N = {q | ¬[q] ∈ ti}, for every i > I+.

A quasimodel s = (si)i∈N is called ultimately periodic, with the head of
length l > 0 and the period n ∈ {1, . . . , l}, iff si+kn = si, for every i ≥ l−n and
k ∈ J (cf. Figure 2).

s0 s3 s3 s3 ℕs1 s2 s4 s2 s4 s2 s4 ...

 l

 n

0 3 6 91 2 4 5 7 8 10 ...                           

Fig. 2. An ultimately periodic quasimodel s, with l = 5 and n = 3.

The following is a crucial property relating the structure of quasimodels with
the semantics of TQL.

Proposition 1. Let s = (si)i∈N be a quasimodel for Ω with si = sj, for some
I+ ≤ i < j. Let further s′ = sh(0), . . . , sh(i), sh(j+1), . . . be a sequence of state
types obtained from s by removing the subsequence si+1, . . . , sj and revising the
indexing of the remaining state types via a mapping h : {0, . . . , i, j+1, . . .} 7→ N,
such that h(k) = k, for every k ≤ i, and h(k) = k− (j − i), for every k ≥ j + 1.
Then s′ is a quasimodel for Ω.

The argument builds on the observation that i entails exactly the same sub-
formulas of φ as j. Moreover, A(tl), for any l > i ≤ I+, depends exclusively on
ti. Hence, by structural induction over TQL, it follows that no formula in ti can
distinguish between sequences si+1, si+2, . . . and sj+1, sj+2, . . .. Consequently, φ
cannot distinguish between s and s′ at time 0.

Every quasimodel s for Ω can be uniquely associated with a �e-minimal so-
lution D to Ω, namely the one constructed by fixing Di = A(ti), for every i ∈ N,
si = (ti,A(ti)). Conversely, every �e-minimal solution to Ω determines uniquely
the corresponding quasimodel, considering that the choice of the ABox A(ti),
for every ti, unambiguously determines entailment of subformulas [q] and ¬[q] in
ti, for every q ∈ sub(φ), which in turn, by structural induction over φ, uniquely
determine entailment of every subformula ψ ∈ sub(φ) in ti. Consequently, we
note the following fact.

Proposition 2. Let D,D′ be two �e-minimal solutions to (T ,A, φ), and s, s′

the quasimodels for Ω, associated with D and D′, respectively. Then D = D′ iff
s = s′.
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A.3 A-sequence abduction in TQL

Lemma 2 (A-sequence vs. A-structure). Let D be an �e- and �s-minimal
solution to an A-sequence abduction problem Ω = (T ,A, φ), where A = (Ai)i∈I
and φ is a TQL formula. Then there exists an A-structure S = (S,S0,→) whose
unfolding is D, such that |S| = f(`(Ω)), for some function f(x) ∈ O(2x).

Proof. We claim that since D is �s-minimal then the quasimodel for Ω as-
sociated with D must be ultimately periodic (see Section 5 for the definition
of ultimately periodic quasimodels), with the head of length l ≤ |T | + I+.
Suppose s is a quasimodel associated with D, where si = sj for some I+ ≤
i < j. By Proposition 1, we can construct an alternative quasimodel s′ =
sh(0), . . . , sh(i), sh(j+1), . . .. Then either it holds that s′ 6= s or s′ = s. Suppose
the first case applies. Then by Proposition 2, s′ must be associated with some
solution D′ 6= D. Clearly, however, D′ ⇀ D (where h is the mapping warranting
the relation ⇀), and so D is not �s-minimal, which contradicts the assump-
tion. Alternatively, consider the latter situation. Then it follows that sequence
si+1, . . . , sj belongs to the periodic fragment of s, where kn = j−i for the period
n and some k ∈ N. This conclusion follows by induction over the structure of s.
Observe that the sequence sj+1, . . . , sj+1+(j−i) in s must be equal to si+1, . . . , sj
or else it would not be the case that s = s′. But then, by the same token, the
follow-up sequence of the same length must be equal to sj+1, . . . , sj+1+(j−i), and
so on. Finally, consider some si = (ti,A(ti)) and sj = (tj ,A(tj)) in s, such that
I+ ≤ i < j, ti = tj and A(ti) 6= A(tj). Then by fixing sj := (tj ,A(ti)) we obtain
an alternative quasimodel s′ in which si = sj , and the entire argument above ap-
plies again. Clearly, there must exist a fixpoint at which any further application
of the argument from Proposition 1 returns consistently the same (ultimately
periodic) quasimodel. At that point the head of that quasimodel consists of at
most I+ initial state types, corresponding to A, followed by at most |T | unique
state types. No later than at that point the first duplicate state type in s must
occur, marking the end of the first period in the quasimodel.

Given the existence of the quasimodel s for Ω, with above stated properties
the construction of an A-structure S = (S,S0,→) postulated by the lemma
is straightforward. We set Si := si and Si → Si+1 for every i < l − 1, and
Sl−1 := sl−1, Sl−1 → Sl−n. By the construction of S, definition of quasimodels
and their ultimate periodicity, demonstrated above, it follows that D must be
the unfolding of S. Clearly, |S| ≤ |T |+I+, where I+ is linear in `(Ω). Therefore,
there exists a function f(x) ∈ O(2x), such that |S| ≤ f(`(Ω)). o

Theorem 1 (Recognizing A-sequence solutions). Recognizing an �e- and
�s-minimal solution to an A-sequence abduction problem Ω = (T ,A, φ), where
φ is a TQL formula, is PSpace-complete.

Proof. The hardness transfers from the satisfiability problem in LTL. Note that
CQs in TQL can be used simply as propositions, where the CQ associated with
proposition p is fixed as qp = Ap(x), for a designated concept name Ap. Then an
LTL formula is satisfiable iff there exists a �e- and �s-minimal solution to the
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A-sequence problem (∅, ∅, φ), where φ is the corresponding TQL query, grounded
with x 7→ a, for some unique a ∈ NI . Recall, that satisfiable LTL formulas must
have ultimately periodic models of at most exponential size [12].

Next, we establish the upper bound by augmenting the decision procedure
for LTL with an additional DP routine which computes solutions to the ABox
abduction problems handled in the consecutive states of a generated quasimodel.
At the start, the algorithm guesses two numbers: the length of the head l ≤
|T |+I+ and the period n ∈ {1, . . . , l}. Then it non-deterministically picks a type
t0 for φ such that φ ∈ t0, and selects A(t0)). The latter choice is made using a
DP routine described in Lemma 1, in such a way that the suitable conditions
in the definition of the quasimodel are satisfied. Then for every 1 ≤ i ≤ l, the
algorithm picks a type ti and A(ti) and ensures the following conditions hold:

– for every ϕUψ ∈ ti−1, if ¬ψ ∈ ti then ϕUψ ∈ ti and ϕ ∈ ti,
– for every ϕUψ ∈ ti, if ϕ ∈ ti then ϕUψ ∈ ti−1,
– if ψ ∈ ti then ϕUψ ∈ ti−1, for every ϕUψ ∈ sub(φ),
– for every ϕUψ ∈ ti, there is j such that ψ ∈ tj and:
• i < j ≤ l, whenever i < l − n,
• l − n ≤ j ≤ l, whenever l − n ≤ i ≤ l,

– tl = tl−n and A(tl) = A(tl−n).

It is not difficult to observe that a sequence of state types satisfying the condi-
tions above must be in fact an ultimately periodic quasimodel for Ω. During its
run, the algorithm requires at most polynomial space of the working memory, in
order to store three state types (tl−n and the current pair ti, ti+1) and the set of
U-formulas that have to be still fulfilled in the future. The generated sequence
is systematically written on the output tape during the computation process
and ended with a designated symbol marking that the sequence is eventually
accepted by the procedure. By Lemma 2, every �e- and �s-minimal solution to
Ω must be found as one of the outputs. We thus obtain a NPSpace procedure,
which by Savage’s theorem is in PSpace. o

A.4 A-sequence abduction in TQL∃,TQL+,TQL∃,+

Lemma 3 (A-sequence vs. A-structure for TQL∃,TQL+). Let D be an
�e- and �s-minimal solution to an A-sequence abduction problem Ω = (T ,A, φ),
where A = (Ai)i∈I and φ is a TQL∃ or TQL+ formula. Then there exists an
A-structure S = (S,S0,→) whose unfolding is D, such that |S| ≤ f(`(φ)), for
some f(x) ∈ O(x).

Proof. As the starting point we consider the result in Lemma 2, and the ar-
gument used in its proof. Here, we essentially show that that argument can be
pushed further in case of TQL∃ and TQL+, leading to a smaller upper bound
on the size of relevant A-structures, with |S| ≤ 2`(φ) + I+. Consider an �e- and
�s-minimal solution D and its corresponding, ultimately periodic quasimodel s
with the head of length l and the period n. We show that l ≤ 2|`(φ)| + I+ or

21



else D cannot be �s-minimal. Let F = {ϕUψ | ϕUψ ∈
⋃

0≤i<l ti}, i.e., F is the
set of U-formulas used in the head of s, which is obviously equivalent to the set
of U-formulas used in the entire quasimodel (note that ϕ = > in case of TQL∃).

Clearly, |F | ≤ |sub(φ)|
2 . By the semantics of TQL and the construction of the

quasimodel, for every ϕUψ ∈ F and 0 ≤ i < l−n, whenever ϕUψ ∈ ti then there
must exist i < j < l, such that ψ ∈ tj . Similarly, for l − n ≤ i < l, if ϕUψ ∈ ti
then ψ ∈ tj , for some l − n ≤ j < l. For every ϕUψ ∈ F let g(ψ) be the largest
number g(ψ) < l such that ψ ∈ tg(ψ). Finally, we mark selected state types in
the head of s by running the following procedure until saturation:

– si is marked, for every 0 ≤ i ≤ I+,
– for every 0 ≤ i < l, if si = (ti,A(ti)) is marked and ϕUψ ∈ ti, for some
ϕUψ ∈ F , then mark sg(ψ).

Clearly, there can be at most |F | + I+ state types marked after the procedure
terminates. Remove all state types that are not marked and consider the re-
maining sequence, with a suitable revised indexing. It is not difficult to see, that
this sequence is in fact the head of an ultimately periodic quasimodel s′ for Ω.
We can thus follow an argument from the proof of Lemma 2 and consider two
disjoint cases: s 6= s′ or s = s′. In the first scenario, we conclude that the solu-
tion D cannot be in fact �s-minimal, which contradicts the original assumption.
Hence the latter must be true. But this means that all state types in the head
of s must have been marked by the procedure, and so the length of the head is
bounded by |F | + I+, i.e., l ≤ 2`(φ) + I+. The final A-structure is constructed
exactly as in the proof of Lemma 2. o

Theorem 2 (Recognizing A-sequence solutions for TQL∃). Recognizing
an �e- and �s-minimal solution to an A-sequence abduction problem (T ,A, φ),
where φ is a TQL∃ formula, is DB-complete.

Proof. For the upper bound we consider an algorithm, which first guesses the
numbers l ≤ 2`(φ) + I+, n ∈ {1, l}, and next it non-deterministically generates a
sequence of types t0, . . . tl alongside the corresponding ABoxes A(t0), . . . ,A(tl).
The latter step involves a DP routine, as described in the proof of Lemma 1,
requested to satisfy the criteria characterizing quasimodels. For every 0 ≤ i ≤ l,
the algorithm verifies satisfaction of the following conditions:

– >Uψ ∈ ti−1, for every >Uψ ∈ ti,
– if ψ ∈ ti then >Uψ ∈ ti−1, for every >Uψ ∈ sub(φ),
– for every >Uψ ∈ ti, , there is j such that ψ ∈ tj and:
• i < j ≤ l, whenever i < l − n,
• l − n ≤ j ≤ l, whenever l − n ≤ i ≤ l,

– tl = tl−n and A(tl) = A(tl−n).

Whenever the conditions are satisfied, the sequence D, such that Di = Ai,
for every 0 ≤ i < l, is returned as a relevant solution to the problem Ω. By
Lemma 3, every �e- and �s-minimal solution to Ω must be found as one of the
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outputs. The lower bound follows by reduction from an arbitrary DP-complete
problem, conducted precisely as in the proof of Lemma 1, point 3, where the
entailment and non-entailment of CQs are again the target NP- and co-NP-
complete problems in the reduction. o

Lemma 4 (Recognizing A-sequence solutions for TQL+,TQL∃,+). Rec-
ognizing a �e- and �s-minimal solution to an A-sequence abduction problem
Ω = (T ,A, φ), where φ is a TQL+ or TQL∃,+ formula, is NP-complete. The
result holds even for �b-minimal solutions and when A = ∅.

Proof. The upper bound follows by the algorithm analogical to that used in
Theorem 2. The only difference is that given a type t for Ω a corresponding
solution A(t) can be computed at worst in NP (by Lemma 1, points 1, 2). Hence
the algorithm must only guess the suitable sequence of types, which is a problem
in NP.

The lower bound is demonstrated by reduction from the NP-complete Hamil-
tonian path problem, defined as follows: given a directed graph G = (V,E) decide
whether there exists a path through G which visits every vertex exactly once.
With every vertex v ∈ V , we associate a query qv = Av(x), for a designated
concept name Av. Consider a formula φ =

∧
v∈V (>Uqv) grounded with x 7→ a,

for some unique a ∈ NI . Then there exists a Hamiltonian path through G iff
there exists a �b/e- and �s-minimal solution D to (∅, ∅, φ) such that:

– D0 = ∅,
– there exists a bijection h : V 7→ {1, . . . , |V |}, such that for every v ∈ V :

• Av(a) ∈ Dh(v),
• Au(a) 6∈ Dh(v), for every u ∈ V with u 6= v,

• (v, u) ∈ E, for u ∈ V such that h(u) = h(v) + 1.

Observe that for a given A-structure S, associated with D, verifying the con-
ditions above can be done in time linear in the size of S, and thus in the size
of the input. Hence, the verification step does not add to the complexity of the
problem. Clearly, whenever D does satisfy the conditions above it contains the
hamiltonian path through G, given via h. Conversely, suppose that there exists
a Hamiltonian path through G. Then clearly there must exist an A-sequence D,
described as above, which solves (∅, ∅, φ). It is not difficult to see that such an
A-sequence is both �b/e- and �s-minimal. o

A.5 Entailment of TQL∃,TQL+,TQL∃,+ formulas

Theorem 3 (Entailment by finite A-sequences). Let T be a TBox and A =
(Ai)i∈I an A-sequence, where I is a finite interval over Z. Deciding T ,A, n |= φ,
for some n ∈ Z, is DP-complete iff φ is a grounded TQL or TQL∃ formula, and
NP-complete iff φ is a grounded TQL∃,+ formula.
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Proof. Again, w.l.o.g. we assume that I− = n = 0. The upper bound follows
by an algorithm which first non-deterministically selects a sequence of types
t0, . . . , tn for φ, and next for every 0 ≤ i ≤ I+ it decides whether T ,A, 0 |= [q],
for every [q] ∈ ti, and T ,A, 0 |= ¬[q], for every ¬[q] ∈ ti. If so, then φ is entailed.
The two decision problems are in NP and co-NP, respectively. In case of TQL∃,+

only the first type of problems has to be addressed. The algorithm runs therefore
in DP for TQL and TQL∃, and in NP for TQL∃,+. The lower bound follows again
by reduction from an arbitrary DP-complete problem (see Lemma 1, point 3) for
TQL and TQL∃. For TQL∃,+ the lower bound transfers from the CQ entailment
problem. o
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