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ABSTRACT

Myriad of data mining algorithms in scientific computing
require parsing data sets iteratively. These iterative algo-
rithms have to be implemented in a distributed environment
to scale to massive data sets. To accelerate iterative com-
putations in a large-scale distributed environment, we iden-
tify a broad class of iterative computations that can accu-
mulate iterative update results. Specifically, different from
traditional iterative computations, which iteratively update
the result based on the result from the previous iteration,
accumulative iterative update accumulates the intermedi-
ate iterative update results. We prove that an accumula-
tive update will yield the same result as its corresponding
traditional iterative update. Furthermore, accumulative it-
erative computation can be performed asynchronously and
converges much faster. We present a general computation
model to describe asynchronous accumulative iterative com-
putation. Based on the computation model, we design and
implement a distributed framework, Maiter. We evaluate
Maiter on Amazon EC2 Cloud with 100 EC2 instances. Our
results show that Maiter achieves as much as 60x speedup
over Hadoop for implementing iterative algorithms.

Categories and Subject Descriptors
C.2.4 [Distributed Systems|: Distributed applications

General Terms

Algorithms, Design, Theory, Performance

Keywords

asynchronous accumulative update, Maiter, iterative com-
putation

1. INTRODUCTION

The advances in sensing, storage, and networking tech-
nology have created huge collections of high-volume, high-
dimensional data. For example, with the success of Web 2.0
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and the popularity of online social networks, huge amounts
of data, such as Facebook activities, Flickr photos, Web
pages, eBay sales records, and cell phone records, are being
collected. Making sense of these data is critical for com-
panies and organizations to make better business decisions,
and even bring convenience to our daily life. Recent ad-
vances in scientific computing, such as computational biol-
ogy, have led to a flurry of data analytic techniques that
typically require an iterative refinement process [6, 24, 20,
9]. However, the massive amount of data involved and po-
tentially numerous iterations required make performing data
analytics in a timely manner challenging.

To address this challenge, distributed computing frame-
works such as MapReduce and Dryad [12, 15, 2] have been
proposed to perform large-scale data processing in a cluster
of machines or in a cloud environment. Furthermore, a se-
ries of distributed frameworks [25, 22, 23, 10, 26] have been
proposed for accelerating large-scale iterative computations.
Common to these proposed distributed frameworks, itera-
tive updates are performed iteration by iteration. Specifi-
cally, an iterative update in iteration k is performed after
all updates in iteration £k — 1 have completed. Within the
same iteration, the results from an earlier update cannot be
used for a later update. While this is the traditional model
for iterative computations, such a model does slow down the
progress of the computation. First, the concurrent update
model does not utilize the already retrieved partial results
from the same iteration. This can prolong iteration process
and lead to slow convergence. Second, a synchronization
step is required for every iteration. This can be time con-
suming in a heterogeneous distributed environment.

In this paper, we propose to implement a class of iterative
algorithms through accumulative updates. Instead of iter-
atively updating a new result with the old result, accumu-
lative updates aggregate the intermediate results from both
the previous iterations and the current iteration. Unlike tra-
ditional iterative computations, which require synchroniza-
tions between iterations, accumulative iterative computa-
tions allow to accumulate the intermediate iteration results
asynchronously. While the asynchrony has been demon-
strated to accelerate the convergence of iterative computa-
tions [14], the asynchronous accumulative updates can fur-
ther accelerate an iterative process. We provide the suffi-
cient conditions for the iterative algorithms that can be per-
formed by accumulative iterative updates, and show that a
large number of well-known algorithms satisfy these condi-
tions. In addition, we present a computation model with a



few abstract operations for describing an asynchronous ac-
cumulative iterative computation.

Based on the accumulative computation model, we design
and implement a distributed framework, Maiter. Maiter re-
lies on Message Passing Interface (MPI) for communication
and provides intuitive API for users to specify their accumu-
lative iterative computations. We systematically evaluate
Maiter on Amazon EC2 Cloud [1]. Our results are presented
in the context of four popular applications. The results show
that Maiter can accelerate the convergence of the iterative
computations significantly. For example, Maiter achieves
as much as 60x speedup over Hadoop for the well-known
PageRank algorithm.

The rest of the paper is organized as follows. Section 2
presents accumulative iterative updates, followed by a de-
scription of several example algorithms in Section 3. In Sec-
tion 4, we describe Maiter design. The experimental results
are shown in Section 5. We outline the related work in Sec-
tion 6 and conclude the paper in Section 7.

2. ACCUMULATIVE ITERATIVE UPDATES

We first introduce the background of iterative computa-
tion and then describe the accumulative iterative updates.

2.1 [Iteration Computation

Iterative algorithms typically perform the same operations
on a data set for several iterations. The key of an iterative
algorithm is the update function F:
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which is performed on an n-dimensional vector, v* = {v'f, vk,

.. ,v,’i}, where vF~! represents the (k— 1)”‘ iteration result.
(Note that the iterative update function F'(v) might be a
series of functions that are performed in tandem.) We can
further represent F(v*) by a set of functions of the form
fi(vi,v2,...,v,), each of which performs an update on an
element j of vector v. That is,

k k-1 k-1 k—1
Uj:fj(vl s Ug sy Un )

In distributed computing, multiple processers perform the
updates in parallel. For simplicity of exposition, assume that
there are n processors and processor j performs an update
for data element j (we will generalize this model in Sec-
tion 2.3). All processors perform the update in lock steps.
At step k, processor j first collects vf_l from all proces-
sors, followed by performing the update function f; based
on vffl, i=1,2,...,n. The main drawback of implement-
ing synchronous iteration in a distributed fashion is that all
the update operations in the (k — 1)'" iteration have to be
completed before any of the update operations in the k™
iteration starts. Clearly, synchronization is required in each
step. These synchronizations might degrade performance,
especially in heterogeneous distributed environments.

To avoid the synchronization barriers, asynchronous it-
eration was proposed [11]. Performing update operations
asynchronously means that processor j performs the update

vy = fj(?)l,’ljz,...,vn)

at any time based on the most recent values of all data
elements, {v1,v2,...,v,}. The conditions of convergence of
asynchronous iterations have been studied in [11, 7, 8].

By asynchronous iteration, as processor j is activated to
perform an update, it “pulls” the values of data elements

from the other processors, i.e., {vi,v2,...,vn}, and uses
these values to perform an update on v;. This scheme does
not require any synchronization. However, asynchronous it-
eration intuitively requires more communications and use-
less computations than synchronous iteration. An activated
processor needs to pull the values from all the other pro-
cessors, but not all of them have been updated, or even
worse none of them is updated. In that case, asynchronous
iteration performs a meaningless computation and results
in significant communication overhead. Accordingly, “pull-
based” asynchronous iteration is only applicable in an en-
vironment where the communication overhead is negligible,
such as shared memory systems. In a distributed environ-
ment or in a cloud, “pull-based” asynchronous model cannot
be efficiently utilized.

As an alternative, after processor i updates v;, it “pushes’
v; to every other processor j, and v; is buffered as B; ;
on processor j. When processor j is activated, it uses the
buffered values B; j;, i« = 1,2,...,n, to update v;. In this
way, the redundant communications can be avoided. How-
ever, the “push-based” asynchronous iteration results in con-
siderable memory overhead. Each processor has to buffer
n values, and the system totally needs O(n2) space. We
will introduce accumulative updates, which can be executed
asynchronously while reducing memory consumption.

Y

2.2 Accumulative Updates

Before giving the definition of accumulative updates, we
first pose the condition of performing accumulative updates.

The condition is that the iterative update function v;-“ =

fi (= vk~ wE1Y) can be represented by:
k k—1 k—1 k—1
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where k = 1,2,..., ¢; is a constant, ‘@’ is an abstract op-

erator, and g(; ;3 () is a function denoting the impact from
element i to element j. In other words, processor ¢ pushes
value gy; j1(vi) (instead of v;) to processor j, and on pro-
cessor j, these gy; j1(v:) from any processor i and ¢; can be
aggregated (by ‘@’ operation) to update v;.

For example, the well-known PageRank algorithm itera-
tively updates an n-dimensional PageRank score vector R.
In each iteration, the ranking score of page j, R;, is updated
as follows:

> R~ +(1—d),
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where d is a damping factor, |N(z)| is the number of out-
bound links of page ¢, (i — j) is a link from page i to
page j, and E is the set of directed links. The update func-
tion of PageRank is in the form of (1), where ¢; = 1 — d,
‘@’ is ‘4’, and if there is a link from page ¢ to page j,

k—1
g =d- TG Otherwise g (vF ) =0.

Next, we derive the accumulative updates. Let Avf de-
k—1

note the “change” (in the ‘@’ operation manner) from v;

to vf. That is,

vf = vf_l @ Avf. (2)

In order to derive AU;-“ we assume that

e function gy; ;1 (x) has the distributive property over ‘@’,
ie., 913 (T ©Y) = 90,53 (2) S 940,53 ()



By replacing vf_l in Equation (1) with vf_Q &) Avf_l, we
have

vf =g, (0f ) @ gp i (AvyTH @ ... @
k— k—
Iiniy(n 2) @ gin gy (Avy ) @ ;.

Further, let us assume that

®3)

e operator ‘@’ has the commutative property, i.e., xPy =
Y D

e operator ‘@’ has the associative property, i.e., (x®y)®
z=z® (y®2);

e operator ‘@’ has the identity property of abstract value
0,ie,xP0=u=x.

Then we can combine these g{i,]-}(vf_QL 1=1,2,...,n, and
k—1
5T
(2), the combination of the remaining g(; j;(AvF™"), i =
1,2,...,n, results in Av¥. Therefore, We have the following
two-step accumulative updates:

¢; in Equation (3) to obtain v Considering Equation

of =of !
g
Avith =D @iy (Av)),

i=1

& Av®

VR

(4)

n
where £k =1,2,..., and Z@xi =1 Pr2PB...Dxy. U? can
i=1
be initialized to be any value, and vjl- can be computed based
on Equation (1). Then, we can obtain Avj = vj —vY for
the accumulative updates in (4). As a simple initialization,
suppose v? = 0, then vjl- =c¢; and Av; = vjl- - U? =cj.
The accumulative updates can be described as follows.
Processor j first updates vf by accumulating Av;C (by ‘@’ op-

eration) and then updates Avf“ with -7, Dggi ) (AvF).

AU;.“H will be used for the (k+1)"" update. 3°I | ®gy; ;1 (Avy)

is the accumulation of the received values from all proces-
sors since the k' update. Apparently, this still requires all
processors to start the update synchronously when all the
processors have received these values. That is, Avf“ has
accumulated all the values g{@j}(Avf), i =1,2,...,n, at
which time it is ready to be used in the (k + 1)*™ iteration.
Therefore, we refer to the updates in (4) as synchronous
accumulative updates.

However, accumulative updates can be performed asyn-
chronously. That is, a processor can start update at any
time based on whatever it has already received. We can
describe asynchronous accumulative updates as follows: on
each processor 7,

. Whenever a value m; is received,
receive:
AV — Avj B my.
f)j $— 'Dj D A’[}j;
For any h, if g¢;n}(Av;) # O,
send value g(;}(A¥;) to processor h;
Af)j 0,

update:

(5)
where ¥; is initialized to be 0, A9; is initialized to be ¢;, and
my is the received value g, ;3 (A¥;) sent from any proces-
sor 7. The receive operation accumulates the received value

m; to Ad;, which stores the accumulated received value be-
tween consecutive update operations. The update operation
updates ¥; by accumulating Av;, sends value gg; »y (A7) to
processor h, and resets Av; to 0. To avoid useless commu-
nication, it is also necessary to check that gg; ny(A%;) # 0
before sending. For example, in PageRank, each page j has
a buffer AR, to accumulate the received PageRank scores.
When page j performs an update, R; is updated by accumu-
lating AR;. Then, dlﬁ% is sent to page j’s linked pages,
and AR is reset to 0.

By asynchronous accumulative updates, the two opera-
tions, receive and update, on a processor are completely in-
dependent from those on other processors. Any processor
is allowed to perform the operations at any time. There is
no lock step to synchronize any operation between proces-
sors. Moreover, implementing asynchronous accumulative
iteration only needs two buffers for storing v; and Av;. The
space complexity of the system is O(n). Therefore, accu-
mulative iteration provides a memory-efficient solution for
asynchronous iteration.

To study the convergence property, we first give the follow-
ing definition of convergence of asynchronous accumulative
iterative computation.

DEFINITION 1. Asynchronous accumulative iterative com-
putation as shown in (5) converges as long as that after each
element has performed the receive and update operations an
infinite number of times, ¥; converges to a fized value ¥5°.

Then, we have the following theorem to guarantee that by
asynchronous accumulative updates the iterative computa-
tion converges to the correct result.

THEOREM 1. If v; in (1) converges, 5 in (5) converges.
Further, they converge to the same value, i.e., v;° = 05°.

We can explain the intuition behind Theorem 1 as follows.
Consider the accumulative iteration process as information
propagation in a graph with each processor as a node. Node
i with initial value ¢; propagates value gy; ;3 (c:i) to its “neigh-
boring” node j, where value gy; ;3 (c:) is accumulated to v;
and value g¢; 3 (g¢i,;3(ci)) is produced and propagated to
its “neighboring” node h. By synchronous accumulative it-
eration, the values propagated from all nodes should be re-
ceived by all their neighboring nodes before starting the next
round propagation. That is, the values originated from a
node are propagated strictly hop by hop. In contrast, by
asynchronous accumulative iteration, whenever some values
arrive, a node accumulates them to ¥; and propagates the
newly produced values to its neighbors. No matter syn-
chronously or asynchronously, the spread values are never
lost, and the values originated from each node will be even-
tually spread along all paths. For a destination node, it will
eventually collect the values originated from all nodes along
various propagation paths. Therefore, synchronous iteration
and asynchronous iteration will converge to the same result.
The formal proof of Theorem 1 is provided in the extended
version of this paper [28].

2.3 Optimal Scheduling

In reality, a subset of data elements are assigned to a pro-
cessor, and multiple processors run in parallel. In each pro-
cessor, computation resources can be assigned to each ele-
ment in equal portions and in circler order, which is referred



to as round-robin scheduling. Moreover, it is possible to
schedule the updates of these local elements dynamically by
identifying their importance, which is referred to as priority
scheduling. In our previous work [27], we have proposed that
selectively processing a subset of the data elements has the
potential of accelerating the convergence of iterative com-
putation. Some of the data elements can play an important
decisive role in determining the final converged outcome.
Giving an update execution priority to some of the data el-
ements can accelerate the convergence. For example, the
well-known shortest path algorithm, Dijkstra’s algorithm,
greedily expands the node with the shortest distance first,
which allows it to derive the shortest distance of all nodes
fast.

In order to show the iteration progress of the iterative
computation, we quantify the iteration progress with L;
norm of ¥, i.e., ||[9||1 = >, %;. Asynchronous accumula-
tive iterative computation either monotonically increases or
monotonically decreases ||9||1 to a fixed point [|[v*[|1. Ac-
cording to (5), an update of element j, i.e., ¥; = 0; & Av;,
either increases ||0]|1 by (9; & Ad; — ©;) or decreases ||0]|1
by (v; — v; ® Ad;). Therefore, by priority scheduling, data
element j = argmax; |0; @ Av; — ¥4 is scheduled first. In
other words, The bigger |0; & Av; — ¥;| is, the higher up-
date priority data element j has. For example, in PageR-
ank, we set each page j’s scheduling priority value based on
|R; +AR; — R;| = ARj. Then, we will schedule page j with
the largest AR; first.

Furthermore, the following lemma combining with Theo-
rem 1 guarantees the convergence under the priority schedul-
ing. The proof of Lemma 1 can be found in the extended
version of this paper [28].

Lemma 1. By priority scheduling, each element will be
scheduled to perform the update an infinite number of times.

2.4 Summary

To sum up, as long as an iterative update function can
be written as a series of distributive functions gy; ;3 («) com-
bined by an operator ‘@’ that has the commutative property,
the associative property, and the identity property of O as
shown in Equation (1), the iterative computation can be per-
formed by accumulative iterative updates. The accumula-
tive iterative computation can be performed asynchronously
as shown in (5). By asynchronous accumulative updates, the
sent values of an update are applied immediately, and the
following updates will be performed more efficiently based
on the most up-to-date accumulated received values. Fur-
ther, we have an optimal scheduling policy that selects data
element j = arg max; |0; ® Av; — ¥;| to perform the update
first, which accelerates convergence.

We have designed a distributed framework to support the
implementations of accumulative updates. But first, we will
present a broad class of iterative algorithms that can be
performed by accumulative updates.

3. EXAMPLE ALGORITHMS

In this section, we show how to perform iterative algo-
rithms by accumulative iterative updates through a few ex-
amples.

3.1 Single Source Shortest Path

The single source shortest path algorithm (SSSP) has been
widely used in online social networks and web mapping.

Given a source node s, the algorithm derives the shortest
distance from s to all the other nodes on a directed weighted
graph. Initially, each node j’s distance d? is initialized to be
0o except that the source s’s distance d? is initialized to be
0. In each iteration, the shortest distance from s to j, dj, is
updated with the following update function:

dy = min{d}" " +w(1,5),d5 " +w(2,4),...,dy " +w(n, j),dj},

where w(i, 7) is the weight of an edge from node 7 to node
j, and w(i,j) = oo if there is no edge between i and j. The
update process is performed iteratively until convergence,
where the distance values of all nodes no longer change.

The update function of SSSP is in the form of Equation
(1). Operator ‘@’ is ‘min’, function gy; ;3 (z) = = + w(i, j),
and ¢; = dJ. Apparently, the function g(; ;;(z) = z+w(i, §)
has the distributive property, and the operator ‘min’ has
the commutative and associative properties and the identity
property of co. Therefore, SSSP can be performed by accu-
mulative updates. Further, if Ad; is used to accumulate the
received distance values by ‘min’ operation, the scheduling
priority of node j is set as d; — min{d;, Ad;}.

3.2 Linear Equation Solvers

Generally, accumulative updates can be used to solve sys-
tems of linear equations of the form

A-x=b,

where A is a sparse n X n matrix with each entry a;;, and
X, b are size-n vectors with each entry x;, b; respectively.

One of the linear equation solvers, Jacobi method, iterates
each entry of x as

1 b;
k k-1
X; =~ E Qji = X +7J

iy i£j )

The method is guaranteed to converge if the spectral radius
of the iteration matrix is less than 1. That is, for any matrix
norm || - ||, limg— oo HB’“H% < 1, where B is the matrix with
Bij:—% for ¢ # j and B;; =0 for i = j.

The uplciate function of Jacobi method is in the form of
Equation (1). Operator ‘®’ is ‘4, gg;,53(x) = —Zﬁ -z, and
25

i .z has

cj = :—JJ Apparently, the function gy; ;3 (z) = —
the distributive property, and the operator ‘+’ has the com-
mutative and associative properties and the identity prop-
erty of 0. Therefore, the Jacobi method can be performed
by accumulative updates. Further, if Ay; is used to accu-
mulate the received values, the scheduling priority of node
J is set as Ay;.

3.3 Other Algorithms

Many other iterative algorithms can be performed by ac-
cumulative updates. Table 1 shows a list of such algorithms,
and each of their update functions is represented with a
tuple ({c1,¢2, ... ¢cn}, 94,51 (x), @, 0). The Connected
Components algorithm [17] finds connected components in
a graph by letting each node propagate its component id to
its neighbors. The component id of each node is initialized
to be its node id. Each node updates its component id with
the largest received id and propagates its component id, so
that the algorithm converges when all nodes belonging to
the same connected component have the same component



Table 1: A list of accumulative iterative algorithms

algorithm | cj | 9{i,5} (z) | ® | 0
SSSP 0(j=s)oroo (j#s) z+w(i,j) min | 4oo
Connected Components i T max | —oo
€T
PageRank 1—-d d- NG + 0
Adsorption p;-nj I ot W (i, ) - @ + 0
HITS (authority) 1 d-ATA®i,j) = + 0
Katz metric 1(j=s)or0(j+#s) B-x + 0
Jacobi method b—7 7E - + 0
ajj ajj
Rooted PageRank 1(j=s)or0 (j#s) P(j,1) -z + 0
. . . . network
id. Adsorption [6] is a graph-based label propagation algo- fm e | ‘
rithm that provides personalized recommendation for con- message
tents. Each node j carries a probability distribution L; on ]
label set L, and each node j is initially assigned with an
initial distribution I;. Each node iteratively computes the
. C s . . . state table
weighted average of the label distributions from its neighbor- PR

ing nodes, and then uses the random walk probabilities to
estimate a new label distribution. Hyperlink-Induced Topic
Search (HITS) [19] ranks web pages in a web linkage graph
A by a two-phase iterative update, the authority update and
the hub update. Similar to Adsorption, the authority update
requires each node ¢ to generate the output values damped
by d and scaled by AT A(i, ), while the hub update scales
a node’s output values by AAT(i,). The Katz metric [18]
is a proximity measure between two nodes in a graph. It is
computed as the sum over the collection of paths between
two nodes, exponentially damped by the path length with a
damping factor 8. Rooted PageRank [24] captures the prob-
ability for any node j running into node s, based on the
node-to-node proximity, P(j,%), indicating the probability
of jumping from node j to node 4.

4. MAITER PROTOTYPE

This section presents the design and implementation of
Maiter prototype. Maiter is a message-passing framework
that supports accumulative iterative updates [3], which is
implemented by modifying Piccolo [23]. Maiter framework
contains a master and multiple workers. The master co-
ordinates the workers and monitors the status of workers.
These workers run in parallel and communicate with each
other through MPI. Each worker performs the updates for a
subset of data elements. We first describe how to partition
the data and how to load a data partition in each worker
(Section 4.1), and present how to implement the receive and
update operations (Section 4.2) and the scheduling policies
(Section 4.3). Then, we show how the communication be-
tween workers is implemented with efficient message passing
(Section 4.4). We will describe iteration termination in Sec-
tion 4.5 and introduce Maiter API in Section 4.6.

4.1 Loading Data

Each worker loads a subset of data elements in memory for
processing. Each data element is indexed by a global unique
key. The assignment of a data element to a worker depends
solely on the key. A data element with key j is assigned
to worker h(j), where h() is a hash function applied on the
key. For example, for distributing workload evenly, we can
adopt a MOD operation on the continuous integer keys as
the hash function.

The data elements in a worker are maintained in a local
in-memory key-value store, state table. Each state table en-

Av | pri } data

r 3

v

Update
| worker

—————————— message--------------
network—Y.
Figure 1: Worker overview.

try corresponds to a data element indexed by its key. As
depicted in Figure 1, each table entry contains five fields.
The first field stores the key j of a data element; the sec-
ond field stores v;; the third field stores Avj; the forth field
stores the priority value of element j for priority scheduling;
the fifth field stores the input data associated with element
j, such as the adjacency information for node j.

Before iterative computation starts, the input data stored
on HDFS are partitioned into multiple shards, and each of
them is assigned to a worker. Several workers parse the
input data in parallel, and the input data of element j is
sent to worker h(j). Then worker h(j) fills the data field
of entry j (i.e., the entry with key field being j) with the
assigned input data of element j. Users are responsible for
initializing the v fields (i.e., v; = 0) and the Av fields (i.e.,
Awv; = ¢;) through the provided API (will be described in
Section 4.6). The priority fields are automatically initialized
based on the values of the v field and Av field.

4.2 Receive Thread and Update Thread

As described in (5), asynchronous accumulative iteration
is accomplished by two key operations, the receive operation
and the update operation. In each worker, these two oper-
ations are implemented in two threads, the receive thread
and the update thread. The receive thread performs the re-
ceive operation for all local elements. Each worker receives
messages from other workers and updates the Av fields by
accumulating the received messages. The update thread per-
forms the update operation for all local elements. When
operating on a data element, it updates the corresponding
entry’s v field and Aw field, and sends messages to other
elements. The update of the priority field will be discussed
in Section 4.3. The data field stores the input data, which
is never changed during the iterative computation.



The receive thread writes on the Aw field, while the up-
date thread both reads and writes on the Av field. In order
to avoid the read-write and write-write conflict risks on a
table entry’s Av field, the update operation on a table en-
try has to be atomic, where the read and write on the Av
field are implemented in critical section. The update thread
selects the table entries to perform the update according a
scheduling policy. We will describe the scheduling policies
and their implementations in the next subsection.

4.3 Scheduling within Update Thread

The simplest scheduling policy is to schedule the local data
elements for update operation in a round robin fashion. The
update thread performs the update operation on the table
entries in the order that they are listed in the local state
table and round-by-round. The static scheduling is simple
and can prevent starvation.

However, as discussed in Section 2.3, it is beneficial to
provide priority scheduling. In addition to the static round
robin scheduling, Maiter supports dynamic priority schedul-
ing. A priority queue in each worker contains a subset of lo-
cal keys that have larger priority values. The update thread
dequeues the key from the priority queue, in terms of which
it can position the entry in the local state table and per-
forms an update operation on the entry. Once all the data
elements in the priority queue have been processed, the up-
date thread extracts a new subset of high-priority keys for
next round update. The extraction of keys is in terms of
the priority field of each table entry. Each entry’s priority
field is initially calculated based on its initial v value and Av
value. During the iterative computation, the priority field
is updated whenever the Av field is changed (i.e., whenever
some message values are applied on this entry).

The number of extracted keys in each round, i.e., the pri-
ority queue size, balances the tradeoff between the gain from
accurate priority scheduling and the cost of frequent queue
extractions. We have provided an optimal queue size analy-
sis in our previous work [27], which assumes a synchronous
execution environment. The priority queue size is set as a
portion of the state table size. For example, if the queue
size is set as 1% of the state table size, we will extract the
top 1% high priority entries in the state table for processing.
In addition, we also use the sampling technique proposed in
[27] for efficient queue extraction, which only needs O(N)
time, where N is the local state table size.

4.4 Message Passing

Maiter uses OpenMPI [4] to implement message passing
between workers. A message contains a key indicating the
message’s destination element and a message value. Sup-
pose that a message’s destination element key is k. The
message will be sent to worker h(k), where h() is the parti-
tion function for data partition (Section 4.1), so the message
will be received by the worker where the destination element
resides.

A naive implementation of message passing is to send the
output messages as soon as they are produced. However,
initializing message passing leads to system overhead. To
reduce this overhead, Maiter buffers the output messages
and flushes them to remote workers after a short timeout.
If a message’s destination worker is the host worker, the
output message is directly applied to the local state table.

The output messages are buffered in multiple msg tables,
each of which corresponds to a remote destination worker.
The reason why Maiter exploits this table buffer design is
that we can leverage early aggregation to reduce network
communications. Each msg table entry consists of a desti-
nation key field and a value field. As mentioned in Section
2.2, the associative property of operator ‘@, i.e., (z®y)Dz =
z @ (y ® z), indicates that multiple messages with the same
destination key can be aggregated at the sender side or at
the receiver side. Therefore, Maiter worker combines (by ‘@’
operation) the output messages with the same key in a msg
table entry before sending them.

4.5 TIteration Termination

To terminate iteration, Maiter exploits progress estimator
in each worker and a global terminator in the master. The
master periodically broadcasts a termination check signal to
all workers. Upon receipt of the termination check signal,
the progress estimator in each worker measures the iteration
progress locally and reports it to the master. The users are
responsible for specifying the progress estimator to retrieve
the iteration progress by parsing the local state table.

After the master receives the local iteration progress re-
ports from all workers, the terminator makes a global ter-
mination decision in respect of the global iteration progress,
which is calculated based on the received local progress re-
ports. If the terminator determines to terminate the itera-
tion, the master broadcasts a terminate signal to all workers.
Upon receipt of the terminate signal, each worker stops up-
dating the state table and dumps the key and v fields of the
local table entries to HDF'S, which are the converged results.
Note that, even though we exploit a synchronous termina-
tion check periodically, it will not impact the asynchronous
computation. The workers proceed the iterative computa-
tion after producing the local progress reports without wait-
ing for the master’s feedback.

A commonly used termination check approach compares
the two consecutive global iteration progresses. If the dif-
ference between them is minor enough, the iteration is ter-
minated. For example, to terminate the SSSP computation,
the progress estimator in each worker calculates the sum of
the v field values (the sum of the shortest distance values
of all the local nodes) and sends a report with the summed
value to the master. Based on these local sums, the termi-
nator in the master calculates a global sum, which indicates
the iteration progress. If there is no change between the two
global sums collected during a termination check period (i.e.,
no node’s distance is changed during that period), the SSSP
computation is considered converged and is terminated.

4.6 Maiter API

Users can implement a Maiter program using the provided
API, which is written in C++ style. The accumulative iter-
ative computation in Maiter are specified by implementing
three functionality components, including Partitioner, It-
erateKernel, and TermChecker as shown in Figure 2.

K, V, and D are the template types of element keys, el-
ement values, and element data respectively. Particularly,
for an entry in the state table, K is the type of the key field,
V is the type of the v field/Av field/priority field, and D is
the type of the data field. The Partitioner reads a par-
tition of input file line by line. The parse_line function
extracts element key and element data by parsing the given



template <class K, class D>

struct Partitioner {
virtual void parse line(string& line, K* k, D* data) = 0;
virtual int partition(const K& k, int shards) = 0;

bi

template <class K, class V, class D>
struct IterateKernel {
virtual void init c(const K& k, V* delta) = 0;
virtual const V& default v () const = 0;
virtual void accumulate (V* a, const V& b) = 0;
virtual void g_func(const V& delta, const D& data,
list<pair<K, V> >* output) = 0;
bi
template <class K, class V>
struct TermChecker {
virtual double estimate_prog(lLocalTablelterator<K, V>*
table_itr) = 0;
virtual bool terminate(list<double> local reports) = 0;
bi
Figure 2: Maiter API summary.

line string. Then the partition function applied on the
key (e.g., a MOD operation on integer key) determines the
host worker of the data element (considering the number of
shards/workers). The framework will assign each element
data to a host worker based on this function. It is also
used for determining a message’s destination worker. In the
IterateKernel component, users specify a tuple ({c1,c2,
.y Cn}y 9liyy (@), @, 0) for describing an accumulative it-
erative computation. Specifically, we initialize each data
element j’s constant value ¢; (i.e., the initial value of Av
field) by implementing the init_c interface; specify the ‘@’
operation by implementing the accumulate interface; spec-
ify the identity element 0 by implementing the default_v
interface; and specify the function gy; ;1 («) by implement-
ing the g_func interface with the given Awv; and element
i’s adjacency information, which generates the output pairs
(4, 915,53 (Av;)) to any element j that is in element 4’s adja-
cency list. To stop an iterative computation, users specify
the TermChecker component. The local iteration progress is
estimated by specifying the estimate_prog interface given
the local state table iterator. The global terminator col-
lects these local progress reports. In terms of these local
progress reports, users specify the terminate interface to
decide whether to terminate. The application implementa-
tion examples can be found at [3].

S. EVALUATION

We evaluate Maiter on Amazon EC2 Cloud with 100 medium

instances, each with 1.7GB memory and 5 EC2 compute
units [1]. We compare Maiter with Hadoop, iMapReduce,
Prlter and Piccolo in the context of four applications, SSSP,
PageRank, Adsorption, and Katz metric.

5.1 Preparation

We first review a few related frameworks used for compari-
son and generate the synthetic data sets for the applications.

5.1.1 Related Frameworks

Hadoop [2] is an open-source MapReduce implemen-
tation. It relies on HDFS to storage. Multiple map tasks
process the distributed input files concurrently in the map
phase, followed by that multiple reduce tasks process the
map output in the reduce phase. Users are required to sub-
mit a series of jobs to process the data iteratively. The

next job operates on the previous job’s output. Therefore,
two synchronization barriers exist in each iteration, between
map phase and reduce phase and between Hadoop jobs.

iMapReduce [26] is built on top of Hadoop and provides
iterative processing support. In iMapReduce (iMR), reduce
output is directly passed to map rather than dumped to
HDFS. More importantly, the iteration variant state data
are separated from the static data. Only the state data
are processed iteratively, where the costly and unnecessary
static data shuffling is eliminated. The original iMapReduce
stores data relying on HDFS. We also consider an in-memory
version of iMapReduce (iMR~-mem), which loads data into
memory for efficient data access.

Prlter [27] enables prioritized iteration. It exploits the
dominant property of some portion of the data and schedules
them first for computation, rather than blindly performs
computations on all data. The computation workload is
dramatically reduced, and as a result the iteration converges
faster. However, it performs the optimal scheduling in each
iteration in a synchronous manner.

Piccolo [23] allows to operate distributed tables, where
iterative algorithm can be implemented by updating the
distributed tables iteratively. Even though synchronous it-
eration is required, these workers can communicate asyn-
chronously. That is, the intermediate data are shuffled be-
tween workers continuously as long as some amount of the
intermediate data are produced, instead of waiting for the
end of iteration and sending them together. The current it-
eration’s data and the next iteration’s data are stored in two
global tables separately, so that the current iteration’s data
will not be overwritten. Piccolo can maintain the global
table both in memory and in file. We only consider the
in-memory version.

To evaluate Maiter with different scheduling policies, we
consider the round robin scheduling (Maiter-RR) as well as
the optimal priority scheduling (Maiter-Pri). For Maiter-
Pri, we set the priority queue size as 1% of the state table
size (Section 4.3). In addition, we manually add a synchro-
nization barrier controlled by the master to let these work-
ers perform iteration synchronously, and we also let these
workers only shuffle their msg tables at the end of an iter-
ation, which maximizes the advantage of early aggregation
but loses the benefit of asynchronous communication. We
call this version of Maiter as Maiter-Sync.

Table 2 summarizes these frameworks. These frameworks
are featured by various factors that help improve perfor-
mance, including separating static data from state data (sep.
data), in-memory operation (in mem), early aggregation
(early agg.), asynchronous communication (asyn. com.),
asynchronous iteration (asyn. iter.), and optimal scheduling
(opt. sched.). Note that, Hadoop provides early aggregation
option. The map output can be compressed by Combiner
before it is sent to reduce, but we turn it off in order to
clearly see the effects of these factors.

5.1.2  Synthetic Data Generation

Four algorithms described in Section 3 are implemented,
including SSSP, PageRank, Adsorption, and Katz metric.
We generate synthetic massive data sets for these algorithms.
The graphs used for SSSP and Adsorption are weighted, and
the graphs for PageRank and Katz metric are unweighted.
The node ids are continuous integers ranging from 1 to size
of the graph. We decide the in-degree of each node follow-



Table 2: A list of frameworks

sep. in earl asyn. | asyn. opt.

name daItJa mem agg}.l co}rln. itZr. sc}lfed.
Hadoop X X X X X X
iMR v X X X X
iMR-mem v v X X X X
Prlter v v X X X v
Piccolo v v X v X X
Maiter-Sync v v v X X X
Maiter-RR v v v v v X
Maiter-Pri v v v v v v

ing log-normal distribution, where the log-normal parame-
ters are (u = —0.5, 0 = 2.3). Based on the in-degree of each
node, we randomly pick a number of nodes to point to that
node. For the weighted graph of SSSP computation, we use
the log-normal parameters (1 = 0, o = 1.0) to generate the
float weight of each edge following log-normal distribution.
For the weighted graph of Adsorption computation, we use
the log-normal parameters (u = 0.4, 0 = 0.8) to generate the
float weight of each edge following log-normal distribution.
These log-normal parameters for these graphs are extracted
from a few small real graphs downloaded from [5].

5.2 Running Time to Convergence

We first show the running time to convergence of these
applications. For Hadoop, iMR, iMR-mem, Piccolo, and
Maiter-Sync, we check the convergence (termination con-
dition) after every iteration. For Prlter, Maiter-RR, and
Maiter-Pri, we check the convergence every termination check
interval (10 seconds for SSSP, and 20 seconds for PageRank,
Adsorption and Katz metric). For SSSP, it is terminated
when there is no change between two consecutive iteration
results (Hadoop, iMR, iMR-mem, Piccolo, and Maiter-Sync)
or when there is no change of the iteration progress during
a 10-second termination check interval (Prlter, Maiter-RR,
and Maiter-Pri). For PageRank, Adsorption, and Katz met-
ric, we start these iterative computations with the same ini-
tial values. We first run these applications off-line for 200
iterations to obtain a resulted vector, which is assumed to
be the converged vector v*. We terminate these applications
when the difference between the checked resulted vector v
(after every iteration or after a time interval) and the con-
verged vector v* is less than 0.0001 - [[v*[|, i.e., > vj —
>-;v; < 0.0001- 37, v7. Note that, for fairness, the time
for summing the values of all keys (through another job)
in Hadoop and Piccolo, has been excluded from the total
running time (other frameworks provide termination check
functionality). The data loading time for the memory-based
systems (other than Hadoop) is included in the total run-
ning time. The same is true for all experiments described in
this section.

Figure 3 shows the running time to convergence of SSSP
on a 100-million-node graph under these frameworks. By
separating the iteration-variant state data from the static
data, iMR reduces the running time of Hadoop by around
60%. iMR-mem further reduces it by providing faster mem-
ory access. Prlter identifies the more important elements
to perform the update and ignores the useless updates, by
which the running time is further reduced by half. Piccolo,
with asynchronous communication without optimal schedul-
ing, can also reduce the running time of iMR-mem a lot.
The synchronous accumulative iteration framework, Maiter-
Sync, with early aggregation but without asynchronous com-
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Figure 3: Running time of SSSP on different frameworks.
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Figure 4: Running time of PageRank on different frame-
works.
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Figure 5: Running time of Adsorption and Katz metric.

munication consumes similar running time with Piccolo. While
the asynchronous accumulative iteration frameworks, Maiter-
RR and Maiter-Pri, only need about 50 seconds to converge,
which is more than 30x faster than Hadoop.

Figure 4 shows the running time to convergence of PageR-
ank on a 100-million-node graph under these frameworks.
We can see the similar results with SSSP. By asynchronous
accumulative iteration, Maiter-RR is 30x faster than Hadoop
and 7x faster than the synchronous accumulative iteration
framework Maiter-Sync. Further, by optimal scheduling,
Maiter-Pri further reduces the running time of Maiter-RR
by around half.

Figure 5a and Figure 5b show the running time to con-
vergence of Adsorption and Katz metric on 100-million-node

graphs respectively under Maiter-Sync, Maiter-RR, and Maiter-

Pri. We can see that Maiter-RR and Maiter-Pri significantly
reduce the running time of Maiter-Sync, and Maiter-Pri fur-
ther reduces the running time of Maiter-RR by around half.

5.3 Efficiency of Accumulative Updates

With the same number of updates, asynchronous accumu-
lative iteration results in more progress than synchronous
accumulative iteration. In this experiment, we measure the
number of updates that SSSP and PageRank need to con-
verge under Maiter-Sync, Maiter-RR, and Maiter-Pri. In
order to measure the iteration process, we define a progress
metric, which is . d; for SSSP and }_, R; for PageRank.



Progress metric

Then, the efficiency of accumulative updates can be seen as
the ratio of the progress metric to the number of updates.
For Maiter-Sync, the number of updates and the progress
metric are measured after every iteration, while for Maiter-
RR and Maiter-Pri, the number of updates and the progress
metric are measured every termination check interval (10
seconds for SSSP and 20 seconds for PageRank).
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Figure 6: Number of updates vs. progress metric.

We run SSSP for a 500-million-node graph and PageRank
for a 100-million-node graph. Figure 6a shows the progress
metric against the number of updates for SSSP. In SSSP,
the progress metric Zj d; should be decreasing. Since d; is
initialized to be ¢; = oo for any node j # s, which cannot
be drawn in the figure, we start plotting when any d; < oo.
Figure 6b shows the progress metric against the number of
updates for PageRank. In PageRank, the progress metric
Zj R; should be increasing. Each R; is initialized to be
¢; = 1 —d = 0.2 (the damping factor d = 0.8). The
progress metric >, R; is increasing from 0.2 - [v] to [v],
where |v| = 10® (number of pages). From Figure 6a and
Figure 6b, we can see that by asynchronous accumulative
updates, Maiter-RR and Maiter-Pri require much less up-
dates to converge than Maiter-Sync. That is, the update in
asynchronous accumulative updates is more effective than
that in synchronous accumulative updates. Further, Maiter-
Pri selects more effective updates to perform the update, so
the update in Maiter-Pri is even more effective.

5.4 Communication Cost

Distributed applications need high-volume communication
between workers, and the communications between workers
become the bottleneck of distributed computations. Saving
the communication cost correspondingly helps improve sys-
tem performance. By asynchronous accumulative updates,
the iteration converges with much less number of updates,
and as a result needs less communication.

We run PageRank on a 100-million-node graph to mea-
sure the communication cost. We record the amount of data
sent by each worker and sum these amounts of all workers
to obtain the total volume of data transferred. Figure 7
depicts the total volume of data transferred in Hadoop, Pic-
colo, Maiter-Sync, Maiter-RR, and Maiter-Pri. By Hadoop,
we mix the iteration-variant state data with the static data
and shuffle them in each iteration. While by Piccolo we can
separate the state data from the static data and only com-
municate the state data. Accordingly, Piccolo results in less
transferred volume than Hadoop. Maiter-Sync utilizes msg
tables for early aggregation to reduce the total transferred
volume in a certain degree. By asynchronous accumulative
updates, we need less number of updates and as a result
need less amount of data to transfer. Consequently, Maiter-
RR and Maiter-Pri significantly reduce the transferred data
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Figure 7: Communication cost.

volume. Further, Maiter-Pri transfers even less amount of
data than Maiter-RR since Maiter-Pri converges with even
less number of updates.

Asynchronous accumulative iteration consumes more band-
width to shuffle data. In Figure 7, we also show the aver-
age bandwidth that each worker has used for sending data.
The worker in Maiter-RR and Maiter-Pri consumes about
2 times bandwidth than that in Hadoop and consumes only
about 20% more bandwidth than the synchronous frame-
works, Piccolo and Maiter-Sync. Despite Maiter-RR and
Maiter-Pri run significantly faster, the amount of shuffled
data is much less, and the average consumed bandwidth is
not significantly higher.

6. RELATED WORK

The original idea of asynchronous iteration, chaotic itera-
tion, was introduced by Chazan and Miranker in 1969 [11].
Motivated by that, Baudet proposed an asynchronous iter-
ative scheme for multicore systems [7], and Bertsekas pre-
sented a distributed asynchronous iteration model [8]. These
early stage studies laid the foundation of asynchronous it-
eration and have proved its effectiveness and convergence.
Asynchronous methods are being increasingly studied since
then, particularly so in connection with the use of heteroge-
neous workstation clusters.

On the other hand, to support iterative computation, a se-
ries of distributed frameworks have emerged. In addition to
the frameworks described in Section 5.1.1, many other syn-
chronous frameworks are proposed recently. HaLoop [10],
a modified version of Hadoop, improves the efficiency of it-
erative computations by making the task scheduler loop-
aware and employing caching mechanisms. Pregel [22] aims
at supporting graph-based iterative algorithms by proposing
a graph-centric programming model. Spark [25] uses a col-
lection of read-only objects, which maintains several copies
of data across memory of multiple machines to support iter-
ative algorithm recovery from failures. Twister [13] employs
a lightweight iterative MapReduce runtime system by logi-
cally constructing a reduce-to-map loop.

All of the above described works build on the basic as-
sumption that the synchronization between iterations is es-
sential. A few proposed frameworks also support asynchronous
iteration. The partial asynchronous approach proposed in
[16] investigates the notion of partial synchronizations in
iterative MapReduce applications to overcome global syn-
chronization overheads. It performs more frequent local syn-
chronizations but with less frequent global synchronizations.
GraphLab [21] supports asynchronous iterative computation
with sparse computational dependencies while ensuring data
consistency and achieving a high degree of parallel perfor-
mance. Our work is the first that proposes to perform ac-



cumulative updates for iterative computations and identify
a broad class of iterative computations that can perform
asynchronous accumulative updates.

Our previous work [27] focused on prioritized execution of
iterative computation. In order to illustrate the advantage
of prioritized execution, we proved that asynchronous ac-
cumulative iteration derives the same result as synchronous
iteration under only an example application, PageRank, and
developed a framework, Prlter, which is Java implementa-
tion with synchronous iteration, synchronous communica-
tion and file-based transfer. In this paper, we ask the fun-
damental question: what kind of iterative computations can
be performed with asynchronous accumulative updates? By
answering this question, we extract an abstract model to
identify a broad class of applications that can be performed
with asynchronous accumulative updates. We further de-
velop a framework, Maiter, which is C++ implementation
with asynchronous iteration and MPI-based asynchronous
communication.

7. CONCLUSIONS

We propose accumulative iterative computation and iden-
tifies a broad class of algorithms that can be performed by
accumulative updates. Accumulative iterative computation
can be performed asynchronously and converges with much
less workload. To support accumulative computation, we
design and implement Maiter, which relies on message pass-
ing to communicate between hundreds of distributed ma-
chines. We deploy Maiter on Amazon EC2 and evaluate its
performance in the context of four iterative algorithms. The
results show that by asynchronous accumulative updates the
iterative computation performance is significantly improved.
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