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1 The problem

e Does personal traits prediction improve with time?  Yes!

e What factors contribute to inferring private information? one’s own
activity (online breadcrumbs) and newcomers in the population

e Can I stop leaking personal information if I stop posting online? No!
Prediction sometimes improves even after users retire.

2 Case study

Wikipedia dataset — ideal for longitudinal study, editing focuses on
content, not social information.

e 188,805,088 revisions
e 117,523 users
¢ 8,679 user badges

22,172,813 edited pages
¢ 430,410 page categories
e Time extent: January 2001 - July 2013.
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Figure 1: Left: example of constructing user descriptions which embed temporally
increasing amounts of information. Features count the number of revisions made by a
given editor during a given timeframe, over 6 predefined categories (basic set). Right:
example personal information extracted from editor badges: gender (6936 ed.), religious
views (7685), education (9224) and other not shown (ethnic origin, sexual orientation efc.)

Profiling editing behavior
The slowdown of Wikipedia (#editors, #revisions) is known, we profile

editing effort per category and we detect the rise of maintenance effort.
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Figure 2: Left: The decrease of the number of active editors, new editors and the total
number of revisions for CONTENT. Right: The maintenance effort (INFRA revisions)
needed to internally handle the bulk of Wikipedia is increasing.

Mean editing behavior analysis shows regularities in the editing pat-
terns, while unequal growth trends across editor demographics provide
plausible explanations for the slowdown (i.e. editor specialization)
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Figure 3: Left: aggregated descriptive features show differences in editing patterns, when
tabulated per gender. Right: The population of active editors over time, broken down by
education. Magnitudes for all classes are scaled from 0 to 1 (effectives in parenthesis).

Methods

Detecting Privacy Loss as a prediction task — private traits are inferred based on editing v

description. Setup: Logistic regression, L1 reg., hyperparam by cross-validation, 66%-

33% stratified split, 20 inits, reporting mean and stdev. X Xy
Quantifying Privacy Loss using Information Theory measures — Uncertainty about pri- i

vate information: entropy of target variable Y H(Y). Amount of information disclosed

by a feature X: mutual information /(Y; X'). Amount of new information disclosed by a

feature at time ¢: Information Transfer 7(Y; X;| X.4-1). 1Y 2 Xo|Xo) X,
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3 Trait prediction improves with time

Personal traits are inferred increasingly more accurately over time (dif-
ferences of prediction performance are statistically highly significant).
The steady increase of performance is interpreted as privacy loss.
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Figure 4: Personal trait prediction performance over time, measured using mean AUC
value over 20 executions (error bars denote standard deviation). Result of inferring, using
binary predictors on the basic feature set, of gender (Left), education/undergrads (Center
and religion/muslim (Right).

4 What drives Privacy Loss?

Feature richness vs. editor population composition

Richer features (i.e. thematic profiling of editing behavior) improve
prediction, but not Privacy Loss. Newcomers: information from the
editors newly entered in the population hurts privacy.
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Figure 5: Left: the thematic feature set consistently provides better performances, while
the AUC series of the predictors trained on the two feature sets are highly correlated and
present the same trends. Right: evolution of privacy loss for the population fixed to its
component in the first quarter of 2007 (i.e., no newcomers) and a population in which
new users can freely enter.

Quantifying privacy loss over time

Mutual Information over time (New Entry)

Later edits contain just as much in-
formation as the earlier edits, how- s-
ever they tend to be less harmful
since most of the information they
bring was already known. The -
information inferred from new-
comers is moderate, but consis-
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Figure 6: Top: Mutual Information between each feature at time t and gender. Informa-
tion Transfer on Fixed Population and New Entry (bottom row, left and right).

5 Privacy erodes even for retired users

Plausible explanation: observed prediction improvement originates
with currently active users, whose activity overlaps with exited users.
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Figure 7: Left: Increase of prediction performance (undergrads) for editors retired after
01.2008. Right: CONTENT coeff. increase in importance for models in later timeframes.
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