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Abstract—In this paper, we consider the problem of active odor detection [13], collision avoidance [14], as well as esti-
sensing using mobile nodes as a sensor network to estimate mation and tracking [15], [16], [17]. Further, [18] provides a

the state of a dynamic target. We propose a gradient-search- neral mathematical formulation of the problem n
based decentralized algorithm that demonstrates the benefits general mathematical formulation of the problem, but notes

of distributed sensing. We then examine the task of tracking that co_mputlng the optimal solution is computationally
multiple targets, and address it via a simple extension to our €XPeENsIve.
algorithm. Simulation results show that our simple decentral- However, many of these approaches are developed for

ized approach performs quite well and leads to interesting = single-sensor situations, whereas the methods applicable
cooperative behavior. for multi-sensor teams, as in [15], require the optimization
I. INTRODUCTION to be.done ce_ntrglly in ger!ergl. Qn the o_ther hand, [16]
examines a distributed optimization algorithm along the
In recent years, much focus has been devoted to tfiges presented in [19], and suggests that computational
theory and applications of sensor networks. Typical adsayings speak in favor of sub-optimal approaches. Further,
vantages of using sensor networks include relatively lowgfhje the decentralized algorithm presented in [17] is most
costs, inherent robustness and greater coverage area, as W8llvant to the work discussed in this paper, the sensors
as possibly heterogeneous sensing. These advantagesiqrghat work are assumed to be able to measure multiple
further enhanced if sensors are mobile. targets simultaneously, and hence the problem of optimally
One of the basic questions that arises in (mobile) Sensgksigning sensors to targets is not addressed.
networks from an estimation perspectivetifow should the  The main contribution of this paper is the demonstration
sensors move to attain the best estimates of the target(Qf how a simple decentralized algorithm can be used
Robustness, communication complexity and performangg, motion-planning of sensors in a network to achieve
requirements demand that solutions to this question ngfgnificantly better estimates of the target state. The per-
require a central computation node, especially as the nuyymance of the algorithm has been demonstrated through
ber of nodes in the network increases. In this paper, Wgmulation examples where interesting cooperative behavior
are specifically concerned with the problem of optimakych as splitting into sub-teams is observed, even though
positioning and motion of mobile sensors. This problenyg centralized optimizing command or signal is specifically
arises when the quality of observations of some target(ghnsmitted to the sensors. This points to a large number
varies with the location of the sensors. This can be due {g promising distributed sensing applications to which the
the fact, e.g., that the observation noise varies with diStan%‘i‘gorithm and the approach can be applied, where decisions

between target and sensor. Thus the objective is to plan tgs; affect the collective team performance need to be made
sensors’ trajectories to obtain the best estimates of dynanjg «intelligent” agents in a decentralized fashion.

targets. ] The paper is organized as follows. In the next section, we
The area of research addressing the control of actuatggt yp the problem and define the conventions used. Then

or configurable sensors in the presence of uncertainty e propose the algorithm. We begin with the case of a
called active sensing [1], [2]. Many scenarios where activgingle target for which certain analytical results can also be
sensing is useful, such as active vision [3], [4] and mobilgerived. We then extend to the case of multiple targets. The
robot navigation [5], [6], are well-surveyed in [7]. Sensoryroblem of multiple targets becomes more interesting if we
placement also has received considerable attention, for asnsider sensors that can observe only one target at a time.
plications of vision [8], sensor coverage [9], and parametgh this case we have the additional problem of assigning
estimation [10], [11], [12]. sensors to targets. We then demonstrate the performance
Attempts have been made over the years to address t§€the algorithm with a few simulation studies, concluding

problem of optimal motion control of sensors in variousinally with some encouraging and interesting avenues for
contexts, including application-specific examples such &gtyre work.
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position model while the sensors are capable of taking onlijhus we use the relations [22]
range measurements with the measurement noise depending

n

on the distance from the sensor to the target. In this we are pol % _ pl X

: . ) lobal = ; i local (5)
motivated by standard sonar models [20]. The discussion globar*tgloba ZZ: local ™1, 1068
can be easily generalized to more general target and sensor n
models. Considem targets doing a random walk in a plane. Pyobar = O Pliocar (6)
The motion of thej-th target evolves according to i

X[k + 1) = X (K] + w, k], 1) Note that the assumption of no cross-covariance between the

local estimates is not strictly true [23] and hence the global
where X[k] € R? is the state of the target at time ©Stimate is sub-optimal. However, this algorithm is much

consisting of ther andy positions.w;[k] € R? represents simpler than its altgrnatives and seems not to incur huge
the process noise acting grth target that is assumed zero-Performance penalties [24]. Note further that the sensor
mean, Gaussian and white with covariance ma@ifk] e fusion algor_|thm itself is stable in the sense t_ha'F the glqbal

R2*2, Further the process noises of different targets af@Tor covariance matrix _s_tays boun_ded. This is so since
assumed independent of each other. Each tgriggetracked unQer the u_sual observability constraints, each sensor’s local
by n sensors with thei-th sensor making observations€Stimate will converge to a steady state and hence the global

Y;;[k] € R? described by estimate will converge to a steady state whether or not cross-
covariance between the different local estimates is assumed.
Yiilk] = X;[k] + T(0;5)vi; (K] 2 Pyioval refers to the covariance of the error in the global

estimate and hence is an indicator of the quality of the
T(0:5) € SO(2) is the rotation matrix that transforms estimate. Since the sensor noise covariance matrix is a
the noise from the local sensor coordinates to the globginction of the distance between the sensor and the target,
coordinate system. The noisg;[k] € R* is also assumed the quality of the estimate depends on the distances between
zero-mean, Gaussian and white. The noises of variowse various sensors and the targets. Thus by varying the
sensors and targets are assumed mutually independent. Hagitions of the sensors, we can vary the error covariance.
covariance matrix ofv;;[k] is denoted byR;;[k] € R***>  The problem we pose is how to do so in a decentralized way.
and in keeping with the usual sonar models (see, e.g., [208s a cost function, we seek to minimize the determinant of

it is assumed to be a diagonal matrix of the form the error covariance matri®yona. This is referred in the
s literature [7] as theD-optimal design.
(aﬁgnge) 0 A key feature of this work is the decentralized nature
Rij[k] = i 2 |- ()  of the algorithm. Note that if the positions of all nodes at
0 (”bearing) time stepk + 1 (and hence their respectiv®;;[k + 1]'s)

) were known,Pyopallk + 1] could be computed by fusing the

is the range measurement noise variance and gsults of the Riccati recursion of the local error covariance
matrices. Then the optimal positions of all nodes to mini-
mize the cost function can be calculated. This is the essence

quadratic dependence on range, with the minimum valu%f centralized methodologies, which is itself a challenging
being achieved at a particular aistance from the targe?mb'em- Instead, in the distributed case, the responsibility

namely the “sweet spot” of the sensor. The bearing nois%f _the fgsmn of estimates an_d the optimization of sensor
2 trajectories and assignments is given to each sensor, rather

variance (Uéjearing) is often modeled (e.g. see [21]) as ahan relying on a central computation node.
fixed multiple« of the range noise variance. Thus we obtain

that I11. CASEI : SINGLE TARGET

(U?gnge>
represented by a functiofi(r;;) of the distancer;; from
sensori to targetj. A common model off(r;;) is as a

Rijlk] = [ g(r”) af(r»«()) : (4) To begin with, we assume that only a single target is
Y present and every sensor is observing it. As mentioned in

The time indexk will be implied in the remainder of this the previous section, at each time step, every sensor takes
paper, except where explicit indication is necessary. measurements, communicates local estimates, and fuses

To process the observations and generate an estimatgn@rmation from other sensors to obtain a global estimate
Kalman filter (KF) is used. However a centralized KF for all.Xgobar and a global error covariance matthiopal.
the observations would be computationally very expensive. The task that remains for each sensor is to identify its
Instead, every node has a local KF that produces an estimaigtimal location for the next time step. However, obtaining
based only on local observations. Then these estimates amdolution for all sensors in closed form or even numerically
their covariances are exchanged and combined to yieldi@ challenging, in general. In many practical cases, the
global estimate. The estimates are combined by assumingmber of active sensors may change, further complicating
that there is no cross-covariance between local estimatélse optimization problem. Thus we use a gradient descent



algorithm which defines the optimal control action (i.e. diT'(6;;) R;; T (6:;)":
rection of movement) as that which will position the sensors .2 9 .
to minimizedet(Pyionar) in the next time step. Recall that the { alfi s (ei)+€fi Cf’s éei) (1_a)2ffgcos(9i)§lg(zi) ]
calculation of the gradient is intrinsically decentralized [25], L (1~ @)fi cos(#i)sin(6:) — af; cos™(0;) + fi sin”(0;)

and thus is quite suitable for our purposes. The optimization It follows that the overall expression to be maximized
of sensor positions in the algorithm involves the followinghas the formAD — B?, where

steps: 1 1 a (11— a)sin®(6;)
1) Each sensor node assumes other nodes remain at their A = |:f1 + . Z {ﬁ + ﬁ”
present positions, allowing for calculation of their 1 1 ’a (1 _aj cos(6;)
local error covariances at the next time step. D = { +— Z { + l”
2) For each possible control action it can take, the node afi a fi ) fi
calculates its own error covariance at the next time p _ l-a [Z 005(91‘)5111(90]
step and generates the fused global error covariance Q i
matrix for each possible action. where the summation index runs from 2 through n.
3) It chooses the action that minimizes the cost. Algebraic manipulation yields the following form:

The set of possible control actions is discrete and finite, and . 9 .
in this way the gradient descent algorithm is reduced toa 1 Z 1 n (1-a) Z sin” (6;)
discrete gradient search algorithm. o | = fi a?fy fi

Thus the optimization procedure is decentralized, requir-
ing only the communication of local information between (1-a)? 3 sin”(6; — 6;) %
nodes for data fusion. Note that when each sensor receives a? fif; ’
the local estimates from other nodes, it will also have
implicitly received position information of the other sensorffom which the following conclusions can be readily drawn:
nodes. Further, if another node stops communicating, thel) There are, in general, many local maxima.
sensor can simply disregard it in the sensor fusion step. 2) Since all the terms are positive arfd appear only

in the denominator, maxima are achieved when the
Investigation of Minima f;'s (which depend only on the range between sensor

Given the properties of descent algorithms, under the  and target) are minimized. Thus, all sensors end up
usual constraints of observability (for the Kalman filter), the at their respective optimal distances from the target,
error estimates will reach a steady state. Further, the sensor  regardless of angles.
configuration will be such that the cost function reaches 3) For the special case of only two sensors, we see
minimum (provided the step size is small enough [25]). that 6, must either ber/2 or 37/2, independent of

However, as is the nature of gradient methods, a local, ~ the minimum values off; and f,. This agrees with
rather than global, minimum may be encountered. To exam- ~ our intuition of having the two sensors pointing in
ine the nature of minima, we take a closer look at the nature  orthogonal directions.
of the cost function. Assuming the system has reached4) For more than 2 sensors, assuming that the minimum
the steady state described above, observe that the local Values off; are equal, the different local maxima are
error covariance matrices are independent of time. Only ~ found by solving for the angleg;, i = 2,...,n that
changes in sensor positions (through the measurement noise Maximize the expression
covariance matrices) have any further effect on the error. n
Thus, all other things being equal, we can relate changes ZSiDZ(ei) + Z sin?(0; — 0;).
in error covariance with changes in measurement noise i=2 2<i<j<n
covariance for the purposes of examining the qualitative 5y Fyrther, in this case, all local maxima have the same
behavior of the cost expression [10]. value of the cost expression.

Note that, for a particular minimizing sensor configurasy
tion, an infinite number of equivalent minima can be foun
by planar rotation about the target. We choose to study tq
one that has sensor 1 on theaxis, without any loss of
generality. The location of other sensars= 2,...,n are
given by (r; cos(6;),r;sin(6;)). The cost function to be
minimized has the form given by (6). This is equivalent IV. CASEIl : MULTIPLE TARGETS
to maximizing the expressiodet (Zi Pﬁc}cal)- Denoting  The algorithm proposed above can readily be extended
f(ri;) as f; (i.e. single-target case), theth sensor’s error for the tracking of multiple targets. This situation arises
estimate covariance matrix?; jocal, IS related, as per the frequently in surveillance, computer vision, signal process-
previous discussion, to the measurement noise covarianaay, etc. where a number of targets, features, or signals

=2

2<i<j<n

e conclude from this investigation that we need not worry
bout distinguishing between local and global minima of
fie original cost function, at least for this simplified case.
Simulation examples suggest that even in more general
cases, nearly optimal performance is usually obtained.



appear and disappear from the field. The sensors aim t TABLE |
pp pp ) %ECENTRALIZED ALGORITHM PSEUDGCODE FOR EACH SENSOR IN

cooperatively obtain the best possible estimate of all these
targets.

With sensors capable of taking measurements of all
targets simultaneously, the tracking of multiple targets is| % — Local Observation—
exactly the case considered in the previous section, if we Take local measurement; _ _
simply redefine the new target state to be a stacked vectgr YPdate local estimat&ioca and eror covariance matrikloca;
of all the individual target states. We assume the ability| o9, — sensor Fusion—
to handle the data association issues [26]. The tracking Transmit local information to other sensors;
problem is significantly more interesting (and realistic) if EE;’:";ﬁ :gfc‘;rl"gt'i‘r’:a:'eosmto‘)the‘ir ng:‘?:‘éti o
the sensor can observe only one target at a time, with g9etg §obal
access to a low-resolution observation (e.g. from overhead % — Optimization of target assignment and sensor positien
UAV's [27]) to indicate the presence of other targets on| Assume other sensors do not move; .
he field hi L | h . Assume other sensors do not change target assignment;
the fie ..In this case, it is clear t at' target assignment  propagateey of other sensors by one time step;
at each time step also affects the estimates of the target For all own target assignments

MULTI-TARGET TRACKING SCENARIOS

For k=1:simtime

—

locations. This reflects an underlying problem of optimally For all own allowable motion actions
. . . . 4 Propagate owPcal;
fo_rmmg §ub-teams of sensors, which will be <_j|scussed.|n Fuse with propagatedfoca of other sensors:
this section. As before, we seek a decentralized solution Obtain cost function estimate;
where this optimization is done efficiently at the nodal level. end end
To begin addressing this problem, we note that mini- Identify cost-minimizing position and target assignment;

mization of the cost function involves not only determining
sensor motions but also assigning which (and how many ‘C/J"@eupg;;%r??girﬁggx?rt‘iﬂqzssstig”_me”‘—
sensors observe each target at each time step. This addition ugdate farget assignment; P

of new assignment variables to optimize over, however, only| end

augments the set of possible control actions, due to, in

part, the structure of the discrete gradient search method. In

other words, we can extend our algorithm in a simple wayr = 5 and the range-dependent quadratic function is the
In the optimization step, each node assumes both positis@me for all three sensors, given fyr;) = 0.0008r7 —

and current sensing assignments of other sensors are fixe8250r; + 0.3481.

for the next time step, and optimizes its own position and For this setup, the resulting sensor configuration is illus-
assignment to minimize the next time step’s global costrated in Fig. 1. As predicted by our analysis of (7) as well
Moreover the algorithm remains decentralized, as befor@$ intuition, we see the three sensors at their “sweet spot”
since communication only occurs during data fusion, antRnge from the target and al$@0° apart from each other.
the optimization is done locally. The algorithm, as executed
by each sensor, is represented in Table I.
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V. EXAMPLES T

In this section, we illustrate the proposed simple algo-
rithm with the help of some demonstrative examples.

A. Single Target Tracking Problem 10 \‘ "
‘_f' 2

The first example compares the tracking performance of
the decentralized method proposed in this paper against a i
fully centralized algorithm in which the optimization is done 2 W 4. " Y
by a central node. We seek to show that the performance
loss due to the decentralized approach is not substantial and Fig. 1. Optimal sensor configuration
well-worth the tremendous savings in computation.

Our test case is constructed as follows. A single target Moreover, even though our decentralized algorithm is
must be localized and tracked by three sensing agents. Tsigb-optimal, we see (Fig. 2) that in comparison to the

target is subject to random walk in a plane, described by (19ompletely centralized exhaustive search method over all
with process noise covariance matrix given by possible control actions for all sensors, the performance loss

001 0 is very little (< 2%). In fact at steady state, the decentralized
Qlk] = [ '0 0.01 } algorithm effectively attains the minimal cost as found by

’ the centralized method.
The i-th sensor observes the target according to (2). The We see an initial drop in performance, which indicates
measurement noise covariance matrix is given by (4), witthat the convergence of the decentralized method to the opti-
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Fig. 2. Performance comparison between exhaustive search optimization 50 | B
and proposed decentralized method. :
mal sensor locations (and thus, the target position estimate)
is somewhat slower than that of the centralized algorithm. IS
Nevertheless, the steady-state performance is generally most 2 0
relevant to the problem of optimal estimation of the target ;L
state. Thus, we see that the proposed decentralized algo-
rithm offers not only the benefit of distributed-ness, but also
of performance in cost minimization and in computation.
B. Patrolling Problem 50
. . 20 0 20
The second example illustrates the use of our algorithm X Position
in a distributed surveillance application (e.g. RoboFlag [28], ()

.[29])' and dem.onStrates the assignment methods Of. ma-thg_ 3. (a) Initial optimal sensor configuration. (b) Sub-team forms and
Ing sensors _W|th targets. The sensor motions |n'th|s SlrJti'bs.er\./es second target, while remaining sensors adjust formation. (c) Sub-
ulated experiment are governed by our decentralized alg@am rejoins original group. The dotted lines represent the tracks made by
rithm, by optimizing over possible local control actions andhe sensors.

assignments for each sensor.

The initial setup is illustrated in Fig. 3(a). We assume . o
sensors can observe only one target at a time. Multiple Su&ﬂxgept during th? data exchange step), and coordination of
sensors (depicted by the circles) are initially assigned to rgotlon_ _for formation control.
target (represented by the lower square), much like vehiclesAdditionally, each member of a sensor sub-team maneu-
assigned to patrol a defensive zone. Another target (e.pe.rS optimally with respect to other members, modifying the
an opponent vehicle) enters the playing field (Fig. 3(b)),ormat|on dy.nam|cally with the.add|t|on(removal of sensing
and is observed by a UAV or an arbiter [29] which alertgents. Again, what makes this b.ehaV|or interesting is that
the mobile sensors. A sub-team of sensors is automatica”y'S S'mp'}’ due to the decentra!lzed optimization of the
formed to track this second target. The remaining sensof@St function done in our algorithm. In other words,

around the first target maneuver themselves to optimaIR/'Or' designation of formations types, division of sensing

cover the first target. When the second target disappea@SkS' and optimal estimation trajectories is not an input to

these sensors readjust to accommodate the returning sﬂ?)’e- depentralized algor.ithm..NevertheIess, the behaviors and
team so that all the sensors are again covering only the fifgnefits of such a designation emerge.
target, as shown in Fig. 3(c).

Thus we observe several interesting behaviors exhibited
by the system, some surprisingly complex given the sim- In this paper, we studied the problem of active sensing us-
plicity of the algorithm. Firstly, we find that the division ing multiple cooperative sensor nodes. The objective of the
of the sensing task over multiple targets is a consequensensor team is to jointly estimate the state of some dynamic
of the distributed nature of our algorithm, rather than angargets. We first investigated the single-target scenario, and
prescribed method or heuristic approach. The sensors aeamined some properties of the cost function in terms of
able to optimally split into sub-teams without needing tdts minima.
explicitly address the issues of consensus, communicationWe then proposed a simple and intuitive algorithm that is

VI. CONCLUSIONS ANDFUTURE WORK



decentralized in nature, with the ultimate goal of applying[7]
it to the case of observing multiple targets. This distributed
sensing task additionally introduced the problem of sensor-
target assignment which was addressed by a simple exters]
sion to the algorithm. After identifying some illustrative
examples, we showed by simulation that the sub-optimal
approach is nearly optimal at steady state. Finally, weg9]
sought to apply the decentralized algorithm to tracking
multiple targets, and discovered that the algorithm exhibi 0]
several interesting and promising behaviors for distributed
sensing objectives. (11]

Although most of the work presented here so far has
largely been of an exploratory nature, the results point to [42]
number of interesting avenues for future work. The problem
of distributed sensing is of significant interest due to theg
resulting complexity, yet this decentralized algorithm allows
us, in a fairly simple manner, to address and observe sorﬂg]
of the pertinent issues, such as the split/rejoin maneuvers
for formations. An immediate extension of our work is to
formulate further analysis of these issues and to understaid!
the role they play in mobile sensor networks in general.

Additionally, we can begin to investigate the relaxation of16]
assumptions such as perfect localization of the sensors [30],
which will reflect the existence of a more realistic, albeif17]
noisy, world. Also, we hope to examine the behavior of
our algorithm under network constraints such as networ[lis]
connectedness [31] and other issues pertaining to commu-
nication in sensor networks. Another assumption that might
be relaxed is perfect data association in the case of multi
target tracking.

Further, we are interested in understanding the role &
distributed sensing in “intelligent team” scenarios, where g
collection of sensing agents may observe, classify, and/or
even learn the strategies and behavior of opponents. Consid-
ering pursuit-evasion applications such as discussed in [27p
the distributed sensing algorithm presented in this paper
may be extended to address scenarios where targets néw
move to counter the motion of sensors, thereby attempting,,
to increase the uncertainty in the sensor measurements.
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