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Abstract

Topographic mapping in planetary environments re-
lies on accurate 3D scan registration methods. However,
most registration algorithms such as ICP, GICP and NDT
show poor convergence properties in these settings due to
the poor structure of the Mars-like terrain and variable res-
olution, occluded, sparse range data that is hard to register
without some a-priori knowledge of the environment. We
recently proposed a novel approach to scan registration us-
ing the curvelet transform for topographic mapping, and
in this work are demonstrating its effectiveness using sim-
ulated scans from Neptec Design Group’s IVIGMS 3D
laser rangefinder. At the start of the mission, the rover
generates a sparse local map, and uses dense scan data
while traveling to match to the original map. Simulation
results comparing the average root-mean-squared errors
in translation and rotation for existing methods as well
as proposed approach demonstrate the improved perfor-
mance of our algorithm in the challenging sparse Mars-
like terrain.

1 Introduction

Motivated by the establishment of permanent pres-
ence on extraterrestrial surfaces, detailed and accurate
mapping of the terrain and rover localization with re-
spect to the environment is essential to conduct operations
such as exploration, site selection, base construction etc.
Without a costly absolute positioning system such as GPS
available in space, on board sensing must be used for lo-
calization and mapping. The use of 3D laser scan data
for planetary exploration has been proposed by numerous
researchers [1, 2, 3], as a means to improve on existing
stereo methods in generating detailed 3D map data, lo-
calizing over long distances and operating in low ambient
light conditions. These advantages have led agencies to
pursue numerous next generation rover technologies with
LIDAR sensing at the core of the autonomy packages.

One of the challenges with most LIDAR sensor con-

Figure 1. IVIGMS LIDAR (white box on
top of the rover mast) on the Juno rover
at CSA Mars Yard in 2012.

figurations is that the needs for rover autonomy are some-
what contradictory: exploration requires rapid update over
long ranges, while detailed mapping requires high den-
sities of local points with minimal uncertainty. Neptec
Design Group has recently developed the IVIGMS LI-
DAR sensor for the Canadian Space Agency (see Figure
1), which can be reconfigured on the fly to produce both
long range sparse point clouds and short range high den-
sity clouds with the same sensor, as depicted in Figure 2
. This unique flexibility makes the IVIGMS LIDAR an
interesting option for planetary navigation.

Overlapping laser scans share a common set of points
that can be used for matching in order to estimate the rela-
tive rigid body transformation between scans (6-DOF ro-
tation and translation). Separate views of the same envi-
ronment can be accumulated into a global coordinate sys-
tem which helps an intelligent mobile robot perform tasks
in an unstructured environment. However, points within
each scan represent samples of different surfaces within
the environment, subject to the type of sensor used for
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Figure 2. IVIGMS LIDAR simulated data
from the CSA Mars Yard. a) Short-
range dense point cloud generated over
5 seconds, b) long-range sparse point
cloud generated over 20 seconds.

capturing the scene, sampling density (number of points
per volumetric unit), sensor viewpoint (relative geomet-
ric position), sensitivity to measurement noise, quantiza-
tion errors, occlusions, depth-discontinuities due to sharp
edges, and the surface characteristics of the objects within
the scene such as color, shape, textures, etc.

Finding accurate transformation parameters, given a
large initial inter-scan transformation error, makes the reg-
istration problem especially hard. As demonstrated by a
recent dataset collected in the University of Toronto Insti-
tute of Aerospace Studies (UTIAS) indoor rover test fa-
cility (Mars Dome) [1], mapping in an emulated Mars ter-
rain is quite challenging as some laser scans lack sufficient
features to match the scans with each other, even with full
360×180◦ degree scans of the terrain with a Hokuyo laser
sensor. The poor structure of the Mars like terrain coupled
with the shallow grazing angle results in a variable reso-
lution, occluded, sparse range data that is hard to register
without some a priori knowledge of the environment.

Instead of working in the metric space of the laser
scan, transform-based scan registration methods can often
take advantage of the special properties of the transforma-
tions and improve the overall efficiency. Among various
multi-scale transformations, the curvelet transform [4] is
one of the many multi-resolution geometric analysis tech-
niques that generates a sparse representation of the 3D
laser scan and efficiently represents the underlying surface

structure with high anisotropic elements (edges and singu-
larities along curves) as a set of coefficients that capture
details from coarse to fine levels. The curvelet transform
has been widely used in the computer vision and image
processing fields for image denoising, feature extraction,
edge enhancement, and image fusion, among others.

Due to the lack of natural and man-made features such
as trees and buildings, most registration algorithms such
as ICP, GICP and NDT show poor convergence properties.
In recent work [5], we presented a novel approach to scan
registration using the curvelet transform for topographic
mapping. Instead of using an approximate sub-band of
curvelet coefficients to solve the dimensionality problem,
we instead found suitable features via a sum of difference
of curvelets operator at multiple scales in range images.
These features along with descriptors were used to cal-
culate an approximate alignment between the scans using
singular value decomposition. In this paper, we intend to
improve upon this novel approach of scan registration and
adapt it for the hybrid IVIGMS scanner. The IVIGMS
3D laser scanner is tuned with a set of pre-programmed
beam trajectories. At the start of the mission, the rover
generates a sparse local map, and uses high rate dense
scan data while traveling to match to the original map and
track the progress. Experimental results comparing the av-
erage root-mean-squared errors in translation and rotation
for existing methods as well as proposed approach demon-
strate the performance of our algorithm in the challenging
sparse Mars-like terrain using the IVIGMS 3D scanner.

The rest of the paper is organized as follows: Section
2 provides the related work in the area of scan registration
and a problem formulation is presented in Section 3. De-
tails of the proposed method are given in Section 4. Quan-
titative and qualitative results for an indoor 3D laser scan
dataset are provided in Section 5 with a discussion on suit-
ability of the algorithm for mapping. Section 6 concludes
the paper with directions for future work.

2 Previous Work

Iterative closest point (ICP) algorithm [6, 7] is widely
used for scan-pair alignment by minimizing a squared-
error metric between corresponding points of two laser
scans. However, instead of finding salient features be-
tween the two sets of laser scans, the original ICP algo-
rithm assumes the scan-pair is approximately aligned at
the initial step, and thus correspondences are established
between the closest point pairs. This assumption results in
poor convergence properties of ICP, especially when there
is a large inter-scan transformation error. Instead of min-
imizing the distance between point-pairs, Chen et. al [8]
introduced the point-to-plane metric which minimizes the
error between the reference point and the tangent plane
of the corresponding target point. Although it has better



convergence properties than the original ICP algorithm,
there is no closed-form solution for the minimization and
thus relies on non-linear optimization methods. It is com-
paratively slower and like ICP, it relies on a good initial
estimate of the scan-pair alignment. Many ICP variants
have been proposed to offer better selection and weighting
strategies for finding corresponding points [9], rejecting
outliers, and restricting matches to points based on other
channels such as color, normals, curvatures etc.

Alex et. al [10] combined the original ICP algorithm
and the point-to-plane metric into a single probabilistic
framework for registering scan-pairs called Generalized-
ICP (G-ICP). Surface information from both scans is ex-
plicitly taken into account which necessitates computa-
tion of surface normals which increases the computational
time for scan registration. Biber et. al proposed an-
other probabilistic framework termed normal distributions
transform (NDT) which locally models the measurement
probability of a point and assigns a normal distribution
to discrete cells. Due to the piece-wise smooth repre-
sentation of the metric scan as Gaussian probability den-
sity functions, standard numerical optimization methods
can be used to calculate the transformation error between
scans. This eliminates the need to establish explicit cor-
respondences. However, the discretization effects of grid-
ding the metric scan result in discontinuities in the cost
function that lead to poor convergence at cell boundaries
[11]. To overcome this problem, many multi-scalar ap-
proaches have been proposed utilizing overlapping grids
[12] and clustering [13, 14, 15].

Feature based methods rely on extraction of unique
interest points from metric scans to aid in the correspon-
dence based registration process. A wide variety of fea-
ture detectors based on color [16], curvatures [17], corners
[18], planes [19], peaks [20] and slopes [21] have been
proposed in the literature. Wu et. al [22] proposed a multi-
feature based method combining lines, points and surface
patches to register lunar topographic models. However,
the feature extraction process is prone to measurement
noise, occlusions and depth-discontinuities in the natural
terrain.

A hybrid approach relying on the transformation of
metric space to feature space was proposed by authors [5].
An optimal sparse representation of the environment is
generated using Curvelet transform and curvelet features
along with descriptors are used for scan-registration.

3 Problem Formulation

Two 3D points sets are defined: the model set M =

{m1, · · · ,mNM } and the data set D = {d1, · · · , dND } where
mi, d j ∈ R3 for i ∈ {1, · · · ,NM}, j ∈ {1, · · · ,ND}. A
scan-to-scan registration algorithm seeks to identify a 6-
DOF transformation of the data scan to match a model

scan coordinate frame to form a single, globally consis-
tent model of the environment. This is done by maximiz-
ing the similarity between scans after transformation. An
estimate, T , of the transformation T ∗ = {R, t} ∈ SE(3),
with rotation R = {Rx,Ry,Rz} ∈ SO(3) and translation
t = {tx, ty, tz} ∈ R3 can be obtained from:

T ∗ = argmax
T∈SE(3)

C(M,T (D)) (1)

where C(M,T (D)) is the similarity metric between the
model set M and the transformed data set T (D).

4 Proposed Method

The curvelet based registration method employed in
this work was first presented recently by the authors in
[5]. The details of the algorithm are included here for
completeness. The method defines a similarity metric via
a five-part algorithm as follows.

First, range images RM and RD ∈ I = RX×Y
+ of di-

mension X × Y are constructed from the spherical projec-
tions of the 3-D laser scans, M and D, respectively. Hole
filling is used to remove background regions surrounded
by a connected border of foreground pixels [23]. Gaus-
sian smoothing and normalization are then applied to the
range values. Figure 3 shows the range image generated
from the first 3D laser scan in the simulated CSA Mars
emulation terrain dataset, with an angular resolution of 0.5
degrees in both x and y directions.
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Figure 3. Range image generated from the
spherical projection of the seventeenth
3D laser scan in the simulated CSA
Mars emulation terrain dataset, with an
angular resolution of 0.5 degrees in both
x and y directions.

Next, each range image is passed through a discrete
curvelet transform, which results in two sets of curvelet
coefficients. The discrete curvelet transform is a linear



digital transformation which generates curvelet param-
eters c( j, k, l) parameterized in scale ( j), orientation (l)
and position (k) (see [4] for details). The curvelet trans-
form has been implemented using a second generation
fast discrete curvelet transform (FDCT) via wrapping, and
is available at http://www.curveleab.org. Figure 4
presents the log of the curvelet coefficients for the range
image in Figure 3 for scales from the coarsest to level 4,
and for angles from the 2nd coarsest to level 16. The cen-
ter of the display shows the low frequency coefficients at
the coarsest scale, with the Cartesian concentric coronae
at the outer edges at various scale levels, showing coef-
ficients at higher frequencies. Each corona contains four
strips which are subdivided into angular panels [4]. The

Figure 4. Log of the curvelet coefficients
for the range image in Figure 3 for λ =

1 . . . 4 and φ = 2 . . . 16.

Cartesian array formed from the range image can be ex-
actly reconstructed from the curvelet coefficients c( j, l, k)
by taking the inverse curvelet transform as defined in [4].
It is also possible to construct inverse images at each scale
level individually, allowing for separation of large scale
and small scale structures. Denote each scale dependent
reconstructed image as Ic( j), where j denotes the scale
used to create the image.

The proposed method then proceeds to define a dif-
ference of curvelets image, by subtracting different recon-
structed scale images at nearby scale bands as follows:

IDoC( j) = Ic( j) − Ic( j − 1) (2)

As is common in feature extraction methods such as the
Scale Invariant Feature Transform (SIFT) [24], we iden-
tify robust local minima and maxima with high contrast
over adjacent difference of curvelets images . The remain-
ing points are then used as feature points, for which a de-
scriptor is defined using a standard 3D histogram of image
gradients. The resulting features are presented in Figure 5.

Once features and descriptors have been established
for each scan, approximate nearest neighbor search is per-

Figure 5. Curvelet features (in red) from
the range image in Figure 3.

formed in the descriptor space and RANSAC is applied
to reduce the effect of failed correspondences. Finally, it
is possible to determine a coordinate transformation be-
tween the two scans using singular value decomposition.

5 Experimental Results

The proposed approach is evaluated using a planetary
analogue outdoor simulated dataset consisting of 40 scans
obtained by simulating the IVIGMS laser rangefinder, as
depicted in Figure 6. The scans were taken from the sim-
ulated CSA Mars emulation terrain, for which a digital el-
evation map (DEM) of dimensions 60m x 120m at 25cm
resolution was made available.
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Figure 6. Overhead view of the CSA Mars
emulation terrain and the rover scan lo-
cations.

The emulation terrain includes unstructured Mars-like
surface elements constructed of sand and gravel, and con-
taining ridges, hills and a crater. Registering scans from
the emulated Mars terrain is quite challenging as some
laser scans demonstrate low degree of overlap and lack
sufficient features to match the scans with each other. The
poor structure of the Mars like terrain coupled with the
shallow grazing angle of the laser scanner results in a vari-
able resolution, occluded, sparse range data set that is hard
to register without some a-priori knowledge of the envi-
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ronment. Ground truth data consists of absolute sensor
pose data provided by the IVIGMS simulator.

The algorithms used for comparison are ICP, G-ICP,
and NDT, with reference implementations provided in the
point-cloud library (PCL) [25]. The ICP and G-ICP are
implemented with maximum correspondence distance set
to 10m, and the NDT algorithm is implemented with New-
ton line search maximum step length of 0.1, and voxel grid
resolution of 2m. For all algorithms, the maximum itera-
tions was set to 500 and the optimization was terminated
when the norm of the gradient or the norm of the step size
falls below 10−6.

Figure 7. Scan matching is performed be-
tween every fourth scan as a reference
and one preceding and three consecutive
scans as targets.

Pair-wise scan registration was performed between
every fourth scan as a reference and one preceding and
three consecutive scans as targets, with initial conditions
set to zero (see Figure 7). The rotation and translation
transformation is compared with the ground truth mea-
surements to produce absolute error for each registration
and is presented in empirical distribution function plot
form in Figure 8.

The errors distributions in Figure 8 demonstrate that
the proposed curvelet algorithm converges faster to a max-
imum probability of one, and produces the most consis-
tently accurate results than ICP, GICP and NDT. In fact,
from a registration perspective, errors in rotation in ex-
cess of 0.5 rad can be considered registration failures. Al-
though some failures could to be detected and/or rejected
by robust back-end loop closure techniques such as [26],
it is preferable to avoid such failure in scan-to-scan reg-
istration in the first place. Figure 9 shows the final dense
map generated by integrating all registered scans for the
proposed method, and the first five aligned scans for the
G-ICP method. Errors in translation and rotation from the
G-ICP method result in a mis-aligned map, whereas the
proposed method produces an accurate dense map of the
CSA Mars emulation terrain.

Figure 10 displays the close-up views of the fifth reg-
istered scan-pair using ICP, G-ICP, NDT, and curvelet
methods. It is possible to observe that the resulting ag-
gregated pair of registered scans using the curvelet algo-
rithm demonstrate better alignment when compared with
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Figure 8. Empirical cumulative distribu-
tion function plots for errors in trans-
formation parameters for the simulated
CSA Mars emulation terrain. (a) Abso-
lute translational error (m). (b) Absolute
rotational error (rad).

the other algorithms. In particular, the high rotational
alignment accuracy is visible at the front edge of the scan
in Figure 10-(f), and is less accurate in Figure 10-(c) to
10-(e). Some translational error remains in the curvelet
registered pair, as visible on the left side of the scan, but
this is small in comparison to the errors observed in regis-
trations performed with the other three algorithms.

6 Conclusions and Future Work

This work presents the use of a curvelet transform
based method for improving the convergence properties
of standard registration algorithms on scans generated us-
ing Neptec Design Group’s IVIGMS 3D laser rangefinder.
The unique feature of this sensor is its ability to scan at
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Figure 9. Final map generated by integrat-
ing registered scans (intensity scaled in
y-axis from low-red to high-blue) (a)
Curvelet map. (b) G-ICP map (Only
aligned scans[0-4] are plotted to demon-
strate the effect of errors in translation
and rotation in building a dense map).

different ranges and with different scan patterns. We ex-
ploit this characteristic by registering small local scans
to a large long range scan and demonstrate using simu-
lation results that most existing scan registration methods
fail on planetary analogue terrain with scans of different
point densities and with significant occlusion effects and
weakly defined geometric features. The curvelet regis-
tration method proposed continues to perform reliably in
simulation despite these difficulties, and represents an in-
teresting approach for robust registration in challenging
environments.
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