
1

Expert MySQL Design Practices

EXTRA +

RELEASED

3

Table of Contents
First steps:

Beginner’s Guide to Building a WordPress Website
by Jeremy Holcombe

5

Self Hosted WordPress Based Website From Scratch
by Jim Gallaher

13

Step By Step building a Website with WordPress
by Lynda Gilmore

23

Installing and Creating a Simple Responsive Website
With WordPress by Gary Glasscock

31

Getting involved:
How to Enhance your Website with Plugins & Widgets
by Tish Briseno

39

Building Advanced Search Queries in WordPress
by Woo Themes

45

Customize your WordPress Theme the Right Way with
Child Themes by Ruth Maude

59

How To Speed Up Your WordPress Website by Jeffrey Zinn 63
Developing and deploying a website with WordPress
and Git by Martin Prunell

69

Wordpress: Maintain & Deploy by GJ Petersen 80
Mobile Navigation: User Friendly Techniques For Small
Devices by Kevin Donnigan

90

Holding Down the Fort: Five Tips for a More Secure
WordPress Site by Brett Widmann

97

EXTRA +
Beyond Mobile Gestures by Dr. Yildirim Kocdag 103
Expert MySQL Design Practices by Ronald Bradford 109
How to set up multi-master replication with Galera
Cluster for MySQL by Ashrif Sharif

121

Developer@Life
Mistakes by Matthew Rupert 129

EXTRA ++
Matthew Rupert – extra ebook 136

109

Expert MySQL Design Practices

EXTRA +

Expert MySQL Design
Practices
Ronald Bradford

All businesses, organizations, websites and governments use
data to present information to users. This ranges from contact
information of your company, products for sale, where you are
and where you have been, and the transactions for your bank
account. The right architectural practices for data management
ensures successful scalability of your website, application or
product managing data. There is no one way to architect a
technology solution, however, there are many ways poor design
can seriously impact the need for more hardware and resources,
and most importantly, take significant time to re-architect
causing development of new features to be affected.

Why is there a need for design practices?
Consider this question. How do you describe the need and role
of a software architect to a non technical person? This is a generic
description for the layperson.

You want to build a new home on a vacant block of land. In order
to build a lasting home with all the expectations for today’s living, a
lot of planning, design, and development occurs long before you can
move in, paint the walls, add furniture, cook, entertain and reside.

Your home is built on a foundation that is generally a solid and
rigid block of concrete that was carefully planned on a level surface.
The plumbing and electrical wiring was carefully prepared before
the concrete was set. If the foundation is not level, solid, and meeting
the design plan then no matter how much work you put into your
home, you will spend more time compensating for the deficiencies
of the foundation. Do you spend more and more time and expense
trying to compensate, or do you have to give up, tear down the failed
attempt and build again?

Designing and developing a website or a software product uses
the same approach. With software the amount of investment, the
time, and expense is far less than building a home, however the lack
of a plan and design can easily lead to a poor product that nobody
wants to use.

The availability of open source software, free hosting and ample
online resources enables anybody to take an idea and create a
software solution with very little effort. If you are building a shack on
the beach, you do not invest a lot, you accept the cracks in the walls,
the leaky roof, the lack of plumbing. Your first software application
will likely be exactly the same. Do you continue to add on, or is there
a time you decide you want to start over for your family to live at the
beach over the summer with all the expectations of a holiday resort?

110

Expert MySQL Design Practices

EXTRA +

Not all plans are the same. If you live in the Amazon, your home
is not built with concrete, and has additional different needs for
building higher off the ground to avoid tidal flows and to have room
for food storage and livestock to have shelter. One size does not suit
all. Just like there are shanty towns to million dollar penthouses in
large cities, the diversity of websites and software solutions are
analogous.

Understanding how to design and develop a successful and

scalable software solution takes practice, trial and error, and a good
amount of training. Working in a team that includes experienced
resources that have completed projects ensures you can learn from
the mistakes of others and cultivate a healthy environment for
accelerated learning.

It is unfortunate that many startups and open source projects, even
the most popular LAMP applications suffer from common design
mistakes. These practices misuse MySQL and therefore can shine
a poor light on the software and the misconception that MySQL
does not scale. Many of today’s the largest websites, all the top
telecommunication companies, online gaming sites and numerous
other companies all rely heavily on your data stored in and managed
with MySQL.

Today, many organizations have developers, IT managers and C
level executives where the most senior resource has a handful of
years of experience or less. They have little or no formal experience
in design, data structures, software development, production
deployment and testing methodologies. Combined with having
never worked in a team environment with more skilled professionals,
many software engineers today have a very limited world view of
how large and successful products have been developed in the past.
This lack of depth in skills reflects how the entire team learns and
grows and without the right historical influences too many common
beginner mistakes are repeated.

About Expert MySQL Design Practices
This new series by leading MySQL Expert Ronald Bradford helps the
software engineer understand, appreciate and develop the right
skills and techniques to build scalable software solutions. These
proven and reproducible design practices will ensure your use of
MySQL to improve performance, scalability and reliability.

These expert design practices are from 25 years of professional
experience following formal university qualifications in computer
science. All of these practices are written for use with a MySQL based
data system however most of the content in these practices predate
the existence of the MySQL product and have stood the test of time
with emerging technologies and software development approaches.
Many practices apply directly to other data stores, whether relational
or the new NoSQL products and include working with persistent and
non-persistent data storage products.

More information about the series can be found at
http://j.mp/MySQLDP

111

Expert MySQL Design Practices

EXTRA +

DP#4 The importance of using sql_mode
What if the data you retrieved from the database did not match
the data the application claimed to had successfully stored? How
comfortable would your organization feel about your skills and the
products that are being used to store important information if data
integrity was not guaranteed?

MySQL employs a terrible default technique known as silent
truncation where the product determines that it knows about your
data better than you. Never has the saying “do not assume” because
it makes an “ass” out of “u” and “me” been more applicable.

Customer Example
A HTML form for new customers provide input fields for the customer
first and last name. Good design was considered with the HTML
form client validation to ensure that each field could not exceed
20 characters in length. However, the database design is different,
where the first name is only defined as 10 characters. In most cases
this is sufficient, however for first names longer than 10 characters,
the data retrieved does not match the data that was apparently
successfully stored because there was no SQL error. The following
SQL reproduces this situation.

'523�7$%/(�,)�(;,676�GS���
&5($7(�7$%/(�GS����
�FXVWRPHUBLG��,17�816,*1('�127�18//�$872B,1&5(0(17�
�¿UVWBQDPH��9$5&+$5�����127�18//�
�ODVWBQDPH��9$5&+$5�����127�18//�
�35,0$5<�.(<��FXVWRPHUBLG�
��(1*,1(,QQR'%�'()$8/7�&+$56(7�XWI��

,16(57�,172�GS����FXVWRPHUBLG��¿UVWBQDPH��ODVWBQDPH�
���9$/8(6��18//�¶(YDQJHOLQH¶�¶-RQHV¶��
,16(57�,172�GS����FXVWRPHUBLG��¿UVWBQDPH��ODVWBQDPH�
���9$/8(6��18//�¶&KULVWRSKHU¶�¶6PLWK¶��
,16(57�,172�GS����FXVWRPHUBLG��¿UVWBQDPH��ODVWBQDPH�
���9$/8(6��18//�¶$OH[DQGHU¶�¶%HOO¶��

6(/(&7�
�)520�GS���
+-------------+------------+-----------+
�FXVWRPHUBLG��¿UVWBQDPH�_�ODVWBQDPH�_
+-------------+------------+-----------+
������(YDQJHOLQH�_�-RQHV��_
| 2 | Christophe | Smith |
������$OH[DQGHU��_�%HOO���_
+-------------+------------+-----------+
��URZV�LQ�VHW�������VHF�

As you can see, the first name of Christopher Smith is not actually
correctly stored in the database. MySQL DID NOT produce an error
message, rather it performed a silent truncation of the data.

Defining sql_mode
To demonstrate what level of data integrity you should expect with
MySQL, you must define the sql_mode configuration option. The
following example demonstrates the dynamic syntax for a given
connection and the error you should expect.

112

Expert MySQL Design Practices

EXTRA +

6(7�6(66,21�VTOBPRGH ¶675,&7B$//B7$%/(6�12B=(52B'$7(�12B=(52B,1B'$7(¶�

7581&$7(�7$%/(�GS���
,16(57�,172�GS����FXVWRPHUBLG��¿UVWBQDPH��ODVWBQDPH��
���9$/8(6��18//�¶&KULVWRSKHU¶�¶-DPHV¶��
(5525���������������'DWD�WRR�ORQJ�IRU�FROXPQ�µ¿UVWBQDPH¶�DW�URZ��
6(/(&7�
�)520�GS���
(PSW\�VHW�������VHF�

When MySQL is first installed the following configuration option
should always be added to all environments as a default.

��FDW��HWF�P\�FQI
>P\VTOG@
VTOBPRGH 675,&7B$//B7$%/(6�12B=(52B'$7(�12B=(52B,1B'$7(�12B(1*,1(B
68%67,787,21

For more information, refer to the MySQL Reference Manual for sql_mode
at http://dev.mysql.com/doc/refman/5.6/en/server-sql-mode.html

NOTE: MySQL provides many different options with sql_mode.
Careful consideration is needed to determine which options are
best for your application. Some options help in providing syntax and
compatibility with other database products however these can affect
and even break existing products written specifically for MySQL.

MySQL Warnings
The underlying cause of this loss of data integrity is how MySQL
handles success and error conditions with SQL Statements. There
are the obvious success and failure states, however MySQL has a
third state known was warnings, or more specifically success with
warnings. As the use of warnings is uncommon with other data
store products, many applications, developers and programming
languages ignore checking for warnings, or are simply unaware of
this inbuilt feature.

Using the MySQL command line client, you can get a visual
indication of warnings following an SQL statement which then help
the need for reviewing what warnings occurred.

,16(57�,172�GS����FXVWRPHUBLG��¿UVWBQDPH��ODVWBQDPH�
9$/8(6��18//�¶&KULVWRSKHU¶�¶6PLWK¶��
4XHU\�2.����URZ�DIIHFWHG����ZDUQLQJ�������VHF�

6+2:�:$51,1*6�
+---------+------+---+
�/HYHO����&RGH�_�0HVVDJH�����������_
+---------+------+---+
�:DUQLQJ�������_�'DWD�WUXQFDWHG�IRU�FROXPQ�µ¿UVWBQDPH¶�DW�URZ���_
+---------+------+---+
��URZ�LQ�VHW�������VHF�

113

Expert MySQL Design Practices

EXTRA +

When using PHP there is no indication of SQL warnings unless you
specifically check after every SQL statement. For example:
�"SKS
��FRQ� �P\VTOLBFRQQHFW�µORFDOKRVW¶��µVFRWW¶��µVDNLOD¶��µGHVLJQ¶��
�LI��P\VTOLBFRQQHFWBHUUQR����^
�SULQW�µ)DLOHG�WR�FRQQHFW�WR�0\64/��µ���P\VTOLBFRQQHFWBHUURU�����
³?Q´�
�H[LW����
�`
�LI���P\VTOLBTXHU\��FRQ��µ,16(57�,172�GS����FXVWRPHUBLG��¿UVWBQDPH��
ODVWBQDPH��µ��
�������µ9$/8(6��18//�´&KULVWRSKHU´�´+ROW´��µ���^
�SULQW�µ)DLOHG�WR�LQVHUW�GDWD��µ���P\VTOLBHUURU��FRQ����³?Q´�
�`
 LI����ZDUQLQJV� �P\VTOLBZDUQLQJBFRXQW��FRQ���!����^�
�LI���UV� �P\VTOLBTXHU\��FRQ��³6+2:�:$51,1*6´���^
���URZ� �P\VTOLBIHWFKBURZ��UV��
��SULQWI�³�V���G����V?Q´���URZ>�@���URZ>�@���URZ>�@��
��P\VTOLBIUHHBUHVXOW��UV��
 }
 }
�P\VTOLBFORVH��FRQ��
"!
The best recommendation is to avoid all situations where MySQL

can produce a warning and does not provide the best possible data
integrity.

Refer to the MySQL Reference Manual for more information on
SHOW WARNINGS at

http://dev.mysql.com/doc/refman/5.6/en/show-warnings.html

The Larger Problem
This underlying problem is actually more difficult to correct for an
existing production system than enabling the correct sql_mode
configuration option. Using the customer example, the identification
of any rows that are 10 characters in length could be valid, or may
have been truncated. There is no easy way to obtain the actual value
that was originally submitted. The use of the correct numerical data
type (DP #14) can provide a check constraint for values, however it
can also suffer from the same truncation problem. You especially
hope that this does not affect your payroll, your frequent flyer points
balance or your accumulated score from your favorite online game.

The solution is to avoid the problem of producing incorrect data.
Review
While this example is using a character data type, field truncation can
also occur with numeric and date data types. The use of applicable
sql_mode configuration settings is a critical MySQL design practice to
ensure adequate data integrity that all systems need to implement.

More References
http://ronaldbradford.com/blog/why-sql_mode-is-important-
part-i-2008-07-17/
http://ronaldbradford.com/blog/why-sql_mode-is-
important-2011-06-01/
http://ronaldbradford.com/blog/why-sql_mode-is-essentialeven-
when-not-perfect-2012-02-16/

114

Expert MySQL Design Practices

EXTRA +

http://ronaldbradford.com/blog/best-practices-additional-
usersecurity-2010-06-03/
http://ronaldbradford.com/blog/dont-assume-
dataintegrity-2010-03-06/
http://effectivemysql.com/presentation/mysql-
idiosyncrasiesthat-bite/

DP#8 The disadvantages of row at a time processing
It can be hard for software engineers to understand the following
principle, however it is very important for improving performance
and obtaining immediate scalability options. The principle is “Do
Less Work”. That is, run less SQL statements.

Just one method to achieving the execution of less SQL statements
is to eliminate Row At a Time (RAT) processing. In simple terms, do
not perform identical repeating SQL statements in a loop. Relational
algebra, and the Structure Query Language (SQL) specification
is specifically designed to work with sets of data, or as I describe,
Chunk At a Time (CAT) processing.

Customer Example
Your online social media website lets you send messages to multiple
friends at one time. You enter the message, select the friends
you want to receive the message and click send. While the user
waits a moment and gets a success message, behind the scenes
the application runs the following SQL statements to record your
request.

115

Expert MySQL Design Practices

EXTRA +

67$57�75$16$&7,21�
,16(57�,172�GS�BPHVVDJHBVHQW�PHVVDJHBLG��XVHUBLG��PHVVDJH��FUHDWHG��
9$/8(6�18//������µ+H\�JX\V��-XVW�D�UHPLQGHU��7KH�SRNHU�JDPH�ZLOO�VWDUW�RQ�)ULGD\�DW�
�SP�¶�12:����
6(/(&7�#PHVVDJHBLG�� /$67B,16(57B,'���
,16(57�,172�GS�BPHVVDJHBUHFLSLHQW�PHVVDJHBLG��IURPBXVHUBLG��WRBXVHUBLG��VWDWXV��
9$/8(6��#PHVVDJHBLG�������¶1HZ¶��
83'$7(�GS�BXVHUBQRWL¿FDWLRQ
6(7�QHZBPHVVDJH� �µ<¶�
��QHZBPHVVDJHBFRXQW� �QHZBPHVVDJHBFRXQW����
:+(5(�XVHUBLG� ����
,16(57�,172�GS�BPHVVDJHBUHFLSLHQW�PHVVDJHBLG��IURPBXVHUBLG��WRBXVHUBLG��VWDWXV��
9$/8(6��#PHVVDJHBLG�������¶1HZ¶��
83'$7(�GS�BXVHUBQRWL¿FDWLRQ
6(7�QHZBPHVVDJH� �µ<¶�
��QHZBPHVVDJHBFRXQW� �QHZBPHVVDJHBFRXQW����
:+(5(�XVHUBLG� ����
,16(57�,172�GS�BPHVVDJHBUHFLSLHQW�PHVVDJHBLG��IURPBXVHUBLG��WRBXVHUBLG��VWDWXV��
9$/8(6��#PHVVDJHBLG�������¶1HZ¶��
83'$7(�GS�BXVHUBQRWL¿FDWLRQ
6(7�QHZBPHVVDJH� �µ<¶�
��QHZBPHVVDJHBFRXQW� �QHZBPHVVDJHBFRXQW����
:+(5(�XVHUBLG� ����
,16(57�,172�GS�BPHVVDJHBUHFLSLHQW�PHVVDJHBLG��IURPBXVHUBLG��WRBXVHUBLG��VWDWXV��
9$/8(6��#PHVVDJHBLG�������¶1HZ¶��
83'$7(�GS�BXVHUBQRWL¿FDWLRQ
6(7�QHZBPHVVDJH� �µ<¶�
��QHZBPHVVDJHBFRXQW� �QHZBPHVVDJHBFRXQW����
:+(5(�XVHUBLG� ����
,16(57�,172�GS�BPHVVDJHBUHFLSLHQW�PHVVDJHBLG��IURPBXVHUBLG��WRBXVHUBLG��VWDWXV��
9$/8(6��#PHVVDJHBLG�������¶1HZ¶��
83'$7(�GS�BXVHUBQRWL¿FDWLRQ
6(7�QHZBPHVVDJH� �µ<¶�
��QHZBPHVVDJHBFRXQW� �QHZBPHVVDJHBFRXQW����
:+(5(�XVHUBLG� ����
&200,7�

116

Expert MySQL Design Practices

EXTRA +

You can define the table structures used in this example with:

'523�7$%/(�,)�(;,676�GS�BPHVVDJHBVHQW�
&5($7(�7$%/(�GS�BPHVVDJHBVHQW�
�PHVVDJHBLG�,17�816,*1('�127�18//�$872B,1&5(0(17�
�XVHUBLG��,17�816,*1('�127�18//�
�PHVVDJH�9$5&+$5������127�18//�
�FUHDWHG��'$7(7,0(�127�18//�
�35,0$5<�.(<�PHVVDJHBLG��
�.(<�XVHUBLG�
��(1*,1(,QQR'%�&+$56(7�XWI��
'523�7$%/(�,)�(;,676�GS�BPHVVDJHBUHFLSLHQW�
&5($7(�7$%/(�GS�BPHVVDJHBUHFLSLHQW�
�PHVVDJHBLG��,17�816,*1('�127�18//�
�IURPBXVHUBLG��,17�816,*1('�127�18//�
�WRBXVHUBLG��,17�816,*1('�127�18//�
�VWDWXV�(180�µ1HZ¶�¶5HDG¶�¶'HOHWHG¶��127�18//�
�35,0$5<�.(<�PHVVDJHBLG�WRBXVHUBLG��
�.(<�IURPBXVHUBLG�
��(1*,1(,QQR'%�&+$56(7�XWI��
'523�7$%/(�,)�(;,676�GS�BXVHUBQRWL¿FDWLRQ�
&5($7(�7$%/(�GS�BXVHUBQRWL¿FDWLRQ�
�XVHUBLG�,17�816,*1('�127�18//�$872B,1&5(0(17�
�QHZBPHVVDJH�(180��µ<¶�¶1¶��127�18//�'()$8/7�µ1¶�
�QHZBPHVVDJHBFRXQW�,17�816,*1('�127�18//�'()$8/7�µ�¶�
�35,0$5<�.(<�XVHUBLG�
��(1*,1(,QQR'%�&+$56(7�XWI��

The average software developer may not see the problem here. In
your test environment you executed 12 SQL statements and the code
worked fine, i.e. it met the requirements for the function. However,
while producing the correct result, this is a poor code approach.

This example shows not one repeating query, but two. Lucky you
only sent the message to a few friends. If you sent it to 200 friends,
you have a significant number more SQL statements to execute. This
time the code executes 402 SQL statements for the same feature.
The response time to the user is longer, the application connection
has to remain open longer and the database has more work to do.

This popular site is sending thousands of messages per second, so
the problem is compounded to produce an excess of unnecessary
work, not just for the database, but the application web server
connections as their are longer open requests.

The solution is straightforward. Remove repeating queries. It’s
not rocket science. This is a simple design practice I teach as the
problem is evident on most consulting engagements. Popular
products including Drupal and WordPress also implement this poor
practice and developers that extend these products propagate this
poor practice excessively. If this development approach can be easily
found in a few common functions, in it generally a clear indicator
this problem can be found throughout the code.

117

Expert MySQL Design Practices

EXTRA +

Here is the same operation performed efficiently.

67$57�75$16$&7,21�
,16(57�,172�GS�BPHVVDJHBVHQW�PHVVDJHBLG��XVHUBLG��PHVVDJH��FUHDWHG��
9$/8(6�18//������µ+H\�JX\V��-XVW�D�EHWWHU�UHPLQGHU��7KH�SRNHU�JDPH�ZLOO�VWDUW�RQ�
)ULGD\�DW��SP�¶�12:����
,16(57�,172�GS�BPHVVDJHBUHFLSLHQW�PHVVDJHBLG��IURPBXVHUBLG��WRBXVHUBLG��VWDWXV��
9$/8(6�
�/$67B,16(57B,'���������¶1HZ¶��
�/$67B,16(57B,'���������¶1HZ¶��
�/$67B,16(57B,'���������¶1HZ¶��
�/$67B,16(57B,'���������¶1HZ¶��
�/$67B,16(57B,'���������¶1HZ¶��
83'$7(�GS�BXVHUBQRWL¿FDWLRQ
6(7�QHZBPHVVDJH� �µ<¶�
��QHZBPHVVDJHBFRXQW� �QHZBPHVVDJHBFRXQW����
:+(5(�XVHUBLG�,1������������������
&200,7�

No matter how many friends you send a message to, only 3 SQL
statements are executed. In these queries we see two different
examples of leveraging the set capabilities of SQL to perform chunk
at a time processing. We discuss the benefits of the multi-values
INSERT in more detail with DP#10.

Customer Example 2
The following is a simple example for an online store processing
function. Your shipping provider provides an update of all packages
that were processed by them for a given date. For each packing
tracking code that you have recorded with orders they provide a
last known status. For example if the package were successfully
delivered, is in transit, or has been returned.

A typical and very common developer process is to open the
file, read each line looping through all the rows, and for each row
perform a single update without using transactions like:

RSHQ�¿OH
IRU�HDFK�OLQH�
do
�83'$7(�GS�BRUGHU�
�6(7�ODVWBVKLSSLQJBVWDWXV "��ODVWBVKLSSLQJBXSGDWH "
�:+(5(�WUDFNLQJBFRGH "�
done
FORVH�¿OH

As the size of data increases so does the processing time because
you execute one statement per row. When there are are 10 packages,
10 SQL statements, when there are 300,000 packages, there are
300,000 SQL statements.

This batch process does not have a user response time requirement
like online applications where performance is key to retaining your
users. However, while eliminating row at a time processing is critical
for providing a better user experience it is also just as important for
batch processing.

118

Expert MySQL Design Practices

EXTRA +

VWPW� �µ,16(57�,172�GS�BEDWFKBWUDFNLQJ��EDWFKBLG��WUDFNLQJBFRGH��VWDWXV��ODVWB
XSGDWH��9$/8(6¶
VHS� �µ¶

RSHQ�¿OH
IRU�HDFK�OLQH�
do
�VWPW� �VWPW���VHS���µ�����"��"��"�¶
�VHS� �µ¶
done
FORVH�¿OH

67$57�75$16$&7,21�
(;(&87(�,00(',$7(�VWPW�
83'$7(�GS�BRUGHU�R��GS�BEDWFKBWUDFNLQJ�EW
6(7�R�ODVWBVKLSSLQJBVWDWXV EW�VWDWXV��R�ODVWBVKLSSLQJBXSGDWH EW�ODVWBXSGDWH
:+(5(�EW�EDWFKBLG� ���
$1'�EW�WUDFNLQJBFRGH� �R�WUDFNLQJBFRGH�
��'(/(7(�)520�EDWFKBWUDFNLQJ�:+(5(�EDWFKBLG ���
&200,7��

This example removes the one query per row problem, and results
in just 2 SQL queries for processing the file regardless of size.

NOTE: In MySQL there is a limit to the length of the SQL statement
(i.e. The INSERT). This can be adjusted with the max_allowed_packet
variable which can be set per SQL statement. If you are processing
very large files, the following code would be modified to perform the
INSERT for ‘n’ records, however only a single UPDATE is still required.
See DP#10 for an example of using max_allowed_packet.

This example shows just one way to optimize this operation with
the least amount of code changes to the existing application. An even
better approach is to use the LOAD DATA INFILE syntax to populate
the batch table directly. This requires additional SQL privileges and
file system access and hence is a more complex solution.

Why is the impact of removing these repeating queries so
significant? To answer that question we need to look at the anatomy
of the execution of an SQL statement.

SQL statement workflow
To the end user viewing your website with a browser, the result of
clicking send on a webpage is a [short] delay before the expected
results are displayed or the applicable action occurs. Behind the
scenes an extensive amount of work is performed. For anybody
that has looked at a waterfall chart showing the response from a
web server, there is a far greater complexity for rendering the page
you are looking at. The following article gives a good introduction
to browser waterfall graphs -- http://www.webperformancetoday.
com/2010/07/09/waterfalls-101/. While the browser may render
100s of files, it is generally the first response, the actual page that is
involved in executing the necessary SQL statements, and the focus
of this design practice.

119

Expert MySQL Design Practices

EXTRA +

When a HTTP request is made to a web container the application
performs a number of operations to satisfy the request and produce
a response. With your application, regardless of the programming
language, access to the MySQL database is performed by SQL
statements. Each statement is passed to the language specific
MySQL connector required with your web container. For example,
when using the Apache HTTP server and the PHP programming
language, the MySQL Native Driver (mysqlnd) is the necessary
MySQL Connector. There are connectors for the popular languages
including C, C++, Java, .Net, Python, Ruby etc.

Here is a short summarized list of what occurs with all SQL

statements.

The application executes an SQL statement.
1. The MySQL client connector accepts the SQL statement then

connects across the network to the specified MySQL server
and passes the SQL statement to the MySQL server.

2. The MySQL server processes all incoming SQL statements in
individual threads, so many SQL statements can be executed
concurrently.

3. The MySQL server first parses the SQL statement for valid SQL
syntax, and produces a summarized structure of the tables and
columns used in the SQL statement.

4. The MySQL server performs a security check to ensure the
user that is requesting this SQL statement has the necessary
privileges to be able to access/modify the information
requested in the SQL statement.

5. The MySQL server then passes the parsed SQL statement to the
MySQL query optimizer. This is heart of the decision making
process where the cost-based optimizer creates a decision
tree, evaluates the various options by pruning the expensive
paths to produce the optimal Query Execution Plan (QEP).

6. The MySQL server then passes the QEP to the applicable
MySQL storage engine(s) to perform the physical work of
storing and/or retrieving the data for the given SQL statement.

7. Depending on the type of query, the MySQL server may have
to do additional work, for example to join multiple tables, sort
results etc.

8. When the MySQL server has produced the results for the SQL
statement, these results are send back across the network to
the application server.

NOTE: This is a simplified representation of the execution path of
an SQL statement in MySQL. The use of the MySQL Query Cache
discussed in QP#9 introduces additional steps and can also produce
a significantly simplified and faster execution path.

To summarize, every SQL statement is passed to the MySQL server,
the network overhead of points 2 and 9 are the most expensive
amount of time in a well tuned MySQL application. This alone is the
greatest reason to run less SQL statements.

120

Expert MySQL Design Practices

EXTRA +

Every SQL statement is parsed, checked for application permissions
and optimized before execution. This is most applicable for example
when combining INSERT statements with multiple VALUES clauses.
In addition to saving the network round trip, this overhead is also
eliminated by combining SQL statements.

Universal Application
This same principle can be applied to other products that process
data. For example, memcache is a popular product to improve
performance and scalability of your application by providing a
memory caching layer. The following figures are for an example
benchmark with 28 objects in memcache using two cloud servers in
Rackspace Cloud.

Using an individual get call 28 times sequentially in a single PHP
file, simulating a client example, the total response time of the
benchmarked ranged from 24 to 56 milliseconds. Using the same
configuration with a single multi-get call for the same 28 objects the
results ranged from 4 to 7 milliseconds.

It does not require a graph to see the 6x-10x improvement in
performance by eliminating row at a time processing. The saving
of 20-50 milliseconds may seem small, however when multiplied
in environments with thousands of concurrent users, thousands of
times per second, has a large impact on resources.

Recap
This principle shows a simple technique for reducing the number
of SQL statements by eliminate repeating queries. As a goal of “Do
Less Work”, this is only one case. DP#16 discusses several other
query saving techniques that can eliminate repeating and unwanted
queries providing improved performance.

More References
http://ronaldbradford.com/blog/the-rat-and-thecat-2006-08-24/
http://ronaldbradford.com/blog/optimizing-sql-performance-
the-art-of-elimination-2010-07-08/
http://ronaldbradford.com/blog/we-need-morecats-2009-08-22/
http://ronaldbradford.com/blog/simple-lessons-in-improving-
scalability-2011-02-16/

