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Abstract

We demonstrate that an attention-based
encoder-decoder model can be used for
sentence-level grammatical error identi-
fication for the Automated Evaluation of
Scientific Writing (AESW) Shared Task 2016.
The attention-based encoder-decoder models
can be used for the generation of corrections,
in addition to error identification, which is of
interest for certain end-user applications. We
show that a character-based encoder-decoder
model is particularly effective, outperforming
other results on the AESW Shared Task on its
own, and showing gains over a word-based
counterpart. Our final model—a combination
of three character-based encoder-decoder
models, one word-based encoder-decoder
model, and a sentence-level CNN—is the
highest performing system on the AESW
2016 binary prediction Shared Task.

1 Introduction

The recent confluence of data availability and strong
sequence-to-sequence learning algorithms has the
potential to lead to practical tools for writing sup-
port. Grammatical error identification is one such
application of potential utility as a component of a
writing support tool. Much of the recent work in
grammatical error identification and correction has
made use of hand-tuned rules and features that aug-
ment data-driven approaches, or individual classi-
fiers for human-designated subsets of errors. Given
a large, annotated dataset of scientific journal arti-
cles, we propose a fully data-driven approach for

this problem, inspired by recent work in neural ma-
chine translation and more generally, sequence-to-
sequence learning (Sutskever et al., 2014; Bahdanau
et al., 2014; Cho et al., 2014).

The Automated Evaluation of Scientific Writ-
ing (AESW) 2016 dataset is a collection of nearly
10,000 scientific journal articles (over 1 million
sentences) published between 2006 and 2013 and
annotated with corrections by professional, native
English-speaking editors. The goal of the associated
AESW Shared Task is to identify whether or not a
given unedited source sentence was corrected by the
editor (that is, whether a given source sentence has
one or more grammatical errors, broadly construed).

This system report describes our approach and
submission to the AESW 2016 Shared Task, which
establishes the current highest-performing public
baseline for the binary prediction task. Our pri-
mary contribution is to demonstrate the utility of an
attention-based encoder-decoder model for the bi-
nary prediction task. We also provide evidence of
tangible performance gains using a character-aware
version of the model, building on the character-
aware language modeling work of Kim et al. (2016).
In addition to sentence-level classification, the mod-
els are capable of intra-sentence error identification
and the generation of possible corrections. We also
obtain additional gains by using an ensemble of
a generative encoder-decoder and a discriminative
CNN classifier.

2 Background

Recent work in natural language processing has
shown strong results in sequence-to-sequence trans-



formations using recurrent neural network models
(Cho et al., 2014; Sutskever et al., 2014). Grammar
correction and error identification can be cast as a
sequence-to-sequence translation problem, in which
an unedited (source) sentence is “translated” into
a corrected (target) sentence in the same language.
Using this framework, sentence-level error identifi-
cation then simply reduces to an equality check be-
tween the source and target sentences.

The goal of the AESW shared task is to iden-
tify whether a particular sentence needs to be
edited (contains a “grammatical” error, broadly con-
strued1). The dataset consists of sentences taken
from academic articles annotated with corrections
by professional editors. Annotations are described
via insertions and deletions, which are marked with
start and end tags. Tokens to be deleted are sur-
rounded with the deletion start tag <del> and the
deletion end tag </del> and tokens to be inserted
are surrounded with the insertion start tag <ins>
and the insertion end tag </ins>. Replacements
(as shown in Figure 1) are represented as deletion-
insertion pairs. Unlike the related CoNLL-2014
Shared Task (Ng et al., 2014) data, errors are not la-
beled with fine-grained types (article or determiner
error, verb tense error, etc.).

More formally, we assume a vocabulary V
of natural language word types (some of which
have orthographic errors) and a set Q =
{<ins>,</ins>,<del>,</del>} of annotation
tags. Given a sentence s = [s1, . . . , sI ], where
si ∈ V is the i-th token of the sentence of length I ,
we seek to predict whether or not the gold, annotated
target sentence t = [t1, . . . , tJ ], where tj ∈ Q ∪ V
is the j-th token of the annotated sentence of length
J , is identical to s. We are given both s and t for
supervised training. At test time, we are only given
access to sequence s. We learn to predict sequence
t.

Evaluation of this binary prediction task is via the
F1-score, where the positive class is that indicating
an error is present in the sentence (that is, where s 6=
t)2.

1Some insertions and deletions in the shared task data rep-
resent stylistic choices, not all of which are necessarily recover-
able given the sentence or paragraph context. For the purposes
here, we refer to all such edits as “grammatical” errors.

2The 2016 Shared Task also included a probabilistic esti-

Evaluation is at the sentence level, but the
paragraph-level context for each sentence is also
provided. The paragraphs, themselves, are shuf-
fled so that full article context is not available. A
coarse academic field category is also provided for
each paragraph. Our models described below do not
make use of the paragraph context nor the field cat-
egory, and they treat each sentence independently.

Further information about the task is available in
the Shared Task report (Daudaravicius et al., 2016).

3 Related Work

While this is the first year for a shared task focusing
on sentence-level binary error identification, previ-
ous work and shared tasks have focused on the re-
lated tasks of intra-sentence identification and cor-
rection of errors. Until recently, standard hand-
annotated grammatical error datasets were not avail-
able, complicating comparisons and limiting the
choice of methods used. Given the lack of a large
hand-annotated corpus at the time, Park and Levy
(2011) demonstrated the use of the EM algorithm
for parameter learning of a noise model using error
data without corrections, performing evaluation on
a much smaller set of sentences hand-corrected by
Amazon Mechanical Turk workers.

More recent work has emerged as a result of a
series of shared tasks, starting with the Helping
Our Own (HOO) Pilot Shared Task run in 2011,
which focused on a diverse set of errors in a small
dataset (Dale and Kilgarriff, 2011), and the subse-
quent HOO 2012 Shared Task, which focused on
the automated detection and correction of preposi-
tion and determiner errors (Dale et al., 2012). The
CoNLL-2013 Shared Task (Ng et al., 2013)3 focused
on the correction of a limited set of five error types
in essays by second-language learners of English at
the National University of Singapore. The follow-up
CoNLL-2014 Shared Task (Ng et al., 2014)4 focused
on the full generation task of correcting all errors in
essays by second-language learners.

As with machine translation (MT), evaluation of

mation track. We leave for future work the adaptation of our
approach to that task.

3http://www.comp.nus.edu.sg/˜nlp/
conll13st.html

4http://www.comp.nus.edu.sg/˜nlp/
conll14st.html

http://www.comp.nus.edu.sg/~nlp/conll13st.html
http://www.comp.nus.edu.sg/~nlp/conll13st.html
http://www.comp.nus.edu.sg/~nlp/conll14st.html
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the full generation task is still an open research
area, but a subsequent human evaluation ranked the
output from the CoNLL-2014 Shared Task systems
(Napoles et al., 2015). The system of Felice et
al. (2014) ranked highest, utilizing a combination
of a rule-based system and phrase-based MT, with
re-ranking via a large web-scale language model.
Of the non-MT based approaches, the Illinois-
Columbia system was a strong performer, combin-
ing several classifiers trained for specific types of
errors (Rozovskaya et al., 2014).

4 Models

We use an end-to-end approach that does not have
separate components for candidate generation or re-
ranking that make use of hand-tuned rules or explicit
syntax, nor do we employ separate classifiers for
human-differentiated subsets of errors, unlike some
previous work for the related task of grammatical er-
ror correction.

We next introduce two approaches for the task of
sentence-level grammatical error identification: A
binary classifier and a sequence-to-sequence model
that is trained for correction but can also be used for
identification as a side-effect.

4.1 Baseline Convolutional Neural Net

To establish a baseline, we follow past work that
has shown strong performance with convolutional
neural nets (CNNs) across various domains for
sentence-level classification (Kim, 2014; Zhang and
Wallace, 2015). We utilize the one-layer CNN archi-
tecture of Kim (2014) with the publicly available5

word vectors trained on the Google News dataset,
which contains about 100 billion words (Mikolov
et al., 2013). We experiment with keeping the
word vectors static (CNN-STATIC) and fine-tuning
the vectors (CNN-NONSTATIC). The CNN models
only have access to sentence-level labels and are not
given correction-level annotations.

4.2 Encoder-Decoder

While it may seem more natural to utilize models
trained for binary prediction, such as the aforemen-
tioned CNN, or for example, the recurrent network

5https://code.google.com/archive/p/
word2vec/

approach of Dai and Le (2015), we hypothesize that
training at the lowest granularity of annotations may
be useful for the task. We also suspect that the gen-
eration of corrections is of sufficient utility for end-
users to further justify exploring models that pro-
duce corrections in addition to identification. We
thus use the Shared Task as a means of assessing
the utility of a full generation model for the binary
prediction task.

We propose two encoder-decoder architectures
for this task. Our word-based architecture (WORD)
is similar to that of Luong et al. (2015). Our
character-based models (CHAR) still make predic-
tions at the word-level, but use a CNN and a high-
way network over characters instead of word embed-
dings as the input to the encoder and decoder, as de-
picted in Figure 1. We follow past work (Sutskever
et al., 2014; Luong et al., 2015) in stacking multi-
ple recurrent neural networks (RNNs), specifically
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) networks, in both the encoder
and decoder.

Here, we model the probability of the target given
the source, p(t | s), with an encoder neural network
that summarizes the source sequence and a decoder
neural network that generates a distribution over the
target words and tags at each step given the source.

We start by describing the basic encoder and de-
coder architectures in terms of the WORD model,
and then we describe the CHAR model departures
from WORD.

Encoder The encoder reads the source sentence
and outputs a sequence of vectors, associated with
each word in the sentence, which will be selec-
tively accessed during decoding via a soft attentional
mechanism. We use a LSTM network to obtain the
hidden states hsi ∈ Rn for each time step i,

hsi = LSTM(hsi−1,x
s
i ).

For the WORD models, xsi ∈ Rm is the word em-
bedding for si, the i-th word in the source sentence.
(The analogue for the CHAR models is discussed be-
low.) The output of the encoder is the sequence of
hidden state vectors [hs1, . . . ,h

s
I ]. The initial hidden

state of the encoder is set to zero (i.e. hs0 ← 0).

Decoder The decoder is another LSTM that pro-
duces a distribution over the next target word/tag

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/


Figure 1: An illustration of the CHAR model architecture translating an example source sentence into the corrected target with

a single word replacement. A CNN (here, with three filters of width two) is applied over character embeddings to obtain a fixed

dimensional representation of a word, which is given to a highway network (in light blue, above). Output from the highway network

is used as input to a LSTM encoder/decoder. At each step of the decoder, its hidden state is interacted with the hidden states of

the encoder to produce attention weights (for each word in the encoder), which are used to obtain the context vector via a convex

combination. The context vector is combined with the decoder hidden state through a one layer MLP (yellow), after which an affine

transformation followed by a softmax is applied to obtain a distribution over the next word/tag. The MLP layer (yellow) is used as

additional input (via concatenation) for the next time step. Generation continues until the <eos> symbol is generated.

given the source vectors [hs1, . . . ,h
s
I ] and the previ-

ously generated target words/tags t<j = [t1, . . . tj ].
Let

htj = LSTM(htj−1,x
t
j)

be the summary of the target sentence up to the j-th
word, where xtj is the word embedding for tj in the
WORD models. The current target hidden state htj
is combined with each of the memory vectors in the
source to produce attention weights as follows,

uj,i = htj ·Wαh
s
i

αj,i =
expuj,i∑

k∈[1,I] expuj,k

The source vectors are multiplied with the respec-
tive attention weights, summed, and interacted with
the current decoder hidden state htj to produce a con-
text vector cj ,

vj =
∑
i∈[1,I]

αj,ih
s
i

cj = tanh(W[vj ;h
t
j ])

The probability distribution over the next

word/tag is given by applying an affine transforma-
tion to cj followed by a softmax,

p(tj+1 | s, t<j) = softmax(Ucj + b)

Finally, as in Luong et al. (2015), we feed cj as ad-
ditional input to the decoder for the next time step
by concatenating it with xtj , so the decoder equation
is modified to,

htj = LSTM(htj−1, [x
t
j ; cj−1])

This allows the decoder to have knowledge of previ-
ous (soft) alignments at each time step. The decoder
hidden state is initialized with the final hidden state
of the encoder (i.e. ht0 ← hsI ).

Character Convolutional Neural Network For
the CHAR models, instead of a word embedding, our
input for each word in the source/target sentence is
an output from a character-level convolutional neu-
ral network (CharCNN) (depicted in Figure 1). Our
character model closely follows that of Kim et al.
(2016).

Suppose word si is composed of characters
[p1, . . . , pl]. We concatenate the character embed-
dings to form the matrix Pi ∈ Rc×l, where the k-th



column corresponds to the character embedding for
pk (of dimension c).

We then apply a convolution between Pi and a
filter H ∈ Rc×w of width w, after which we add a
bias and apply a nonlinearity to obtain a feature map
fi ∈ Rl−w+1. The k-th element of fi is given by,

fi[k] = tanh(〈Pi[∗, k : k + w − 1],H〉+ b)

where 〈A,B〉 = Tr(ABT ) is the Frobenius inner
product and Pi[∗, k : k + w − 1] is the k-to-(k +
w − 1)-th column of Pi. Finally, we take the max-
over-time

zi = max
k

fi[k]

as the feature corresponding to filter H. We use mul-
tiple filters H1, . . .Hh to obtain a vector zi ∈ Rh as
the representation for a given source/target word or
tag. We have separate CharCNNs for the encoder
and decoder.

Highway Network Instead of replacing the word
embedding xi with zi, we feed zi through a highway
network (Srivastava et al., 2015). Whereas a multi-
layer perceptron produces a new set of features via
the following transformation (given input z),

ẑ = f(Wz+ b)

a highway network instead computes,

ẑ = r� f(Wz+ b) + (1− r)� z

where f is a non-linearity (in our models, ReLU),�
is the element-wise multiplication operator, and r =
σ(Wrz+br) and 1−r are called the transform and
carry gates. We feed zi into the highway network to
obtain ẑi, which is used to replace the input word
embeddings in both the encoder and the decoder.

Inference Exact inference is computationally in-
feasible for the encoder-decoder models given the
combinatorial explosion of possible output se-
quences, but we follow past work in NMT using
beam search. We do not constrain the generation
process of words outside insertion tags to words
in the source, and each low-frequency holder token
generated in the target sentence is replaced with the
source token associated with the maximum attention
weight. We use a beam size of 10 for all models,

with the exception of one of the models in the fi-
nal system combination, for which we use a beam of
size 5, as noted in Section 6.

Note that this model generates corrections, but we
are only interested in determining the existence of
any error at the sentence-level. As such, after beam
decoding, we simply check for whether there were
any corrections in the target. However, we found
that decoding in this way under-predicts sentence-
level errors. It is therefore important to calibrate the
weights associated with corrections, which we dis-
cuss in Section 5.3.

5 Experiments

5.1 Data

The AESW task data differs from previous gram-
matical error datasets in terms of scale and genre.
To the best of our knowledge, the AESW dataset is
the first large-scale, publicly available profession-
ally edited dataset of academic, scientific writing.
The training set consists of 466,672 sentences with
edits and 722,742 sentences without edits, and the
development set contains 57,340 sentences with ed-
its and 90,106 sentences without. The raw training
and development datasets are provided as annotated
sentences, t, from which the s sequences may be de-
terministically derived. There are 143,802 sentences
in the Shared Task test set with hidden gold labels,
which serve directly as s sequences.

As part of pre-processing, we treat each sentence
independently, discarding paragraph context (which
sentences, if any, were present in the same para-
graph) and domain information, which is a coarse
grouping by the field of the original journal (En-
gineering, Computer Science, Mathematics, Chem-
istry, Physics, etc.). We generate Penn Treebank
style tokenizations of the input. Case is maintained
and digits are not replaced with holder symbols. The
vocabulary is restricted to the 50,000 most com-
mon tokens, with remaining low frequency tokens
replaced with a special <unk> token. The CHAR

model can encode but not decode over open vocab-
ularies and hence we do not have any <unk> to-
kens on the source side of those models. For all
of the encoder-decoder models, we replace the low-
frequency target symbols during inference as dis-
cussed above in Section 4.2.



For development against the provided data with
labels, we set aside a 10,000 sentence sample from
the original development set for tuning, and use
the remaining 137,446 sentences for validation6.
The encoder-decoder models are given all 466,672
pairs of s and t sequences with edits, augmented
with varying numbers of pairs without edits. The
CHAR+SAMPLE and WORD+SAMPLE models are
given a random sample of 200,000 pairs without ed-
its for a total of 666,672 pairs of s and t sequences.
The CHAR+ALL and WORD+ALL models are given
all 722,742 sentences without edits for a total of
1,189,414 pairs of s and t sequences. For some of
the final testing models, we also train with the devel-
opment sentences. In these latter cases, all sequence
pairs are used. In training all of the encoder-decoder
models, as indicated in Section 5.2, we drop sen-
tences exceeding 50 tokens in length.

We also experimented with creating corrected ver-
sions of sentences for the CNN. The binary CNN
classifiers are given 1,656,086 single-sentence train-
ing examples, of which 722,742 are error-free ex-
amples (in which s = t), and the remaining ex-
amples are constructed by removing the tags from
the annotated sentences, t, to create tag-free exam-
ples that contain errors (466,672 instances) and ad-
ditional error-free examples (466,672 instances).

5.2 Training

Training (along with testing) of all models was con-
ducted on GPUs. Our models were implemented
with the Torch7 framework.

CNN Architecture and training approaches were
informed by past work in sentence-level classifica-
tion using CNNs (Kim, 2014; Zhang and Wallace,
2015). A limited grid search on the development
set determined our use of filter windows of width
3, 4, and 5 and 1000 feature maps. We trained
for 10 epochs. Training otherwise followed the ap-
proach of the correspondingly named CNN-STATIC

and CNN-NONSTATIC models of Kim (2014).

6Note that the number of sentences in the final development
set without labels posted on CodaLab (http://codalab.
org) differed from that originally posted on the AESW 2016
Shared Task website with labels.

7http://torch.ch

encoder-decoder Initial parameter settings (in-
cluding architecture decisions such as the number
of layers and embedding and hidden state sizes)
were informed by concurrent work in neural ma-
chine translation and existing work such as that of
Sutskever et al. (2014) and Luong et al. (2015). We
used 4-layer LSTMs with 1000 hidden units in each
layer. We trained for 14 epochs with a batch size of
64 and a maximum sequence length of 50. The pa-
rameters for the WORD model were uniformly ini-
tialized in [−0.1, 0.1], and those of the CHAR model
were uniformly initialized in [−0.05, 0.05]. The L2-
normalized gradients were constrained to be ≤ 5.
Our learning rate schedule started the learning rate
at 1 and halved the learning rate after each epoch
beyond epoch 10, or once the validation set perplex-
ity no longer improved. The WORD model used
1000-dimensional word embeddings. For CHAR,
the character embeddings were 25-dimensional, the
filter width was 6, the number of feature maps was
1000, and 2 highway layers were used. The max-
imum word length was 35 characters for training
CHAR. Note that we do not reverse the source (s) se-
quences, unlike some previous NMT work. Follow-
ing the work of Zaremba et al. (2014), we employed
dropout with a probability of 0.3 between the LSTM
layers.

Training both WORD and CHAR on the training
set took on the order of a few days using GPUs, with
the former being more efficient than the latter. In
practice, we used two GPUs for training CHAR due
to memory requirements.

5.3 Tuning

Post-hoc tuning was performed on the 10k held-out
portion of the development set. In terms of maximiz-
ing the F1-score, this post-hoc tuning was important
for these models, without which precision was high
and recall was low. We leave to future work alterna-
tive approaches to this type of post-hoc tuning.

For the CNN models, after training, we tuned the
decision boundary to maximize the F1-score on the
held-out tuning set. Analogously, for the encoder-
decoder models, after training the models, we tuned
the bias weights (given as input to the final softmax
layer generating the words/tags distribution) associ-
ated with the four annotation tags via a simple grid
search by iteratively running beam search on the tun-

http://codalab.org
http://codalab.org
http://torch.ch


0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Tuning Weights

0.45

0.50

0.55

0.60

0.65

0.70
F
1

Word+all
Word+sample
Char+all
Char+sample

Figure 2: F1 scores for varying values applied additively to

the bias weights of the four annotation tags on the held-out 10k

tuning subset.
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Figure 3: Precision vs. recall trade-off as the bias weights as-

sociated with the four annotation tags are varied on the held-out

10k tuning subset. The points yielding maximum F1 scores are

highlighted with black circles.

ing set. Due to the relatively high expense of decod-
ing, we employed a coarse grid search in which the
bias weights of the four annotation tags were uni-
formly varied.

6 Results

Results on the development set, excluding the 10k
tuning set, appear in Table 1. Here (and elsewhere)
RANDOM is the result of randomly assigning a sen-
tence to one of the binary classes. For the CNN clas-
sifiers, fine-tuning the word2vec embeddings im-
proves performance. The encoder-decoder mod-
els improve over the CNN classifiers, even though

the latter are provided with additional data (via
word2vec). The character-based models yield tan-
gible improvements over the word-based models.

For consistency here, we kept the beam size at 10
across models, but subsequent analysis revealed that
increasing the beam from 5 to 10 had a negligible
effect on overall performance.

Tuning results appear in Figures 2 and 3, illus-
trating the importance of adjusting the bias weights
associated with the annotation tags in balancing pre-
cision and recall to maximize the F1 score. The
models trained on all sequence pairs without ed-
its, CHAR+ALL and WORD+ALL, perform particu-
larly poorly without tuning these bias weights, yield-
ing F1 scores near that of RANDOM before tuning,
which corresponds to a weight of 0.0 in Figure 2.

The official development set posted on CodaLab
differed slightly from the original development set
provided with labels, so we include those results in
Table 2 for the encoder-decoder models. Here, eval-
uation is performed on the CodaLab server, as with
the final test submission. The overall relative perfor-
mance pattern is similar to that of the original devel-
opment set.

A comparison of our results with other shared task
submissions appears in Table 3. (Teams were al-
lowed to submit up to two results.) Our submis-
sion, COMBINATION was a simple majority vote at
the system level (for each test sentence) of 5 mod-
els8: (1) a CNN-NONSTATIC model trained with the
concatenation of the training and development sets
(and using word2vec); (2) a WORD model trained
on all sequence pairs in the training and develop-
ment sets with a beam size of 10 for decoding; (3,4)
a CHAR+SAMPLE model trained on the training set,
decoding the test set twice, each time with differ-
ent weight biases (the two highest performing via
the grid search over the tuning set) with a beam
size of 10; and (5) a CHAR model trained on all se-
quence pairs in the training and development sets,
with training suspended at epoch 9 (out of 14) and
a beam size of 5 to meet the Shared Task deadline.
For reference, we also include the CodaLab evalu-
ation for just the CHAR+SAMPLE model trained on
the training set with a beam size of 10, with the bias

8The choice of models was limited to those that were trained
and tuned in time for the Shared Task deadline.



Model Data Precision Recall F1

RANDOM N/A 0.3885 0.4992 0.4369

CNN-STATIC Training+word2vec 0.5349 0.7586 0.6274
CNN-NONSTATIC Training+word2vec 0.5365 0.7758 0.6343

WORD+ALL Training 0.5399 0.7882 0.6408
WORD+SAMPLE Training 0.5394 0.8024 0.6451
CHAR+ALL Training 0.5400 0.8048 0.6463
CHAR+SAMPLE Training 0.5526 0.8126 0.6579

Table 1: Experimental results on the development set excluding the held-out 10k tuning subset.

Model Data Precision Recall F1

RANDOM N/A 0.3921 0.5981 0.4736
WORD+ALL Training 0.5343 0.7577 0.6267
WORD+SAMPLE Training 0.5335 0.7699 0.6303
CHAR+ALL Training 0.5351 0.7749 0.6330
CHAR+SAMPLE Training 0.5469 0.7803 0.6431

Table 2: Results on the official development set. Here, RANDOM was provided by the Shared Task organizers.

Model Data Precision Recall F1

RANDOM N/A 0.3607 0.6004 0.4507

KNOWLET – 0.6241 0.3685 0.4634
NTNU-YZU – 0.6717 0.3805 0.4858
HITS – 0.3765 0.948 0.5389
UW-SU – 0.4145 0.8201 0.5507
NTNU-YZU – 0.5025 0.7785 0.6108

CHAR+SAMPLE Training 0.5112 0.7841 0.6189
COMBINATION Training+Dev+word2vec 0.5444 0.7413 0.6278

Table 3: Final submitted results on the Shared Task test set. COMBINATION was our final submitted system. RANDOM was

provided by the Shared Task organizers. For comparison, we have included the other team submissions from National Taiwan

Normal University and Yuan Ze University (NTNU-YZU), the University of Washington and Stanford University (UW-SU),

HITS (HITS), and Knowlet (KNOWLET). Teams were allowed to designate up to two final submissions. (The CHAR model trained

on the combined training and development set had not finished training by the Shared Task deadline. As such, it was not submitted,

but the partially trained model was included in COMBINATION.)

weights being those that generated the highest F1-
score on the 10k tuning set.

7 Discussion

Of particular interest, the CHAR+SAMPLE model
performs well, both in terms of performance on the
test set relative to other submissions, as well as on
the development set relative to the WORD models
and the CNN classifiers. It is possible this is due
to the ability of the CHAR models to capture some
types of orthographic errors.

The empirical results suggest that simply adding
additional already correct source-target pairs when
training the encoder-decoder models may not boost

performance, ceteris paribus, as seen in com-
paring the performance of CHAR+SAMPLE vs
WORD+SAMPLE, and CHAR+ALL vs WORD+ALL.
We leave to future work alternative approaches for
introducing additional correct (target) sentences, as
has been examined for neural machine translation
models (Sennrich et al., 2015; Gülçehre et al., 2015).

Our results provide initial evidence to support the
hypothesis that training at the lowest granularity of
annotation is a more efficient use of data than train-
ing against the binary label. In future work, we
plan to compare against sentence classification us-
ing LSTMs (Dai and Le, 2015) and convolutional
models that use correction-level annotations.



Another benefit of the encoder-decoder models is
that they can be used to generate corrections (and
identify locations of intra-sentence errors) for end-
users. However, the added generation capabilities of
the encoder-decoder models comes at the expense of
considerably longer training and testing times com-
pared to the CNN classifiers.

We found that post-hoc tuning provides a straight-
forward means of tuning the precision-recall trade-
off for these models, and we speculate (but leave to
future work for investigation) that in practice, end-
users might prefer greater emphasis placed on preci-
sion over recall.

8 Conclusion

We have presented our submission to the AESW
2016 Shared Task, suggesting, in particular, the util-
ity of a neural attention-based model for sentence-
level grammatical error identification. Our models
do not make use of hand-tuned rules, are not trained
with explicit syntactic annotations, and do not make
use of individuals classifiers designed for human-
designated subsets of errors.

For the encoder-decoder models, modeling at the
sub-word level was beneficial, even though predic-
tions were still made at the word level. It would be
of interest to push this further to eliminate the need
for an initial tokenization step, in order to general-
ize the approach to other languages, such as Chinese
and Japanese.

We plan to examine alternative approaches for
training with additional correct (target) sentences.
Inducing artificial errors to generate more incorrect
(source) sentences is also a direction we intend to
pursue.

We leave for future work an analysis of the gener-
ation quality of our encoder-decoder models on the
AESW dataset and the CoNLL-2014 Shared Task
data, as well as user studies to assess whether perfor-
mance is sufficient in practice to be useful, including
the utility of correction vs. identification.

We consider this to be just the beginning of the
development of data-driven support tools for writers,
and many areas remain to be explored.
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