
Strike (with) a Pose: Neural Networks Are Easily Fooled
by Strange Poses of Familiar Objects

Michael A. Alcorn
alcorma@auburn.edu

Qi Li
qzl0019@auburn.edu

Zhitao Gong
gong@auburn.edu

Chengfei Wang
czw0078@auburn.edu

Long Mai
malong@adobe.com

Wei-Shinn Ku
weishinn@auburn.edu

Anh Nguyen
anhnguyen@auburn.edu

Auburn University Adobe Inc.

Abstract

Despite excellent performance on stationary test sets,
deep neural networks (DNNs) can fail to generalize to
out-of-distribution (OoD) inputs, including natural, non-
adversarial ones, which are common in real-world settings.
In this paper, we present a framework for discovering DNN
failures that harnesses 3D renderers and 3D models. That
is, we estimate the parameters of a 3D renderer that cause
a target DNN to misbehave in response to the rendered im-
age. Using our framework and a self-assembled dataset of
3D objects, we investigate the vulnerability of DNNs to OoD
poses of well-known objects in ImageNet. For objects that
are readily recognized by DNNs in their canonical poses,
DNNs incorrectly classify 97% of their pose space. In addi-
tion, DNNs are highly sensitive to slight pose perturbations.
Importantly, adversarial poses transfer across models and
datasets. We find that 99.9% and 99.4% of the poses mis-
classified by Inception-v3 also transfer to the AlexNet and
ResNet-50 image classifiers trained on the same ImageNet
dataset, respectively, and 75.5% transfer to the YOLOv3 ob-
ject detector trained on MS COCO.

1. Introduction

For real-world technologies, such as self-driving
cars [10], autonomous drones [14], and search-and-rescue
robots [37], the test distribution may be non-stationary, and
new observations will often be out-of-distribution (OoD),
i.e., not from the training distribution [42]. However, ma-
chine learning (ML) models frequently assign wrong labels
with high confidence to OoD examples, such as adversarial
examples [46, 29]—inputs specially crafted by an adver-
sary to cause a target model to misbehave. But ML models
are also vulnerable to natural OoD examples [21, 2, 48, 3].
For example, when a Tesla autopilot car failed to recog-

(a) (b) (c) (d)

school bus 1.0

motor scooter 0.99

fire truck 0.99

garbage truck 0.99 punching bag 1.0 snowplow 0.92

parachute 1.0 bobsled 1.0 parachute 0.54

school bus 0.98 fireboat 0.98 bobsled 0.79

Figure 1: The Google Inception-v3 classifier [44] correctly
labels the canonical poses of objects (a), but fails to recog-
nize out-of-distribution images of objects in unusual poses
(b–d), including real photographs retrieved from the Inter-
net (d). The left 3× 3 images (a–c) are found by our frame-
work and rendered via a 3D renderer. Below each image are
its top-1 predicted label and confidence score.

nize a white truck against a bright-lit sky—an unusual view
that might be OoD—it crashed into the truck, killing the
driver [3].

Previous research has successfully used 3D graphics as
a diagnostic tool for computer vision systems [7, 31, 47,
32, 50]. To understand natural Type II classification errors
in DNNs, we searched for misclassified 6D poses (i.e., 3D
translations and 3D rotations) of 3D objects. Our results re-

veal that state-of-the-art image classifiers and object detec-
tors trained on large-scale image datasets [36, 22] misclas-
sify most poses for many familiar training-set objects. For
example, DNNs predict the front view of a school bus—
an object in the ImageNet dataset [36]—extremely well
(Fig. 1a) but fail to recognize the same object when it is too
close or flipped over, i.e., in poses that are OoD yet exist in
the real world (Fig. 1d). However, a self-driving car needs
to correctly estimate at least some attributes of an incoming,
unknown object (instead of simply rejecting it [17, 38]) to
handle the situation gracefully and minimize damage. Be-
cause road environments are highly variable [3, 2], address-
ing this type of OoD error is a non-trivial challenge.

In this paper, we propose a framework for finding OoD
errors in computer vision models in which iterative opti-
mization in the parameter space of a 3D renderer is used
to estimate changes (e.g., in object geometry and appear-
ance, lighting, background, or camera settings) that cause
a target DNN to misbehave (Fig. 2). With our framework,
we generated unrestricted 6D poses of 3D objects and stud-
ied how DNNs respond to 3D translations and 3D rotations
of objects. For our study, we built a dataset of 3D ob-
jects corresponding to 30 ImageNet classes relevant to the
self-driving car application. The code for our framework
is available at https://github.com/airalcorn2/
strike-with-a-pose. In addition, we built a simple
GUI tool that allows users to generate their own adversarial
renders of an object. Our main findings are:

• ImageNet classifiers only correctly label 3.09% of the
entire 6D pose space of a 3D object, and misclassify
many generated adversarial examples (AXs) that are
human-recognizable (Fig. 1b–c). A misclassification
can be found via a change as small as 10.31◦, 8.02◦,
and 9.17◦ to the yaw, pitch, and roll, respectively.

• 99.9% and 99.4% of AXs generated against Inception-
v3 transfer to the AlexNet and ResNet-50 image classi-
fiers, respectively, and 75.5% transfer to the YOLOv3
object detector.

• Training on adversarial poses generated by the 30 ob-
jects (in addition to the original ImageNet data) did
not help DNNs generalize well to held-out objects in
the same class.

In sum, our work shows that state-of-the-art DNNs per-
form image classification well but are still far from true
object recognition. While it might be possible to improve
DNN robustness through adversarial training with many
more 3D objects, we hypothesize that future ML models
capable of visual reasoning may instead benefit from better
incorporation of 3D information.

2. Framework
2.1. Problem formulation

Let f be an image classifier that maps an image x ∈
RH×W×C onto a softmax probability distribution over
1,000 output classes [44]. Let R be a 3D renderer that takes
as input a set of parameters φ and outputs a render, i.e., a 2D
image R(φ) ∈ RH×W×C (see Fig. 2). Typically, φ is fac-
tored into mesh vertices V , texture images T , a background
image B, camera parameters C, and lighting parameters L,
i.e., φ = {V, T,B,C, L} [19]. To change the 6D pose of
a given 3D object, we apply a 3D rotation and 3D transla-
tion, parameterized by w ∈ R6, to the original vertices V
yielding a new set of vertices V ∗.

Here, we wish to estimate only the pose transformation
parameters w (while keeping all parameters in φ fixed) such
that the rendered image R(w;φ) causes the classifier f to
assign the highest probability (among all outputs) to an in-
correct target output at index t. Formally, we attempt to
solve the below optimization problem:

w∗ = arg max
w

(ft(R(w;φ))) (1)

In practice, we minimize the cross-entropy loss L for the
target class. Eq. 1 may be solved efficiently via backpropa-
gation if both f and R are differentiable, i.e., we are able to
compute ∂L/∂w. However, standard 3D renderers, e.g.,
OpenGL [51], typically include many non-differentiable
operations and cannot be inverted [27]. Therefore, we at-
tempted two approaches: (1) harnessing a recently pro-
posed differentiable renderer and performing gradient de-
scent using its analytical gradients; and (2) harnessing a
non-differentiable renderer and approximating the gradient
via finite differences.

We will next describe the target classifier (Sec. 2.2), the
renderers (Sec. 2.3), and our dataset of 3D objects (Sec. 2.4)
before discussing the optimization methods (Sec. 3).

2.2. Classification networks

We chose the well-known, pre-trained Google Inception-
v3 [45] DNN from the PyTorch model zoo [33] as the main
image classifier for our study (the default DNN if not other-
wise stated). The DNN has a 77.45% top-1 accuracy on the
ImageNet ILSVRC 2012 dataset [36] of 1.2 million images
corresponding to 1,000 categories.

2.3. 3D renderers

Non-differentiable renderer. We chose ModernGL [1]
as our non-differentiable renderer. ModernGL is a simple
Python interface for the widely used OpenGL graphics en-
gine. ModernGL supports fast, GPU-accelerated rendering.
Differentiable renderer. To enable backpropagation
through the non-differentiable rasterization process, Kato et

https://github.com/airalcorn2/strike-with-a-pose
https://github.com/airalcorn2/strike-with-a-pose

(b) 2D image
(a) 3D scene

“school bus”

background

objects	(shapes,	textures)

3D
renderer

image
classifier

light	source

camera

forward pass

error vs. desired output

backward pass
target	network

Figure 2: To test a target DNN, we build a 3D scene (a) that consists of 3D objects (here, a school bus and a pedestrian),
lighting, a background scene, and camera parameters. Our 3D renderer renders the scene into a 2D image, which the image
classifier labels school bus. We can estimate the pose changes of the school bus that cause the classifier to misclassify by
(1) approximating gradients via finite differences; or (2) backpropagating (red dashed line) through a differentiable renderer.

al. [19] replaced the discrete pixel color sampling step with
a linear interpolation sampling scheme that admits non-zero
gradients. While the approximation enables gradients to
flow from the output image back to the renderer param-
eters φ, the render quality is lower than that of our non-
differentiable renderer (see Fig. S1 for a comparison). Here-
after, we refer to the two renderers as NR and DR.

2.4. 3D object dataset

Construction. Our main dataset consists of 30 unique 3D
object models (purchased from many 3D model market-
places) corresponding to 30 ImageNet classes relevant to
a traffic environment (Fig. S2). The 30 classes include 20
vehicles (e.g., school bus and cab) and 10 street-related
items (e.g., traffic light). See Sec. S1 for more details.

Each 3D object is represented as a mesh, i.e., a list of
triangular faces, each defined by three vertices [27]. The 30
meshes have on average 9,908 triangles (Table S1). To max-
imize the realism of the rendered images, we used only 3D
models that have high-quality 2D image textures. We did
not choose 3D models from public datasets, e.g., Object-
Net3D [52], because most of them do not have high-quality
image textures. That is, the renders of such models may be
correctly classified by DNNs but still have poor realism.
Evaluation. We recognize that a reality gap will often exist
between a render and a real photo. Therefore, we rigorously
evaluated our renders to make sure the reality gap was ac-
ceptable for our study. From ∼100 initially-purchased 3D
models, we selected the 30 highest-quality models using the
evaluation method below.

First, we quantitatively evaluated DNN predictions on
the renders. For each object, we sampled 36 unique views
(common in ImageNet) evenly divided into three sets. For
each set, we set the object at the origin, the up direction
to (0, 1, 0), and the camera position to (0, 0,−z) where

z = {4, 6, 8}. We sampled 12 views per set by start-
ing the object at a 10◦ yaw and generating a render at ev-
ery 30◦ yaw-rotation. Across all objects and all renders,
the Inception-v3 top-1 accuracy was 83.23% (compared to
77.45% on ImageNet images [44]) with a mean top-1 confi-
dence score of 0.78 (Table S2). See Sec. S1 for more details.

Second, we qualitatively evaluated the renders by com-
paring them to real photos. We produced 116 (real photo,
render) pairs via three steps: (1) we retrieved real photos of
an object (e.g., a car) from the Internet; (2) we replaced the
object with matching background content in Adobe Photo-
shop; and (3) we manually rendered the 3D object on the
background such that its pose closely matched that in the
reference photo. Fig. S3 shows example (real photo, render)
pairs. While discrepancies can be spotted in our side-by-
side comparisons, we found that most of the renders passed
our human visual Turing test if presented alone.

2.5. Background images

Previous studies have shown that image classifiers may
be able to correctly label an image when foreground ob-
jects are removed (i.e., based on only the background con-
tent) [57]. Because the purpose of our study was to under-
stand how DNNs recognize an object itself, a non-empty
background would have hindered our interpretation of the
results. Therefore, we rendered all images against a plain
background with RGB values of (0.485, 0.456, 0.406), i.e.,
the mean pixel of ImageNet images. Note that the presence
of a non-empty background should not alter our main quali-
tative findings in this paper—adversarial poses can be easily
found against real background photos (Fig. 1).

3. Methods
We will describe the common pose transformations

(Sec. 3.1) used in the main experiments. We were able to ex-

periment with non-gradient methods because: (1) the pose
transformation space R6 that we optimize in is fairly low-
dimensional; and (2) although the NR is non-differentiable,
its rendering speed is several orders of magnitude faster than
that of DR. In addition, our preliminary results showed that
the objective function considered in Eq. 1 is highly non-
convex (see Fig. 4), therefore, it is interesting to compare
(1) random search vs. (2) gradient descent using finite-
difference (FD) approximated gradients vs. (3) gradient de-
scent using the DR gradients.

3.1. Pose transformations

We used standard computer graphics transformation ma-
trices to change the pose of 3D objects [27]. Specifically, to
rotate an object with geometry defined by a set of vertices
V = {vi}, we applied the linear transformations in Eq. 2 to
each vertex vi ∈ R3:

vRi = RyRpRrvi (2)

where Ry , Rp, and Rr are the 3 × 3 rotation matrices for
yaw, pitch, and roll, respectively (the matrices can be found
in Sec. S6). We then translated the rotated object by adding
a vector T =

[
xδ yδ zδ

]>
to each vertex:

vR,Ti = T + vRi (3)

In all experiments, the center c ∈ R3 of the object was
constrained to be inside a sub-volume of the camera view-
ing frustum. That is, the x-, y-, and z-coordinates of c were
within [−s, s], [−s, s], and [−28, 0], respectively, with s be-
ing the maximum value that would keep cwithin the camera
frame. Specifically, s is defined as:

s = d · tan(θv) (4)

where θv is one half the camera’s angle of view (i.e., 8.213◦

in our experiments) and d is the absolute value of the differ-
ence between the camera’s z-coordinate and zδ .

3.2. Random search

In reinforcement learning problems, random search (RS)
can be surprisingly effective compared to more sophisti-
cated methods [41]. For our RS procedure, instead of it-
eratively following some approximated gradient to solve
the optimization problem in Eq. 1, we simply randomly se-
lected a new pose in each iteration. The rotation angles for
the matrices in Eq. 2 were uniformly sampled from (0, 2π).
xδ , yδ , and zδ were also uniformly sampled from the ranges
defined in Sec. 3.1.

3.3. zδ-constrained random search

Our preliminary RS results suggest the value of zδ
(which is a proxy for the object’s size in the rendered image)

has a large influence on a DNN’s predictions. Based on this
observation, we used a zδ-constrained random search (ZRS)
procedure both as an initializer for our gradient-based meth-
ods and as a naive performance baseline (for comparisons
in Sec. 4.4). The ZRS procedure consisted of generating 10
random samples of (xδ, yδ, θy, θp, θr) at each of 30 evenly
spaced zδ from −28 to 0.

When using ZRS for initialization, the parameter set with
the maximum target probability was selected as the starting
point. When using the procedure as an attack method, we
first gathered the maximum target probabilities for each zδ ,
and then selected the best two zδ to serve as the new range
for RS.

3.4. Gradient descent with finite-difference

We calculated the first-order derivatives via finite central
differences and performed vanilla gradient descent to itera-
tively minimize the cross-entropy loss L for a target class.
That is, for each parameter wi, the partial derivative is ap-
proximated by:

∂L
∂wi

=
L(wi + h

2)− L(wi − h
2)

h
(5)

Although we used an h of 0.001 for all parameters, a dif-
ferent step size can be used per parameter. Because radians
have a circular topology (i.e., a rotation of 0 radians is the
same as a rotation of 2π radians, 4π radians, etc.), we pa-
rameterized each rotation angle θi as (cos(θi), sin(θi))—a
technique commonly used for pose estimation [30] and in-
verse kinematics [11]—which maps the Cartesian plane to
angles via the atan2 function. Therefore, we optimized in
a space of 3 + 2× 3 = 9 parameters.

The approximate gradient ∇L obtained from Equa-
tion (5) served as the gradient in our gradient descent. We
used the vanilla gradient descent update rule:

w := w − γ∇L(w) (6)

with a learning rate γ of 0.001 for all parameters and opti-
mized for 100 steps (no other stopping criteria).

4. Experiments and results
4.1. Neural networks are easily confused by object

rotations and translations

Experiment. To test DNN robustness to object rotations
and translations, we used RS to generate samples for ev-
ery 3D object in our dataset. In addition, to explore the
impact of lighting on DNN performance, we considered
three different lighting settings: bright, medium, and dark
(example renders in Fig. S10). In all three settings, both
the directional light and the ambient light were white in
color, i.e., had RGB values of (1.0, 1.0, 1.0), and the direc-
tional light was oriented at (0,−1, 0) (i.e., pointing straight

1 0 1
0.0

0.2

0.4

0.6

x_delta

1 0 1
0.0

0.2

0.4

0.6

y_delta

20 0
0.00

0.01

0.02

0.03

0.04
z_delta

2.5 0.0 2.5
0.00

0.05

0.10

0.15

yaw

2.5 0.0 2.5
0.00

0.05

0.10

0.15

pitch

2.5 0.0 2.5
0.00

0.05

0.10

0.15

roll

(a) Incorrect classifications

1 0 1
0.0

0.2

0.4

0.6
x_delta

1 0 1
0.0

0.2

0.4

0.6

y_delta

20 0
0.00

0.02

0.04

0.06

0.08
z_delta

2.5 0.0 2.5
0.00

0.05

0.10

0.15

yaw

2.5 0.0 2.5
0.0

0.1

0.2

0.3
pitch

2.5 0.0 2.5
0.00

0.05

0.10

0.15

0.20

0.25

roll

(b) Correct classifications

Figure 3: The distributions of individual pose parameters
for (a) high-confidence (p ≥ 0.7) incorrect classifications
and (b) correct classifications obtained from the random
sampling procedure described in Sec. 3.2. xδ and yδ have
been normalized w.r.t. their corresponding s from Eq. 4.

down). The directional light intensities and ambient light
intensities were (1.2, 1.6), (0.4, 1.0), and (0.2, 0.5) for the
bright, medium, and dark settings, respectively. All other
experiments used the medium lighting setting.
Misclassifications uniformly cover the pose space. For
each object, we calculated the DNN accuracy (i.e., percent
of correctly classified samples) across all three lighting set-
tings (Table S5). The DNN was wrong for the vast majority
of samples, i.e., the median percent of correct classifications
for all 30 objects was only 3.09%. We verified the discov-
ered adversarial poses transfer to the real world by using the
3D objects to reproduce natural, misclassified poses found
on the Internet (see Sec. S3). High-confidence misclassifi-

cations (p ≥ 0.7) are largely uniformly distributed across
every pose parameter (Fig. 3a), i.e., AXs can be found
throughout the parameter landscape (see Fig. S15 for exam-
ples). In contrast, correctly classified examples are highly
multimodal w.r.t. the rotation axis angles and heavily biased
towards zδ values that are closer to the camera (Fig. 3b; also
compare Fig. S4 vs. Fig. S6). Intriguingly, for ball-like ob-
jects (not included in our main traffic dataset), the DNN was
far more accurate across the pose space (see Sec. S8).
An object can be misclassified as many different labels.
Previous research has shown that it is relatively easy to pro-
duce AXs corresponding to many different classes when
optimizing input images [46] or 3D object textures [5],
which are very high-dimensional. When finding adversarial
poses, one might expect—because all renderer parameters,
including the original object geometry and textures, are held
constant—the success rate to depend largely on the similari-
ties between a given 3D object and examples of the target in
ImageNet. Interestingly, across our 30 objects, RS discov-
ered 990/1000 different ImageNet classes (132 of which
were shared between all objects). When only considering
high-confidence (p ≥ 0.7) misclassifications, our 30 objects
were still misclassified into 797 different classes with a me-
dian number of 240 incorrect labels found per object (see
Fig. S16 and Fig. S6 for examples). Across all adversarial
poses and objects, DNNs tend to be more confident when
correct than when wrong (the median of median probabili-
ties were 0.41 vs. 0.21, respectively).

4.2. Common object classifications are shared
across different lighting settings

Here, we analyze how our results generalize across dif-
ferent lighting conditions. From the data produced in
Sec. 4.1, for each object, we calculated the DNN accuracy
under each lighting setting. Then, for each object, we took
the absolute difference of the accuracies for all three light-
ing combinations (i.e., bright vs. medium, bright vs. dark,
and medium vs. dark) and recorded the maximum of those
values. The median “maximum absolute difference” of ac-
curacies for all objects was 2.29% (compared to the me-
dian accuracy of 3.09% across all lighting settings). That is,
DNN accuracy is consistently low across all lighting condi-
tions. Lighting changes would not alter the fact that DNNs
are vulnerable to adversarial poses.

We also recorded the 50 most frequent classes for each
object under the different lighting settings (Sb, Sm, and Sd).
Then, for each object, we computed the intersection over
union score oS for these sets:

oS = 100 · |Sb ∩ Sm ∩ Sd|
|Sb ∪ Sm ∪ Sd|

(7)

The median oS for all objects was 47.10%. That is, for 15
out of 30 objects, 47.10% of the 50 most frequent classes
were shared across lighting settings. While lighting does

-3
.1

4
-2

.8
9

-2
.6

4
-2

.3
9

-2
.1

4
-1

.8
8

-1
.6

3
-1

.3
8

-1
.1

3
-0

.8
8

-0
.6

3
-0

.3
8

-0
.1

3
0.

13
0.

38
0.

63
0.

88
1.

13
1.

38
1.

63
1.

88
2.

14
2.

39
2.

64
2.

89
3.

14
roll

-3.14
-2.89
-2.64
-2.39
-2.14
-1.88
-1.63
-1.38
-1.13
-0.88
-0.63
-0.38
-0.13
0.13
0.38
0.63
0.88
1.13
1.38
1.63
1.88
2.14
2.39
2.64
2.89
3.14

pi
tc

h

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(a)

(b)

Figure 4: Inception-v3’s ability to correctly classify images
is highly localized in the rotation and translation parameter
space. (a) The classification landscape for 15 vehicle ob-
jects when altering θr and θp and holding (xδ, yδ, zδ, θy)
at (0, 0,−3, π4). Lighter regions correspond to poses with
a greater number of correctly classified vehicle objects.
Green and red circles indicate correct and incorrect classifi-
cations, respectively, corresponding to the fire truck object
poses found in (b).

have an impact on DNN misclassifications (as expected),
the large number of shared labels across lighting settings
suggests ImageNet classes are strongly associated with cer-
tain adversarial poses regardless of lighting.

4.3. Correct classifications are highly localized in
the rotation and translation landscape

To gain some intuition for how Inception-v3 responds to
rotations and translations of an object, we plotted the prob-
ability and classification landscapes for paired parameters

(e.g., Fig. 4; pitch vs. roll) while holding the other param-
eters constant. We qualitatively observed that the DNN’s
ability to recognize an object (e.g., a fire truck) in an image
varies radically as the object is rotated in the world (Fig. 4).
Further, adversarial poses often generalize across similar
objects (e.g., 83% of the sampled poses were misclassified
for all 15 four-wheeled vehicle objects).
Experiment. To quantitatively evaluate the DNN’s sen-
sitivity to rotations and translations, we tested how it re-
sponded to single parameter disturbances. For each object,
we randomly selected 100 distinct starting poses that the
DNN had correctly classified in our random sampling runs.
Then, for each parameter (e.g., yaw rotation angle), we ran-
domly sampled 100 new values1 while holding the others
constant. For each sample, we recorded whether or not the
object remained correctly classified, and then computed the
failure (i.e., misclassification) rate for a given (object, pa-
rameter) pair. Plots of the failure rates for all (object, pa-
rameter) combinations can be found in Fig. S18.

Additionally, for each parameter, we calculated the me-
dian of the median failure rates. That is, for each parameter,
we first calculated the median failure rate for all objects, and
then calculated the median of those medians for each pa-
rameter. Further, for each (object, starting pose, parameter)
triple, we recorded the magnitude of the smallest parameter
change that resulted in a misclassification. Then, for each
(object, parameter) pair, we recorded the median of these
minimum values. Finally, we again calculated the median
of these medians across objects (Table 1).
Results. As can be seen in Table 1, the DNN is highly
sensitive to all single parameter disturbances, but it is espe-
cially sensitive to disturbances along the depth (zδ), pitch
(θp), and roll (θr). To aid in the interpretation of these re-
sults, we converted the raw disturbance values in Table 1 to
image units. For xδ and yδ , the interpretable units are the
number of pixels the object shifted in the x or y directions of
the image (however, note that 3D translations are not equiv-
alent to 2D translations due to the perspective projection).

We found that a change in rotation as small as 8.02◦ can
cause an object to be misclassified (Table 1). Along the spa-
tial dimensions, a translation resulting in the object moving
as few as 2 px horizontally or 4.5 px vertically also caused
the DNN to misclassify.2 Lastly, along the z-axis, a change
in “size” (i.e., the area of the object’s bounding box) of only
5.4% can cause an object to be misclassified.

4.4. Optimization methods can effectively generate
targeted adversarial poses

Given a challenging, highly non-convex objective land-
scape (Fig. 4), we wish to evaluate the effectiveness of two

1using the random sampling procedure described in Sec. 3.2
2Note that the sensitivity of classifiers and object detectors to 2D trans-

lations has been observed in concurrent work [35, 12, 56, 6].

Parameter Fail Rate (%) Min. ∆ Int. ∆

xδ 42 0.09 2.0 px
yδ 49 0.10 4.5 px
zδ 81 0.77 5.4%
θy 69 0.18 10.31◦

θp 83 0.14 8.02◦

θr 81 0.16 9.17◦

Table 1: The median of the median failure rates and the me-
dian of the median minimum disturbances (Min. ∆) for the
single parameter sensitivity tests described in Section 4.3.
Int. ∆ converts the values in Min. ∆ to more interpretable
units. For xδ and yδ , the interpretable units are pixels. For
zδ , the interpretable unit is the percent change in the area of
the bounding box containing the object. See main text and
Fig. S18 for additional information.

different types of approximate gradients at targeted attacks,
i.e., finding adversarial examples misclassified as a target
class [46]. Here, we compare (1) random search; (2) gra-
dient descent with finite-difference gradients (FD-G); and
(3) gradient descent with analytical, approximate gradients
provided by a differentiable renderer (DR-G) [19].
Experiment. Because our adversarial pose attacks are in-
herently constrained by the fixed geometry and appearances
of a given 3D object (see Sec. 4.1), we defined the targets to
be the 50 most frequent incorrect classes found by our RS
procedure for each object. For each (object, target) pair, we
ran 50 optimization trials using ZRS, FD-G, and DR-G. All
treatments were initialized with a pose found by the ZRS
procedure and then allowed to optimize for 100 iterations.
Results. For each of the 50 optimization trials, we recorded
both whether or not the target was hit and the maximum
target probability obtained during the run. For each (ob-
ject, target) pair, we calculated the percent of target hits and
the median maximum confidence score of the target labels
(see Table 2). As shown in Table 2, FD-G is substantially
more effective than ZRS at generating targeted adversarial
poses, having both higher median hit rates and confidence
scores. In addition, we found the approximate gradients
from DR to be surprisingly noisy, and DR-G largely under-
performed even non-gradient methods (ZRS) (see Sec. S5).

4.5. Adversarial poses transfer to different image
classifiers and object detectors

The most important property of previously documented
AXs is that they transfer across ML models, enabling black-
box attacks [55]. Here, we investigate the transferability of
our adversarial poses to (a) two different image classifiers,
AlexNet [20] and ResNet-50 [16], trained on the same Im-
ageNet dataset; and (b) an object detector YOLOv3 [34]

Hit Rate (%) Target Prob.

ZRS random search 78 0.29
FD-G gradient-based 92 0.41
DR-G† gradient-based 32 0.22

Table 2: The median percent of target hits and the median
of the median target probabilities for random search (ZRS),
gradient descent with finite difference gradients (FD-G),
and DR gradients (DR-G). All attacks are targeted and ini-
tialized with zδ-constrained random search. †DR-G is not
directly comparable to FD-G and ZRS (details in Sec. S4).

trained on the MS COCO dataset [22].
For each object, we randomly selected 1,350 AXs that

were misclassified by Inception-v3 with high confidence
(p ≥ 0.9) from our untargeted RS experiments in Sec. 4.1.
We exposed the AXs to AlexNet and ResNet-50 and cal-
culated their misclassification rates. We found that al-
most all AXs transfer with median misclassification rates
of 99.9% and 99.4% for AlexNet and ResNet-50, respec-
tively. In addition, 10.1% of AlexNet misclassifications and
27.7% of ResNet-50 misclassifications were identical to the
Inception-v3 predicted labels.

There are two orthogonal hypotheses for this result.
First, the ImageNet training-set images themselves may
contain a strong bias towards common poses, omitting un-
common poses (Sec. S7 shows supporting evidence from a
nearest-neighbor test). Second, the models themselves may
not be robust to even slight disturbances of the known, in-
distribution poses.
Object detectors. Previous research has shown that ob-
ject detectors can be more robust to adversarial attacks
than image classifiers [25]. Here, we investigate how
well our AXs transfer to a state-of-the-art object detector—
YOLOv3. YOLOv3 was trained on MS COCO, a dataset
of bounding boxes corresponding to 80 different object
classes. We only considered the 13 objects that belong
to classes present in both the ImageNet and MS COCO
datasets. We found that 75.5% of adversarial poses gen-
erated for Inception-v3 are also misclassified by YOLOv3
(see Sec. S2 for more details). These results suggest the
adversarial pose problem transfers across datasets, models,
and tasks.

4.6. Adversarial training

One of the most effective methods for defending against
OoD examples has been adversarial training [15], i.e. aug-
menting the training set with AXs—also a common ap-
proach in anomaly detection [9]. We tested whether adver-
sarial training can improve DNN robustness to new poses
generated for (1) our 30 training-set 3D objects; and (2)
seven held-out 3D objects (see Sec. S9 for details). Fol-

lowing adversarial training, the accuracy of the DNN sub-
stantially increased for known objects (Table 3; 99.67% vs.
6.7%). However, the model (AT) still misclassified the ad-
versarial poses of held-out objects at an 89.2% error rate.

PT AT

Error (T) 99.67 6.7
Error (H) 99.81 89.2

High-confidence Error (T) 87.8 1.9
High-confidence Error (H) 48.2 33.3

Table 3: The median percent of misclassifications (Error)
and high-confidence (i.e., p > 0.7) misclassifications by
the pre-trained AlexNet (PT) and our AlexNet trained with
adversarial examples (AT) on random poses of training-set
objects (T) and held-out objects (H).

5. Related work
Out-of-distribution detection. OoD classes, i.e., classes
not found in the training set, present a significant challenge
for computer vision technologies in real-world settings [38].
Here, we study an orthogonal problem—correctly classify-
ing OoD poses of objects from known classes. While re-
jecting to classify is a common approach for handling OoD
examples [17, 38], the OoD poses in our work come from
known classes and thus should be assigned correct labels.
2D adversarial examples. Numerous techniques for craft-
ing AXs that fool image classifiers have been discov-
ered [55]. However, previous work has typically optimized
in the 2D input space [55], e.g., by synthesizing an entire
image [29], a small patch [18, 13], a few pixels [8], or
only a single pixel [40]. But pixel-wise changes are uncor-
related [28], so pixel-based attacks may not transfer well
to the real world [24, 26] because there is an infinitesimal
chance that such specifically crafted, uncorrelated pixels
will be encountered in the vast physical space of camera,
lighting, traffic, and weather configurations. [54] generated
spatially transformed adversarial examples that are percep-
tually realistic and more difficult to defend against, but the
technique still directly operates on pixels.
3D adversarial examples. Athalye et al. [5] used a 3D
renderer to synthesize textures for a 3D object such that,
under a wide range of camera views, the object was still
rendered into an effective AX. We also used 3D renderers,
but instead of optimizing textures, we optimized the poses
of known objects to cause DNNs to misclassify (i.e., we
kept the textures, lighting, camera settings, and background
image constant).
Concurrent work. We describe below two concurrent at-
tempts that are closely related to ours. First, Liu et al. [23]

proposed a differentiable 3D renderer and used it to perturb
both an object’s geometry and the scene’s lighting to cause a
DNN to misbehave. However, their geometry perturbations
were constrained to be infinitesimal so that the visibility of
the vertices would not change. Therefore, their result of
minutely perturbing the geometry is effectively similar to
that of perturbing textures [5]. In contrast, we performed
3D rotations and 3D translations to move an object inside a
3D space (i.e., the viewing frustum of the camera).

Second, Engstrom et al. [12] showed how simple 2D im-
age rotations and translations can cause DNNs to misclas-
sify. However, these 2D transformations still do not reveal
the type of adversarial poses discovered by rotating 3D ob-
jects (e.g., a flipped-over school bus; Fig. 1d).

To the best of our knowledge, our work is the first at-
tempt to harness 3D objects to study the OoD poses of well-
known training-set objects that cause state-of-the-art Ima-
geNet classifiers and MS COCO detectors to misclassify.

6. Discussion and conclusion
In this paper, we revealed how DNNs’ understanding of

objects like “school bus” and “fire truck” is quite naive—
they can correctly label only a small subset of the entire
pose space for 3D objects. Note that we can also find real-
world OoD poses by simply taking photos of real objects
(Sec. S3). We believe classifying an arbitrary pose into one
of the object classes is an ill-posed task, and that the adver-
sarial pose problem might be alleviated via multiple orthog-
onal approaches. The first is addressing biased data [49].
Because ImageNet and MS COCO datasets are constructed
from photographs taken by people, the datasets reflect the
aesthetic tendencies of their captors. Such biases can be
somewhat alleviated through data augmentation, specifi-
cally, by harnessing images generated from 3D renderers
[39, 4]. From the modeling view, we believe DNNs would
benefit from the incorporation of 3D information, e.g., [4].

Finally, our work introduced a new promising method
(Fig. 2) for testing computer vision DNNs by harnessing
3D renderers and 3D models. While we only optimize a sin-
gle object here, the framework could be extended to jointly
optimize lighting, background image, and multiple objects,
all in one “adversarial world”. Not only does our frame-
work enable us to enumerate test cases for DNNs, but it
also serves as an interpretability tool for extracting useful
insights about these black-box models’ inner functions.

Acknowledgements

We thank Hiroharu Kato and Nikos Kolotouros for their
valuable discussions and help with the differentiable ren-
derer. We also thank Rodrigo Sardinas for his help with
some GPU servers used in the project. AN is supported
by multiple funds from Auburn University, a donation from
Adobe Inc., and computing credits from Amazon AWS.

References
[1] Moderngl — moderngl 5.4.1 documentation. https:

//moderngl.readthedocs.io/en/stable/
index.html. (Accessed on 11/14/2018).

[2] The self-driving uber that killed a pedestrian didn’t brake.
here’s why. https://slate.com/technology/
2018/05/uber-car-in-fatal-arizona-
crash-perceived-pedestrian-1-3-seconds-
before-impact.html. (Accessed on 07/13/2018).

[3] Tesla car on autopilot crashes, killing driver, united
states news & top stories - the straits times. https:
//www.straitstimes.com/world/united-
states/tesla-car-on-autopilot-crashes-
killing-driver. (Accessed on 06/14/2018).

[4] H. A. Alhaija, S. K. Mustikovela, A. Geiger, and
C. Rother. Geometric image synthesis. arXiv preprint
arXiv:1809.04696, 2018.

[5] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthe-
sizing robust adversarial examples. In 2018 Proceedings
of the 35th International Conference on Machine Learning
(ICML), pages 284–293, 2018.

[6] A. Azulay and Y. Weiss. Why do deep convolutional net-
works generalize so poorly to small image transformations?
arXiv preprint arXiv:1805.12177, 2018.

[7] A. Borji, S. Izadi, and L. Itti. ilab-20m: A large-scale con-
trolled object dataset to investigate deep learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2221–2230, 2016.

[8] N. Carlini and D. Wagner. Towards Evaluating the Robust-
ness of Neural Networks. In 2017 IEEE Symposium on Se-
curity and Privacy (SP), 2017.

[9] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):15,
2009.

[10] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving:
Learning affordance for direct perception in autonomous
driving. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 2722–2730, 2015.

[11] B. B. Choi and C. Lawrence. Inverse Kinematics Problem
in Robotics Using Neural Networks. NASA Technical Mem-
orandum, 105869:1–23, 1992.

[12] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry.
A rotation and a translation suffice: Fooling CNNs with sim-
ple transformations, 2019.

[13] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li,
A. Prakash, A. Rahmati, and D. Song. Robust physical-
world attacks on machine learning models. arXiv preprint
arXiv:1707.08945, 2017.

[14] D. Gandhi, L. Pinto, and A. Gupta. Learning to fly by
crashing. In Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on, pages 3948–3955.
IEEE, 2017.

[15] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and
harnessing adversarial examples. In International Confer-
ence on Learning Representations, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–
778, 2016.

[17] D. Hendrycks and K. Gimpel. A baseline for detecting
misclassified and out-of-distribution examples in neural net-
works. In Proceedings of International Conference on
Learning Representations, 2017.

[18] D. Karmon, D. Zoran, and Y. Goldberg. Lavan: Lo-
calized and visible adversarial noise. arXiv preprint
arXiv:1801.02608, 2018.

[19] H. Kato, Y. Ushiku, and T. Harada. Neural 3D Mesh Ren-
derer. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems (NIPS
2012), pages 1097–1105, 2012.

[21] F. Lambert. Understanding the fatal tesla accident on autopi-
lot and the nhtsa probe. Electrek, July, 2016.

[22] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

[23] H.-T. D. Liu, M. Tao, C.-L. Li, D. Nowrouzezahrai, and
A. Jacobson. Adversarial Geometry and Lighting using a
Differentiable Renderer. arXiv preprint, 8 2018.

[24] J. Lu, H. Sibai, E. Fabry, and D. Forsyth. NO Need to
Worry about Adversarial Examples in Object Detection in
Autonomous Vehicles. arXiv preprint, 7 2017.

[25] J. Lu, H. Sibai, E. Fabry, and D. A. Forsyth. Standard de-
tectors aren’t (currently) fooled by physical adversarial stop
signs. CoRR, abs/1710.03337, 2017.

[26] Y. Luo, X. Boix, G. Roig, T. Poggio, and Q. Zhao. Foveation-
based Mechanisms Alleviate Adversarial Examples. arXiv
preprint, 11 2015.

[27] S. Marschner and P. Shirley. Fundamentals of computer
graphics. CRC Press, 2015.

[28] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and
J. Yosinski. Plug & play generative networks: Conditional
iterative generation of images in latent space. In CVPR, vol-
ume 2, page 7, 2017.

[29] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks
are easily fooled: High confidence predictions for unrec-
ognizable images. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 427–436,
2015.

[30] M. Osadchy, M. L. Miller, and Y. LeCun. Synergistic Face
Detection and Pose Estimation with Energy-Based Mod-
els. In Advances in Neural Information Processing Systems,
pages 1017–1024, 2005.

[31] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for cate-
gory specific multiview object localization. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 778–785. IEEE, 2009.

[32] N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you
get with a modern face recognition test set using only simple

https://moderngl.readthedocs.io/en/stable/index.html
https://moderngl.readthedocs.io/en/stable/index.html
https://moderngl.readthedocs.io/en/stable/index.html
https://slate.com/technology/2018/05/uber-car-in-fatal-arizona-crash-perceived-pedestrian-1-3-seconds-before-impact.html
https://slate.com/technology/2018/05/uber-car-in-fatal-arizona-crash-perceived-pedestrian-1-3-seconds-before-impact.html
https://slate.com/technology/2018/05/uber-car-in-fatal-arizona-crash-perceived-pedestrian-1-3-seconds-before-impact.html
https://slate.com/technology/2018/05/uber-car-in-fatal-arizona-crash-perceived-pedestrian-1-3-seconds-before-impact.html
https://www.straitstimes.com/world/united-states/tesla-car-on-autopilot-crashes-killing-driver
https://www.straitstimes.com/world/united-states/tesla-car-on-autopilot-crashes-killing-driver
https://www.straitstimes.com/world/united-states/tesla-car-on-autopilot-crashes-killing-driver
https://www.straitstimes.com/world/united-states/tesla-car-on-autopilot-crashes-killing-driver

features? In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2591–2598. IEEE, 2009.

[33] PyTorch. torchvision.models — pytorch master doc-
umentation. https://pytorch.org/docs/
stable/torchvision/models.html. (Accessed on
11/14/2018).

[34] J. Redmon and A. Farhadi. YOLOv3: An Incremental Im-
provement. 2018.

[35] A. Rosenfeld, R. Zemel, and J. K. Tsotsos. The elephant in
the room. arXiv preprint arXiv:1808.03305, 2018.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015.

[37] C. Sampedro, A. Rodriguez-Ramos, H. Bavle, A. Carrio,
P. de la Puente, and P. Campoy. A fully-autonomous aerial
robot for search and rescue applications in indoor environ-
ments using learning-based techniques. Journal of Intelligent
& Robotic Systems, pages 1–27, 2018.

[38] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E.
Boult. Toward open set recognition. IEEE transactions on
pattern analysis and machine intelligence, 35(7):1757–1772,
2013.

[39] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,
and R. Webb. Learning from simulated and unsupervised
images through adversarial training. In CVPR, volume 2,
page 5, 2017.

[40] J. Su, D. V. Vargas, and S. Kouichi. One Pixel Attack for
Fooling Deep Neural Networks. arXiv preprint, 2017.

[41] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley,
and J. Clune. Deep neuroevolution: genetic algorithms are a
competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint arXiv:1712.06567,
2017.

[42] M. Sugiyama, N. D. Lawrence, A. Schwaighofer, et al.
Dataset shift in machine learning. The MIT Press, 2017.

[43] X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B.
Tenenbaum, and W. T. Freeman. Pix3d: Dataset and methods
for single-image 3d shape modeling. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[45] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the Inception Architecture for Computer Vision.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2818–2826, 12 2016.

[46] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. In International Conference on Learning Repre-
sentations, 2014.

[47] G. R. Taylor, A. J. Chosak, and P. C. Brewer. Ovvv: Using
virtual worlds to design and evaluate surveillance systems.
In 2007 IEEE conference on computer vision and pattern
recognition, pages 1–8. IEEE, 2007.

[48] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In
Proceedings of the 40th International Conference on Soft-
ware Engineering, pages 303–314. ACM, 2018.

[49] A. Torralba and A. A. Efros. Unbiased look at dataset bias.
In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1521–1528. IEEE, 2011.

[50] Y. Z. S. Q. Z. X. T. S. K. Y. W. A. Y. Weichao Qiu, Fang-
wei Zhong. Unrealcv: Virtual worlds for computer vision.
ACM Multimedia Open Source Software Competition, 2017.

[51] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL pro-
gramming guide: the official guide to learning OpenGL, ver-
sion 1.2. Addison-Wesley Longman Publishing Co., Inc.,
1999.

[52] Y. Xiang, W. Kim, W. Chen, J. Ji, C. Choy, H. Su, R. Mot-
taghi, L. Guibas, and S. Savarese. Objectnet3d: A large scale
database for 3d object recognition. In European Conference
on Computer Vision, pages 160–176. Springer, 2016.

[53] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn:
A convolutional neural network for 6d object pose estimation
in cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.

[54] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song.
Spatially transformed adversarial examples. In International
Conference on Learning Representations, 2018.

[55] X. Yuan, P. He, Q. Zhu, and X. Li. Adversarial Examples:
Attacks and Defenses for Deep Learning. arXiv preprint,
2017.

[56] R. Zhang. Making convolutional networks shift-invariant
again, 2019.

[57] Z. Zhu, L. Xie, and A. L. Yuille. Object recognition with and
without objects. arXiv preprint arXiv:1611.06596, 2016.

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html

Supplementary materials for:
Strike (with) a Pose: Neural Networks Are Easily Fooled

by Strange Poses of Familiar Objects

S1. Extended description of the 3D object dataset and its evaluation
S1.1. Dataset construction

Classes. Our main dataset consists of 30 unique 3D object models corresponding to 30 ImageNet classes relevant to a traffic
environment. The 30 classes include 20 vehicles (e.g., school bus and cab) and 10 street-related items (e.g., traffic
light). See Fig. S2 for example renders of each object.
Acquisition. We collected 3D objects and constructed our own datasets for the study. 3D models with high-quality image
textures were purchased from turbosquid.com, free3d.com, and cgtrader.com.

To make sure the renders were as close to real ImageNet photos as possible, we used only 3D models that had high-quality
2D image textures. We did not choose 3D models from public datasets, e.g., ObjectNet3D [52], because most of them do not
have high-quality image textures. While the renders of such models may be correctly classified by DNNs, we excluded them
from our study because of their poor realism. We also examined the ImageNet images to ensure they contained real-world
examples qualitatively similar to each 3D object in our 3D dataset.
3D objects. Each 3D object is represented as a mesh, i.e., a list of triangular faces, each defined by three vertices [27]. The
30 meshes have on average 9, 908 triangles (see Table S1 for specific numbers).

3D object Tessellated NT Original NO

ambulance 70,228 5,348
backpack 48,251 1,689
bald eagle 63,212 2,950
beach wagon 220,956 2,024
cab 53,776 4,743
cellphone 59,910 502
fire engine 93,105 8,996
forklift 130,455 5,223
garbage truck 97,482 5,778
German shepherd 88,496 88,496
golf cart 98,007 5,153
jean 17,920 17,920
jeep 191,144 2,282
minibus 193,772 1,910
minivan 271,178 1,548

3D object Tessellated NT Original NO

motor scooter 96,638 2,356
moving van 83,712 5,055
park bench 134,162 1,972
parking meter 37,246 1,086
pickup 191,580 2,058
police van 243,132 1,984
recreational vehicle 191,532 1,870
school bus 229,584 6,244
sports car 194,406 2,406
street sign 17,458 17,458
tiger cat 107,431 3,954
tow truck 221,272 5,764
traffic light 392,001 13,840
trailer truck 526,002 5,224
umbrella 71,410 71,410

Table S1: The triangle number for the 30 objects used in our study. NO shows the number of triangles for the original 3D
objects, and NT shows the same number after tessellation. Across 30 objects, the average triangle count increases ∼ 15x
from NO = 9, 908 to NT = 147, 849.

S1.2. Manual object tessellation for experiments using the Differentiable Renderer

In contrast to ModernGL [1]—the non-differentiable renderer (NR) in our paper—the differentiable renderer (DR) by
Kato et. al [19] does not perform tessellation, a standard process to increase the resolution of renders. Therefore, the render

turbosquid.com
free3d.com
cgtrader.com

quality of the DR is lower than that of the NR. To minimize this gap and make results from the NR more comparable with
those from the DR, we manually tessellated each 3D object as a pre-processing step for rendering with the DR. Using the
manually tessellated objects, we then (1) evaluated the render quality of the DR (Sec. S1.3); and (2) performed research
experiments with the DR (i.e., the DR-G method in Sec. 4.4).

Tessellation. We used the Quadify Mesh Modifier feature (quad size of 2%) in 3ds Max 2018 to tessellate objects, increasing
the average number of faces ∼15x from 9, 908 to 147, 849 (see Table S1). The render quality after tessellation is sharper and
of a higher resolution (see Fig. S1a vs. b). Note that the NR pipeline already performs tessellation for every input 3D object.
Therefore, we did not perform manual tessellation for 3D objects rendered by the NR.

(a) DR without tessellation (b) DR with tessellation (c) NR with tessellation

Figure S1: A comparison of 3D object renders (here, ambulance and school bus) before and after tessellation.
(a) Original 3D models rendered by the differentiable renderer (DR) [19] without tessellation.
(b) DR renderings of the same objects after manual tessellation.
(c) The non-differentiable renderer (NR), i.e., ModernGL [1], renderings of the original objects.
After manual tessellation, the render quality of the DR appears to be sharper (a vs. b) and closely matches that of the NR,
which also internally tessellates objects (b vs. c).

S1.3. Evaluation

We recognize that a reality gap will often exist between a render and a real photo. Therefore, we rigorously evaluated
our renders to make sure the reality gap was acceptable for our study. From ∼100 initially-purchased 3D object models, we
selected the 30 highest-quality objects that both (1) passed a visual human Turing test; and (2) were correctly recognized

with high confidence by the Inception-v3 classifier [44].

S1.3.1 Qualitative evaluation

Here, we attempt to provide a qualitative “apples to apples” comparison between renders of our high-quality 3D objects
and photos of their real-world counterparts by generating (real photo, render) pairs. The entire process follows the standard
pose-annotation procedure (e.g., for the Pix3D [43] or YCB-Video [53] datasets) and is described below:

1. We retrieved ∼3 real photos for each 3D object (e.g., a car) from the Internet using descriptive information (e.g., a car’s
make, model, and year).

2. For each real photo, we replaced the object with matching background content via Adobe Photoshop’s Context-Aware
Fill-In feature to obtain a background-only (i.e., no foreground objects) photo B.

3. We then rendered the 3D object on the background B obtained in Step 2 and manually aligned the pose of the 3D object
so that it closely matched the reference photo.

4. Finally, we evaluated the (photo, render) pairs in a side-by-side comparison.

In total, we generated 116 (photo, render) pairs for two sets of 3D objects:

• Set 1: The 30 objects used as the 3D dataset in our main experiments (see Fig. S3). All 30 objects × 2
pairs = 60 pairs are provided at https://drive.google.com/drive/folders/1ti9zo1dzU1e9b-
mpqv0bhTrMeoeUBULm. The pose alignment was done in our GUI tool3. The scenes were rendered via the NR
(i.e., ModernGL).

• Set 2: 17 objects gathered separately from Set 1 only for evaluation. We collected the 17 extra objects because we
were able to find Internet photos of their exact real-world counterparts (e.g., photos of the 2014 Mercedes-Benz E-
Klasse Coupe). These 17 objects are of the same high quality as the 30 main objects. The pose alignment was done
in Blender, and the scenes were rendered with the DR. All 56 pairs generated from these 17 objects are provided at
https://goo.gl/8z42zL.

While discrepancies can be visually spotted in our side-by-side comparisons, we found most of the renders passed our
human visual Turing test if presented alone. That is, it is not easy for humans to tell whether a render is a real photo or not
(if they are not primed with the reference photos).

S1.3.2 Quantitative evaluation

In addition to the qualitative evaluation, we also quantitatively evaluated the Google Inception-v3 [44]’s top-1 accuracy on
renders that use either (a) an empty background or (b) real background images.

a. Evaluation of the renders of 30 objects on an empty background

Because the experiments in the main text used our self-assembled 30-object dataset (Sec. S1.1), we describe the process and
the results of our quantitative evaluation for only those objects.

We rendered the objects on a white background with RGB values of (1.0, 1.0, 1.0), an ambient light intensity of 0.9, and
a directional light intensity of 0.5. For each object, we sampled 36 unique views (common in ImageNet) evenly divided into
three sets. For each set, we set the object at the origin, the up direction to (0, 1, 0), and the camera position to (0, 0,−z)
where z = {4, 6, 8}. We sampled 12 views per set by starting the object at a 10◦ yaw and generating a render at every
30◦ yaw-rotation. Across all objects and all renders, the Inception-v3 top-1 accuracy is 83.23% (comparable to 77.45% on
ImageNet images [44]) with a mean top-1 confidence score of 0.78. The top-1 and top-5 average accuracy and confidence
scores are shown in Table S2.

3https://github.com/airalcorn2/strike-with-a-pose

https://drive.google.com/drive/folders/1ti9zo1dzU1e9b-mpqv0bhTrMeoeUBULm
https://drive.google.com/drive/folders/1ti9zo1dzU1e9b-mpqv0bhTrMeoeUBULm
https://goo.gl/8z42zL
https://github.com/airalcorn2/strike-with-a-pose

Distance 4 6 8 Average

top-1 mean accuracy 84.2% 84.4% 81.1% 83.2%
top-5 mean accuracy 95.3% 98.6% 96.7% 96.9%
top-1 mean confidence score 0.77 0.80 0.76 0.78

Table S2: The top-1 and top-5 average accuracy and confidence scores for Inception-v3 [44] on the renders of the 30 objects
in our dataset.

b. Evaluation of the renders of test objects on real backgrounds

In addition to our qualitative side-by-side (real photo, render) comparisons (Fig. S3), we quantitatively compared Inception-
v3’s predictions for our renders to those for real photos. We found a high similarity between real photos and renders for
DNN predictions. That is, across all 56 pairs (Sec. S1.3.1), the top-1 predictions match 71.43% of the time. Across all pairs,
76.06% of the top-5 labels for real photos match those for renders.

S2. Transferability from the Inception-v3 classifier to the YOLO-v3 detector

Previous research has shown that object detectors can be more robust to adversarial attacks than image classifiers [25].
Here, we investigate how well our AXs generated for an Inception-v3 classifier trained to perform 1,000-way image classifi-
cation on ImageNet [36] transfer to YOLO-v3, a state-of-the-art object detector trained on MS COCO [22].

Note that while ImageNet has 1,000 classes, MS COCO has bounding boxes classified into only 80 classes. Therefore,
among 30 objects, we only selected the 13 objects that (1) belong to classes found in both the ImageNet and MS COCO
datasets; and (2) are also well recognized by the YOLO-v3 detector in common poses.

S2.1. Class mappings from ImageNet to MS COCO

See Table S3a for 13 mappings from ImageNet labels to MS COCO labels.

S2.2. Selecting 13 objects for the transferability test

For the transferability test (Sec. S2.3), we identified the 13 objects (out of 30) that are well detected by the YOLO-v3
detector via the two tests described below.

S2.2.1 YOLO-v3 correctly classifies 93.80% of poses generated via yaw-rotation

We rendered 36 unique views for each object by generating a render at every 30◦ yaw-rotation (see Sec. S1.3.2). Note
that, across all objects, these yaw-rotation views have an average accuracy of 83.2% by the Inception-v3 classifier. We
tested them against YOLO-v3 to see whether the detector was able to correctly find one single object per image and label it
correctly. Among 30 objects, we removed those that YOLO-v3 had an accuracy ≤ 70%, leaving 13 for the transferability
test. Across the remaining 13 objects, YOLO-v3 has an accuracy of 93.80% on average (with an NMS threshold of 0.4 and a
confidence threshold of 0.5). Note that the accuracy was computed as the total number of correct labels over the total number
of bounding boxes detected (i.e., we did not measure bounding-box IoU errors). See class-specific statistics in Table S3.
This result shows that YOLO-v3 is substantially more accurate than Inception-v3 on the standard object poses generated by
yaw-rotation (93.80% vs. 83.2%).

S2.2.2 YOLO-v3 correctly classifies 81.03% of poses correctly classified by Inception-v3

Additionally, as a sanity check, we tested whether poses correctly classified by Inception-v3 transfer well to YOLO-v3.
For each object, we randomly selected 30 poses that were 100% correctly classified by Inception-v3 with high confidence
(p ≥ 0.9). The images were generated via the random search procedure in the main text experiment (Sec. 3.2). Across the
final 13 objects, YOLO-v3 was able to correctly detect one single object per image and label it correctly at a 81.03% accuracy
(see Table S3c).

(a) Label mapping (b) Accuracy on (c) Accuracy on (d) Accuracy on
yaw-rotation poses random poses adversarial poses

ImageNet MS COCO #/36 acc (%) #/30 acc (%) #/1350 acc (%) ∆acc (%)

1 park bench bench 31 86.11 22 73.33 211 15.63 57.70
2 bald eagle bird 34 94.11 24 80.00 597 44.22 35.78
3 school bus bus 36 100.00 18 60.00 4 0.30 69.70
4 beach wagon car 34 94.44 30 100.00 232 17.19 82.81
5 tiger cat cat 26 72.22 25 83.33 181 13.41 69.93
6 German shepherd dog 32 88.89 28 93.33 406 30.07 63.26
7 motor scooter motorcycle 36 100.00 18 60.00 384 28.44 31.56
8 jean person 36 100.00 29 96.67 943 69.85 26.81
9 street sign stop sign 31 86.11 26 86.67 338 25.04 61.15

10 moving van truck 36 100.00 24 80.00 15 1.11 78.89
11 umbrella umbrella 35 97.22 25 83.33 907 67.19 16.15
12 police van car 36 100.00 25 83.33 55 4.07 79.26
13 trailer truck truck 36 100.00 22 73.33 26 1.93 71.41

Average 93.80 81.03 24.50 56.53

Table S3: Adversarial poses generated for a state-of-the-art ImageNet image classifier (here, Inception-v3) transfer well to
an MS COCO detector (here, YOLO-v3). The table shows the YOLO-v3 detector’s accuracy on: (b) object poses generated
by a standard process of yaw-rotating the object; (c) random poses that are 100% correctly classified by Inception-v3 with
high confidence (p ≥ 0.9); and (d) adversarial poses, i.e., 100% misclassified by Inception-v3.

(a) The mappings of 13 ImageNet classes onto 12 MS COCO classes.
(b) The accuracy (“acc (%)”) of the YOLO-v3 detector on 36 yaw-rotation poses per object.
(c) The accuracy of YOLO-v3 on 30 random poses per object that were correctly classified by Inception-v3.
(d) The accuracy of YOLO-v3 on 1,350 adversarial poses (“acc (%)”) and the differences between c and d (“∆acc (%)”).

S2.3. Transferability test: YOLO-v3 fails on 75.5% of adversarial poses misclassified by Inception-v3

For each object, we collected 1,350 random adversarial poses (i.e., incorrectly classified by Inception-v3) generated via
the random search procedure (Sec. 3.2). Across all 13 objects and all adversarial poses, YOLO-v3 obtained an accuracy
of only 24.50% (compared to 81.03% when tested on images correctly classified by Inception-v3). In other words, 75.5%
of adversarial poses generated for Inception-v3 also escaped the detection4 of YOLO-v3 (see Table S3d for class-specific
statistics). Our result shows adversarial poses transfer well across tasks (image classification → object detection), models
(Inception-v3→ YOLO-v3), and datasets (ImageNet→MS COCO).

S3. Adversarial poses do exist in the real world

Our main experiments showed that adversarial poses exist in 3D simulation. Here, we provide evidence that adversarial
poses also transfer to and exist in the real world.

First, we collected 5 photos × 30 objects = 150 photos from the Internet that were misclassified by the Inception-v3
classifier and repeated the same experiment as described in Sec. S1.3.1 to produce (real photo, render) pairs (see Fig. S20).
We found that when the real photos appear out-of-distribution, 98.3% of the renders are also misclassified. However, when
the real failure photos appear ImageNet-like, ∼45% of the renders are correctly classified (i.e., our 3D objects are easier to
recognize than their real-world counterparts). This transferability result confirms the high realism of our 3D object renders
and suggests that the adversarial poses do exist in the real world.

Second, we found that real-world, high-confidence adversarial poses can be found by simply taking photos from strange
angles of a familiar object. We took real-world videos of four example objects (cellular phone, jeans, street sign,

4We were not able to check how many misclassification labels by YOLO-v3 were the same as those by Inception-v3 because only a small set of 80 the
MS COCO classes overlap with the 1,000 ImageNet classes.

and umbrella) and extracted the misclassified frames from the videos. While Inception-v3 [44] correctly recognized these
objects in canonical poses, the model misclassified the same objects in unusual poses (Fig. S17).

Figure S2: We tested Inception-v3’s predictions on the renders generated by the differentiable renderer (DR). We show here
the top-5 predictions for one random pose per object. However, in total, we generated 36 poses for each object by (1) varying
the object distance to the camera; and (2) rotating the object around the yaw axis. See https://goo.gl/7LG3Cy for all
the renders and DNN top-5 predictions. Across all 30 objects, on average, Inception-v3 correctly recognizes 83.2% of the
renders. See Sec. S1.3.2 for more details.

https://goo.gl/7LG3Cy

Figure S3: 12 random pairs of real photos (left) and renders (right) among 116 pairs produced in total for our 3D object
rendering evaluation (Sec. S1.3.1). The renders are produced by ModernGL. More comparison images are available at
https://drive.google.com/drive/folders/1ti9zo1dzU1e9b-mpqv0bhTrMeoeUBULm. While discrep-
ancies can be spotted in our side-by-side comparisons, we found that most of the renders passed our human visual Turing test
if presented alone.

https://drive.google.com/drive/folders/1ti9zo1dzU1e9b-mpqv0bhTrMeoeUBULm

Figure S4: For each object, we collected 30 high-confidence (p ≥ 0.9) correctly classified images by Inception-v3. The
images were generated via the random search procedure. We show here a grid t-SNE of AlexNet [20] fc7 features for all 30
objects × 30 images = 900 images. Correctly classified images for each object tend to be similar and clustered together. The
original, high-resolution figure is available at https://goo.gl/TGgPgB.
To better visualize the clusters, we plotted the same t-SNE but used unique colors to denote the different 3D objects in the
renders (Fig. S5). Compare and contrast this plot with the t-SNE of only misclassified poses (Figs. S6 & S7).

https://goo.gl/TGgPgB

Figure S5: The same t-SNE found in Fig. S4 but using a unique color to denote the 3D object found in each rendered image.
Here, each color also corresponds to a unique Inception-v3 label. Compare and contrast this plot with the t-SNE of only
misclassified poses (Fig. S7). The original, high-resolution figure is available at https://goo.gl/TGgPgB.

https://goo.gl/TGgPgB

Figure S6: Following the same process as described in Fig. S4, we show here a grid t-SNE of generated adversarial poses.
For each object, we assembled 30 high-confidence (p ≥ 0.9) adversarial examples generated via a random search against
Inception-v3 [44]. The t-SNE was generated from the AlexNet [20] fc7 features for 30 objects × 30 images = 900 images.
The original, high-resolution figure is available at https://goo.gl/TGgPgB. Adversarial poses were found to be both
common across different objects (e.g., the top-right corner) and unique to specific objects (e.g., the traffic sign and
umbrella objects in the middle left).
To better understand how similar misclassified poses can be found across many objects, see Fig. S7. Compare and contrast
this plot with the t-SNE of correctly classified poses (Figs. S4 & S5).

https://goo.gl/TGgPgB

Figure S7: The same t-SNE as that in Fig. S6 but using a unique color to denote the 3D object used to render the adversarial
image (i.e., Inception-v3’s misclassification labels are not shown here). The original, high-resolution figure is available at
https://goo.gl/TGgPgB.
Compare and contrast this plot with the t-SNE of correctly classified poses (Fig. S5).

https://goo.gl/TGgPgB

S4. Experimental setup for the differentiable renderer
For the gradient descent method (DR-G) that uses the approximate gradients provided by the differentiable renderer [19]

(DR), we set up the rendering parameters in the DR to closely match those in the NR. However, there were still subtle
discrepancies between the DR and the NR that made the results (DR-G vs. FD-G in Sec. 4.4) not directly comparable.
Despite these discrepancies (described below), we still believe the FD gradients are more stable and informative than the DR
gradients (i.e., FD-G outperformed DR-G).5

DR setup. For all experiments with the DR, the camera was centered at (0, 0, 16) with an up direction (0, 1, 0). The object’s
spatial location was constrained such that the object center was always within the frame. The depth values were constrained
to be within [−14, 14]. Similar to experiments with the NR, we used the medium lighting setting. The ambient light color
was set to white with an intensity 1.0, while the directional light was set to white with an intensity 0.4. Fig. S8 shows an
example school bus rendered under this medium lighting at different distances.

(a) School bus at (0, 0,−14) (b) School bus at (0, 0, 0) (c) School bus at (0, 0, 14)

Figure S8: School bus rendered by the DR at different distances.

The known discrepancies between the experimental setups of FD-G (with the NR) vs. DR-G (with the DR) are:

1. The exact medium lighting parameters for the NR described in the main text (Sec. 4.1) did not produce similar light-
ing effects in the DR. Therefore, the DR lighting parameters described above were the result of manually tuning to
qualitatively match the effect produced by the NR medium lighting parameters.

2. While the NR uses a built-in tessellation procedure that automatically tessellates input objects before rendering, we had
to perform an extra pre-processing step of manually tessellating each object for the DR. While small, a discrepancy still
exists between the two rendering results (Fig. S1b vs. c).

S5. Gradient descent with the DR gradients
In preliminary experiments (data not shown), we found the DR gradients to be relatively noisy when using gradient descent

to find targeted adversarial poses (i.e., DR-G experiments). To mitigate this problem, we experimented with (1) parameter
augmentation (Sec. S5.1); and (2) multi-view optimization (Sec. S5.2). In short, we found parameter augmentation helped
and used it in DR-G. However, when using the DR, we did not find multiple cameras improved optimization performance
and thus only performed regular single-view optimization for DR-G.

S5.1. Parameter augmentation

We performed gradient descent using the DR gradients (DR-G) in an augmented parameter space corresponding to 50
rotations and one translation to be applied to the original object vertices. That is, we backpropagated the DR gradients into

5In preliminary experiments with only the DR (not the NR), we also empirically found FD-G to be more stable and effective than DR-G (data not shown).

the parameters of these pre-defined transformation matrices. Note that DR-G is given the same budget of 100 steps per
optimization run as FD-G and ZRS for comparison in Sec. 4.4.

The final transformation matrix is constructed by a series of rotations followed by one translation, i.e.,

M = T ·Rn−1Rn−2 · · ·R0

where M is the final transformation matrix, Ri the rotation matrices, and T the translation matrix.
We empirically found that increasing the number of rotations per step helped (a) improve the success rate of hitting the

target labels; (b) increase the maximum confidence score of the found AXs; and (c) reduce the number of steps, i.e., led to
faster convergence (see Fig. S9). Therefore, we empirically chose n = 50 for all DR-G experiments reported in the main
text.

0 20 40 600.0

0.2

0.4

0.6

0.8

1.0

(a) y-axis: success rate

0 20 40 600.0

0.2

0.4

0.6

0.8

1.0

(b) y-axis: max confidence

0 20 40 600

20

40

60

80

100

(c) y-axis: mean number of steps

Figure S9: We found that increasing the number of rotations (displayed in x-axes) per step helped:
(a) improve the success rate of hitting the target labels;
(b) increase the maximum confidence score of the found adversarial examples;
(c) reduce the average number of steps required to find an AX, i.e., led to faster convergence.

S5.2. Multi-view optimization

Additionally, we attempted to harness multiple views (from multiple cameras) to increase the chance of finding a target
adversarial pose. Multi-view optimization did not outperform single-view optimization using the DR in our experiments.
Therefore, we only performed regular single-view optimization for DR-G. We briefly document our negative results below.

Instead of backpropagating the DR gradient to a single camera looking at the object in the 3D scene, one may set up
multiple cameras, each looking at the object from a different angle. This strategy intuitively allows gradients to still be
backpropagated into the vertices that may be occluded in one view but visible in some other view. We experimented with six
cameras and backpropagating to all cameras in each step. However, we only updated the object following the gradient from
the view that yielded the lowest loss among all views. One hypothesis is that having multiple cameras might improve the
chance of hitting the target.

In our experiments with the DR using 100 steps per optimization run, multi-view optimization performed worse than
single-view in terms of both the success rate and the number of steps to converge. We did not compare all 30 objects due to
the expensive computational cost, and only report the results from optimizing two objects bald eagle and tiger cat in
Table S4. Intuitively, multi-view optimization might outperform single-view optimization given a large enough number of
steps.

bald eagle tiger cat

Steps Success rate Steps Success rate

Single-view 71.80 0.44 90.70 0.15
Multi-view 81.28 0.23 96.84 0.04

Table S4: Multi-view optimization performed worse than single-view optimization in both (a) the number of steps to converge
and (b) success rates. We show here the results of two runs of optimizing with the bald eagle and tiger cat objects. The
results are averaged over 50 target labels ×50 trials = 2, 500 trials. Each optimization trial for both single- and multi-view
settings is given the budget of 100 steps.

S6. 3D transformation matrix
A rotation of θ around an arbitrary axis (x, y, z) is given by the following homogeneous transformation matrix.

R =

∣∣∣∣∣∣∣∣
xx(1− c) + c xy(1− c)− zs xz(1− c) + ys 0
xy(1− c) + zs yy(1− c) + c yz(1− c)− xs 0
xz(1− c)− ys yz(1− c) + xs yz(1− c) + c 0
0 0 0 1

∣∣∣∣∣∣∣∣ (8)

where s = sin θ, c = cos θ, and the axis is normalized, i.e., x2 + y2 + z2 = 1. Translation by a vector (x, y, z) is given by
the following homogeneous transformation matrix.

T =

∣∣∣∣∣∣∣∣
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

∣∣∣∣∣∣∣∣ (9)

Note that in the optimization experiments with random search (RS) and finite-difference gradients (FD-G), we dropped
the homogeneous component for simplicity, i.e., the rotation matrices of yaw, pitch, and roll are all 3× 3. The homogeneous
component is only necessary for translation, which can be achieved via simple vector addition. However, in DR-G, we used
the homogeneous component because we had some experiments interweaving translation and rotation. The matrix represen-
tation was more convenient for the DR-G experiments. As they are mathematically equivalent, this arbitrary implementation
choice should not alter our results.

Object Accuracy (%)

ambulance 3.64
backpack 8.63
bald eagle 13.26
beach wagon 0.60
cab 2.64
cell phone 14.97
fire engine 4.31
forklift 5.20
garbage truck 4.88
German shepherd 9.61

Object Accuracy (%)

golfcart 2.14
jean 2.71
jeep 0.29
minibus 0.83
minivan 0.66
motor scooter 20.49
moving van 0.45
park bench 5.72
parking meter 1.27
pickup 0.86

Object Accuracy (%)

police van 0.95
recreational vehicle 2.05
school bus 3.48
sports car 2.50
street sign 26.32
tiger cat 7.36
tow truck 0.87
traffic light 14.95
trailer truck 1.27
umbrella 49.88

Table S5: The percent of three million random samples that were correctly classified by Inception-v3 [44] for each object.
That is, for each lighting setting in {bright,medium, dark}, we generated 106 samples. See Sec. 3.2 for details on the
sampling procedure.

(a) bright (b) medium (c) dark

Figure S10: Renders of the school bus object using the NR [1] at three different lighting settings. The directional light
intensities and ambient light intensities were (1.2, 1.6), (0.4, 1.0), and (0.2, 0.5) for the bright, medium, and dark settings,
respectively.

S7. Adversarial poses were not found in ImageNet classes via a nearest-neighbor search
We performed a nearest-neighbor search to check whether adversarial poses generated (in Sec. 4.1) can be found in the

ImageNet dataset.

Retrieving nearest neighbors from a single class corresponding to the 3D object. We retrieved the five nearest training-
set images for each adversarial pose (taken from a random selection of adversarial poses) using the fc7 feature space from
a pre-trained AlexNet [20]. The Euclidean distance was used to measure the distance between two fc7 feature vectors. We
did not find qualitatively similar images despite comparing all ∼1,300 class images corresponding to the 3D object used
to generate the adversarial poses (e.g., cellphone, school bus, and garbage truck in Figs. S11, S12, and S13). This
result supports the hypothesis that the generated adversarial poses are out-of-distribution.

Searching from the validation set. We also searched the entire 50,000-image validation set of ImageNet. Interestingly, we
found the top-5 nearest images were sometimes from the same class as the targeted misclassification label (see Fig. S19).

Figure S11: For each adversarial example (leftmost), we retrieved the five nearest neighbors (five rightmost photos) from all
∼1,300 images in the cellular phone class. The Euclidean distance between a pair of images was computed in the fc7
feature space of a pre-trained AlexNet [20]. The nearest photos from the class are mostly different from the adversarial poses.
This result supports the hypothesis that the generated adversarial poses are out-of-distribution. The original, high-resolution
figure is available at https://goo.gl/X31VXh.

S8. DNN failure rates for ball-like objects

To investigate the role of object geometry in DNN pose failures, we re-ran our random search procedure on five purchased
ball objects: three different soccer balls, a volleyball, and a ping-pong ball. The error rates were 4%, 4%, 5%, 47%, and 48%,
respectively; however, the incorrect labels for the volleyball and ping-pong ball objects were qualitatively often reasonable
(e.g., golf ball and billiard ball for the ping-pong ball). Clearly, the DNN can gracefully handle much of the
pose space for these “easy” objects, but whether this robustness is due to the specific features of the classes (e.g., black and
white corners where hexagons meet on a soccer ball) or data variability in the training set requires further research.

https://goo.gl/X31VXh

Figure S12: For each adversarial example (leftmost), we retrieved the five nearest neighbors (five rightmost photos) from all
∼1,300 images in the school bus class. The Euclidean distance between a pair of images was computed in the fc7 feature
space of a pre-trained AlexNet [20]. The nearest photos from the class are mostly different from the adversarial poses. This
result supports the hypothesis that the generated adversarial poses are out-of-distribution. The original, high-resolution figure
is available at https://goo.gl/X31VXh.

S9. Adversarial training

Training. We augmented the original 1,000-class ImageNet dataset with an additional 30 AX classes. Each AX class
included 1,350 randomly selected high-confidence (p ≥ 0.9) misclassified images split 1,300/50 into training/validation sets.
Our AlexNet trained on the augmented dataset (AT) achieved a top-1 accuracy of 0.565 for the original ImageNet validation
set and a top-1 accuracy6 of 0.967 for the AX validation set.
Evaluation. To evaluate our AT model vs. a pre-trained AlexNet (PT), we used RS to generate 106 samples for each of our
3D training objects. In addition, we collected seven held-out 3D objects not included in the training set that belong to the

6In this case, a classification was “correct” if it matched either the original ImageNet positive label or the negative, object label.

https://goo.gl/X31VXh

Figure S13: For each adversarial example (leftmost), we retrieved the five nearest neighbors (five rightmost photos) from all
∼1,300 images in the garbage truck class. The Euclidean distance between a pair of images was computed in the fc7
feature space of a pre-trained AlexNet [20]. The nearest photos from the class are mostly different from the adversarial poses.
This result supports the hypothesis that the generated adversarial poses are out-of-distribution. The original, high-resolution
image is available at https://goo.gl/X31VXh.

same classes as seven training-set objects (example renders in Fig. S14). We followed the same sampling procedure for the
held-out objects to evaluate whether our AT generalizes to unseen objects.

For each of these 30 + 7 = 37 objects and for both the PT and our AT, we recorded two statistics: (1) the percent of
misclassifications, i.e. errors; and (2) the percent of high-confidence (i.e., p ≥ 0.7) misclassifications (Table 3).

We hypothesize that augmenting the dataset with many more 3D objects may improve DNN generalization on held-out
objects. Here, AT might have used (1) the grey background to separate the 1,000 original ImageNet classes from the 30 AX
classes; and (2) some non-geometric features sufficient to discriminate among only 30 objects. However, as suggested by
our work (Sec. 2.4), acquiring a large-scale, high-quality 3D object dataset is costly and labor-intensive. Currently, no such
public dataset exists, and thus we could not test this hypothesis.

https://goo.gl/X31VXh

Figure S14: In Sec. S9, we trained an AlexNet classifier on the 1000-class ImageNet dataset augmented with 30 additional
classes that contain adversarial poses corresponding to the 30 known objects used in the main experiments. We also tested
this model on 7 held-out objects. Here, we show the renders of 7 pairs of (training-set object, held-out object). The 3D
objects are rendered by the NR [1] at a distance of (0, 0, 4). Below each image is its top-5 predictions by Inception-v3 [44].
The original, high-resolution figure is available at https://goo.gl/Li1eKU.

https://goo.gl/Li1eKU

(a) ambulance

(b) school bus

(c) street sign

Figure S15: 30 random adversarial examples misclassified by Inception-v3 [44] with high confidence (p ≥ 0.9) generated
from 3 objects: ambulance, school bus, and street sign. Below each image is the top-1 prediction label and confi-
dence score. The original, high-resolution figures for all 30 objects are available at https://goo.gl/rvDzjy.

https://goo.gl/rvDzjy

Figure S16: For each target class (e.g., accordion piano), we show five adversarial poses generated from five unique 3D
objects. Adversarial poses are interestingly found to be homogeneous for some classes, e.g., safety pin. However, for
most classes, the failure modes are heterogeneous. The original, high-resolution figure is available at https://goo.gl/
37HYcE.

https://goo.gl/37HYcE
https://goo.gl/37HYcE

(a) cellular phone

(b) jeans

(c) street sign

(d) umbrella

Figure S17: Real-world, high-confidence adversarial poses can be found by taking photos from strange angles of a familiar
object, here, cellular phone, jeans, street sign, and umbrella. While Inception-v3 [44] can correctly predict the
object in canonical poses (the top-left image in each panel), the model misclassified the same objects in unusual poses.
Below each image is its top-1 prediction label and confidence score. We took real-world videos of these four objects and
extracted these misclassified poses from the videos. The original, high-resolution figures are available at https://goo.
gl/zDWcjG.

https://goo.gl/zDWcjG
https://goo.gl/zDWcjG

umbrellatrailer trucktraffic lighttow trucktiger catstreet signsports carschool busrecreational vehiclepolice vanpickupparking meterpark benchmoving vanmotor scooterminivanminibusjeepjeangolfcartgerman shepherdgarbage truckforkliftfire enginecellular telephonecabbeach wagonbald eaglebackpackambulance
x_delta yaw

umbrellatrailer trucktraffic lighttow trucktiger catstreet signsports carschool busrecreational vehiclepolice vanpickupparking meterpark benchmoving vanmotor scooterminivanminibusjeepjeangolfcartgerman shepherdgarbage truckforkliftfire enginecellular telephonecabbeach wagonbald eaglebackpackambulance
y_delta pitch

0 20 40 60 80 100
Fail Rate

umbrellatrailer trucktraffic lighttow trucktiger catstreet signsports carschool busrecreational vehiclepolice vanpickupparking meterpark benchmoving vanmotor scooterminivanminibusjeepjeangolfcartgerman shepherdgarbage truckforkliftfire enginecellular telephonecabbeach wagonbald eaglebackpackambulance
z_delta

0 20 40 60 80 100
Fail Rate

roll

Figure S18: Inception-v3 [44] is sensitive to single parameter disturbances of object poses that had originally been correctly
classified. For each object, we found 100 correctly classified 6D poses via a random sampling procedure (Sec. 4.3). Given
each such pose, we re-sampled one parameter (shown on top of each panel, e.g., yaw) 100 times, yielding 100 classifications,
while holding the other five pose parameters constant. In each panel, for each object (e.g., ambulance), we show an error
plot for all resultant 100 × 100 = 10, 000 classifications. Each circle denotes the mean misclassification rate (“Fail Rate”)
for each object, while the bars enclose one standard deviation. Across all objects, Inception-v3 is more sensitive to changes
in yaw, pitch, roll, and depth (“z delta”) than spatial changes (“x delta” and “y delta”).

Figure S19: For each adversarial example (leftmost), we retrieved the five nearest neighbors (five rightmost photos) from the
50,000-image ImageNet validation set. The Euclidean distance between a pair of images was computed in the fc7 feature
space of a pre-trained AlexNet [20]. Below each adversarial example (AX) is its Inception-v3 [44] top-1 prediction label and
confidence score. The associated ground-truth ImageNet label is beneath each retrieved photo. Here, we show an interesting,
cherry-picked collection of cases where the nearest photos (in the fc7 feature space) are also qualitatively similar to the
reference AX and sometimes come from the exact same class as the AX’s predicted label. More examples are available at
https://goo.gl/8ib2PR.

https://goo.gl/8ib2PR

(a) ambulance

(b) street sign

(c) tow truck

Figure S20: Adversarial poses do transfer to the real world. We collected a set of 150 real photos (5 photos × 30 objects)
from the Internet that caused the Inception-v3 classifier to misclassify. For each pair, given the real, misclassified photo
(left), we produced a render of the corresponding object (right) and gathered its top-5 predictions. We found that when
the real photos appear out-of-distribution, 98.3% of the renders are also misclassified, sometimes with the same top-1 label
e.g., spatula in (b) or lawn mower in (c). Here, we show 5 pairs for each of the three example objects: (a) ambulance,
(b) street sign, and (c) tow truck. The original, high-resolution figures for all 30 objects are available at https:
//drive.google.com/open?id=18p-S9qO4dhE9toJbRRlAIWRcVqVH6Zsd.

https://drive.google.com/open?id=18p-S9qO4dhE9toJbRRlAIWRcVqVH6Zsd
https://drive.google.com/open?id=18p-S9qO4dhE9toJbRRlAIWRcVqVH6Zsd

