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Abstract. Tree structures are largely used to index and search sequences on
secondary memory. In some situations, many range queries are processed almost
simultaneously and the resulting number of disk accesses can be high. In order
to reduce the number of disk accesses, similar sequences can be grouped and
spanned as a single query. A simple strategy is to unify all sequences into a single
group. However, other strategies for grouping sequences can also be used. In this
paper, we present and empirical evaluation of 5 common grouping strategies for
R-trees and M -trees. Our results indicate that for inputs modelled as a random
walk distribution the overall best implemented strategy for grouping queries is
indeed the one unifying all queries in a single group.

1. Introduction

Fast retrieval of similar sequences are essential in many applications. In query-by-
humming systems for example, a hum is sent as a query to retrieve songs with similar
passages [Kotsifakos et al. 2015]. In protein similarity search, large indexes containing
DNA sequences allow querying for known genomes [Camoglu et al. 2003].

The problem of range query for sequences is defined as follows: given a
query sequence, find sequences in database that are similar within a distance e
[Faloutsos et al. 1994]. The naive strategy would retrieve all sequences from secondary
memory and evaluates them sequentially. However, it is costly since every sequence in
database may be considered.

Index structures such as R-trees [Guttman 1984] and M -trees [Ciaccia et al. 1997]
are commonly used to answer range queries efficiently. These indexes organize similar
sequences in order to discard tree branches not containing candidates during a range query.

In problems where multiple range queries can be processed in batch, we can use
query grouping strategies to improve performance. These strategies group similar query
sequences so that we can use a smaller number of range queries to search the index
structure. This reduces the number of disk accesses because similar queries would traverse
almost identical paths in the tree.

A simple strategy is to group all queries together and to search through the index
only once [Moon et al. 2001]. This can improve the search when queries are similar.
However, when many query sequences are dissimilar the resulting range query can cover
most of the index. In the worst case, the search is degraded to scanning all sequences.
Therefore, the choice of query grouping strategies impacts directly on the performance of
batch-mode range queries.
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The problem of grouping sequences is mentioned in literature. For example,
[Faloutsos et al. 1994] compares grouping techniques for finding 2-tree hyperrectangles
during insertion to reduce the size of indexes. In [Fu et al. 2008] the authors perform
multiple queries using a single hyperrectangle motived by its simplicity. Although the
impact of grouping strategies in performance of range queries may be high, this subject is
usually little discussed.

In this paper, we empirically evaluate 5 strategies to group sequences. They
are described in Section 3. Some of these strategies, originally described for R-trees
[Faloutsos et al. 1994, Moon et al. 2001, Fu et al. 2008], were adapted to the M -tree struc-
ture.

In our experiments, we model sequences by a random walking distribution. We
use this model because often sequences can be transformed into random walks by using
difference operations. We have performed two types of tests: using ¢ = 0 to check if a
sequence is in the database and using small values of € > 0 to retrieve only a few similar
sequences. Our results show for small € > 0, R and M -trees number of disk accesses is
significantly reduced by batch-mode strategies.

In the next section, we describe 2 and M -tree operations to index sequences. Next,
we detail the query grouping strategies implemented for our tests and how they are applied
to R and M-trees. In Section 4, we describe our methodology and discuss our results.
Finally we draw our conclusions regarding the usage of query grouping strategies.

2. Background

R and M -trees are data structures optimized to secondary-memory storage. Often, they are
employed to index sequences for fast retrieval through queries such as range queries. In R-
trees, sequences are treated as d-dimensional points where similar points are grouped in the
same node limited by a d-dimensional hyperrectangle, also known as Minimum Bounding
Rectangle (MBR). M -trees can index any kind of object as long as its representation is
comparable by a metric function. Differently from R-tree, M -tree nodes are delimited by
hyperspheres.

There are two types of nodes in these structures: directory nodes, containing objects
of directory type, and leaf nodes, containing objects of leaf type. Each directory object
contains an id and a container representation, which is a hyperrectangle in a R-tree
and is a sequence in a M -tree, along with a radius distance. Each directory also has a
reference to a child node and, for M-tree nodes, a precomputed distance to the parent
object in order to speed up calculations by using triangle inequality [Orchard 1991]. Each
leaf object contains an id; a sequence, which works as a key added by an insertion, and a
value to be associated with the key.

In an insertion, given a new sequence to be stored, the procedure for both trees
can be described as follows: at the root level, if the node is not a leaf then choose the
directory object that has the container that best fits or is closer to the new sequence. If
the sequence does not fit entirely inside the container, then enlarge it and retrieve the
child node referenced by the directory object. This step is applied recursively for child
nodes until a leaf node is found. Finally, it adds a new leaf object containing the new
sequence.
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During the insertion, if a node is already full then a split policy is applied in order
to redistribute its objects between itself and a new node. When a leaf node is full, the
insertion algorithm firstly creates a new node and calls the split policy to redistribute the
leaf objects. Then it creates two new containers in order to fit the two nodes and
inserts them in the parent’s object list, replacing the old container. In case the full
node is a directory, its objects are also redistributed and the new containers are created
from other containers. For M-trees the algorithm also needs to update parent distance
of modified objects. This splitting process is applied recursively up to the root node. If the
root is also full, then a new root node is created and the tree grows one level.

In a range query, given a sequence and the maximum distance allowed e, first the
algorithm creates a query container. This container has the center equals to the
query sequence and each dimension width equals to 2¢. The search operation begins at
root level and descends every branch that has possibility to be inside the container. This
process repeats recursively until all possible leaves are reached. Finally, the algorithm
retrieves every sequence reached within a distance € to the query sequence.

3. Strategies for Processing Range Queries in Batch-Mode

In the literature, the predominant approach, named Single Grouping, is to group all
queries together and search through the index just once [Moon et al. 2001, Fu et al. 2008].

In order to verify the importance of grouping queries to process range queries in
batch-mode, in this paper we evaluate the following strategies: k—-Medoids Grouping,
Single Grouping, n—Random Grouping, Maximum Capacity Grouping,
and Adaptive Grouping [Fuetal. 2008, Park and Jun 2009, Faloutsos et al. 1994].

Single Grouping (SG) strategy puts every query in a single group and per-
forms just one range query using a single query container. For R-tree, this strategy
is the same as the n-Random Grouping strategy with n = 1 since any query can
be chosen at the beginning of the grouping process and it would still result in the same
container. However, for M-trees is important to choose the query that is centralized.
In this case, our algorithm chooses the query that has the lowest distance sum to all other
queries.

n-Random Grouping (NRG) strategy selects n queries randomly and assigns
them to different groups. They are enclosed by an initial container. It assigns each
remaining query to the best-fitting container. If a query does not fit entirely in the
container, then enlarge it. Finally, for each group enlarge its container by €
and process a range query.

In the Maximum Capacity Grouping (MCG) strategy, given the maximum
number of sequences allowed per group m, the algorithm first creates a new group enclosing
an initial container. Then it assigns the next m queries to the current group, enlarging
the container when necessary. If the current group becomes full, then the algorithm
creates a new group. This process continues until every query have been assigned to a

group.

k-Medoids (KMG) strategy finds the best representative queries to form & clus-
ters, namely medoids, such that the sum of distances among every object and its medoid is
minimized. In this paper we used the algorithm presented in [Park and Jun 2009] because
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it outperforms the well known clustering algorithm Partition Around Medoids (PAM)
despite its simplicity.

The algorithm to find the £ medoids first computes the distance matrix of all objects.
Then, it selects k& initial medoids based on lowest sum of normalized distances computed
as v; = S0 (dij/ 317 di), where j is the target object, i and I can be any object
and d,, is the distance between objects x and y. In next step, this algorithm assigns the
remaining objects to clusters that have the closest medoids and it calculates the cost of the
current configuration. For the following steps, similar to partitioning clustering algorithms,
the algorithm iteratively updates medoids such that the total distance inside cluster is
minimized and reassigns the remaining objects to clusters. This algorithm finishes when
objects stop changing groups.

Our Adaptive Grouping (AG) strategy is adapted from
[Faloutsos et al. 1994], originally introduced to group d-dimensional points in MBRs
during insertion. They proposed to group sequences at insertion time but not at querying
time. We have adapted this strategy to the context of querying. AG calculates the
marginal cost for assigning a query in the current group. The marginal cost mc for
R-tree is calculated by: me = [[_, (L; + 0.5)/k, where L; is ith dimension width of the
resulting MBR and £ is the number of queries in resulting group. The strategy described
in [Faloutsos et al. 1994] says if the marginal cost for a given query is lower than the
previous cost then it assigns the query to the current group and enlarges the container
as necessary. Instead, in our implementation we also look for other groups to check for
lower maginal costs. It assigns the current query to a new group if its cost is larger than

the current cost for all groups.

For M -trees, we propose to compute the marginal cost as: (r + 0.5)?/k, where r is
the radius of resulting hypersphere. The marginal cost for M -tree is justifiable because its
value increases proportionally to the volume of the query hypersphere. We note the data
needs to be normalized in range [0, 1) in order to compute these marginal costs.

4. Experiments

In order to compare the query grouping strategies previously discussed we have built
indexes using R and M-tree structures for dimensions ranging from 2% to 2'°. For
each dimension we generated a dataset containing 10° sequences using the random walk
distribution. Sequence values were normalized to the interval [0, 1] using the formula
Sporm = (S; — min(S))/(maz(S) —min(S)), where S; is a value in sequence .S, treated
by the indexes as a dimension, and, min(S) and maz(S) are the lowest and highest values
of S, respectively.

In our experiments, for each dimension we used the same indexes to test different
grouping strategies in order to prevent potentially effects related to the index construction
and data randomness. We organize our experiments as following: for each index we pro-
cessed batch-mode range queries containing 25, 100 or 1000 sequences. For n—Random
Grouping and k-Medoids Grouping strategies we chose the number of groups to
be the base 2 logarithm and the square root of the batch size. For the Max Grouping
we chose the maximum allowed number of sequences such that the number of resulting
groups was almost the same as NRG and KMG strategies.

The experiments were divided in two categories. In the first category, we processed
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batch-mode range queries with ¢ = 0 in order to check the existence of sequences in
indexes. In the second category, we computed e based on the dataset average energy. The
mean energy E of a dataset is computed by E(D) = (3, Z o|Dij[?)/n where D; is
a sequence of size d and n is the number of sequences in the dataset. The final formula
was € = 11/E(D). This value for e allows retrieval of roughly the same number of results
given a batch-mode range query.

In order to assess the grouping strategies we measured the ratio of the number
of disk accesses per query when batch-mode was not used divided by the total disk
accesses used per query by a given strategy, and a similar formulation of ratios for distance
calculations. Ratio values higher than 1 indicate improvement of performance when using
batch-mode strategies. The naive strategy, which process a range query for each sequence
independently, was the baseline for our experiments and we refer as No Grouping (NG)
strategy. Figure 1 shows the results regarding disk accesses. Each experiment considers:
data structure, grouping strategy, € value, amount of sequences per batch, and sequence
dimensionality.

M-tree, € = %\/E(D) M-tree,e =0 R-tree, € = %\/E(D) R-tree,e =0
23- ® i i i i ./ o . e - }. e —
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Figure 1. Disk accesses ratios for query grouping strategies using R-trees and
M-trees.

In Figure 1, we noted the Single Grouping strategy was the best overall strat-
egy. This strategy used less disk accesses in order to answer range queries. The n-Random
Grouping, Max Capacity Grouping and k-Medoids Grouping strategies
were similar and obtained better results than the Adaptive Grouping strategy. How-
ever, for R-tree and € = 0, the NRG strategy showed improvement in higher dimensionality.
In our tests we noted the adaptive strategy usually found too many groups thus this approach
was similar to performing non-batched range queries.

Results also shown large batches of sequences have positive impact on the number
of disk accesses. For example, the combination of R-tree, batch of size 1000 and Single
Grouping strategy used approximately 2'° times less accesses to disk for range queries
with € = i\ /E(D). The same behavior happened when using M -tree indexes.
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We also analysed the ratios of distance calculations !. These results have shown
when € = 0 the distance calculations increase considerably and correlates with dimension-
ality. At the other hand, the number of distance calculations reduces when € = % E(D)
using R-tree.

5. Conclusions

We evaluated 5 query grouping strategies in order to verify whether its use could be
employed to improve performance of batch-mode range queries using R and M -trees. Our
results suggest the best strategy is the one which groups every sequence in a single group
and performs a single range query. For range queries that retrieves considerable amount of
results, the use of grouping strategies greatly improves its performance by using any of
the addressed trees. We suggest this is due to the ratio of disk accesses per query is very
high and the number of calculations needed is similar to performing the naive approach.
We noted the number of sequences in a single batch is an important factor to perform
multiple range queries simultaneously. The larger the batch, the less disk accesses are
performed. Considering all results, we suggest usage of single grouping strategy for all
scenarios except for querying R with e = 0.
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