
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 1

Short Paper

A Selective Retraction-Based RRT Planner for
Various Environments

Junghwan Lee, OSung Kwon, Liangjun Zhang, and Sung-Eui Yoon

Abstract—We present a novel randomized path planner for rigid robots
to efficiently handle various environments that have different character-
istics. We first present a bridge line test that can identify narrow passage
regions and then selectively performs an optimization-based retraction only
at those regions. We also propose a noncolliding line test, which is a dual
operator to the bridge line test, as a culling method to avoid generating
samples near wide-open free spaces. These two line tests are performed
with a small computational overhead. We have tested our method with
different benchmarks that have varying amounts of narrow passages. Our
method achieves up to several times improvements over prior RRT-based
planners and consistently shows the best performance across all the tested
benchmarks.

Index Terms—Motion and path planning, sampling-based motion plan-
ning, various environments.

I. INTRODUCTION

Robot motion planning involves computing collision-free paths for a
robot and has many applications, such as part disassembly simulation,
tolerance verification, protein folding, and computer graphics [1], [2].
The motion planning has been actively studied since the 1970s to
develop a complete solution.

Sampling-based motion planning algorithms have been designed and
successfully used to compute a probabilistic complete solution for a
variety of environments. Two of the most successful algorithms include
the Probabilistic Roadmap Method (PRM) [3] and Rapidly-exploring
Random Tree (RRT) [4]. At a high level, as we randomly generate more
samples, these techniques provide collision-free paths by capturing a
larger portion of the connectivity of the free space.

One of the most challenging cases for sampling-based techniques is
to efficiently handle narrow passages. In many practical motion plan-
ning applications, a robot often needs to pass through narrow passages
and the performance of sampling-based algorithms can degrade signif-
icantly. Many approaches have been proposed in different directions
such as utilizing the workspace geometric information [5], filtering (or
adaptive sampling) techniques toward more important regions [6]–[8],
retracting samples, etc.

Recently, retraction-based techniques [9]–[13] have been actively
studied, since they can pose samples near the boundary of C-Obstacles,

Manuscript received November 22, 2013; accepted February 28, 2014. This
paper was recommended for publication by Associate Editor M. Vendittelli and
Editor D. Fox upon evaluation of the reviewers’ comments. This work was sup-
ported in part by NRF-2013R1A1A2058052, DAPA/ADD (UD110006MD),
MEST/NRF (2013-067321), and the IT R&D program of MOTIE/KEIT
[10044970].

J. Lee, O. Kwon, and S.-E. Yoon are with the Department of Computer Sci-
ence, Korea Advanced Institute of Science and Technology, Daejeon, Korea
(e-mail: goolbee@gmail.com; miruce78@gmail.com; sungeui@gmail.com).

L. Zhang is with Samsung Research America, San Jose, CA 95134 USA
(e-mail: zlj@cs.unc.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2014.2309836

efficiently leading to explore important regions including narrow pas-
sages. However, these techniques have the computation overhead of
retracting sampling and, thus, can run even slower than a basic RRT
when the free space does not have such difficult regions [9].

Main results: In this paper, we propose a novel retraction-based
planner for rigid robots known as Selective Retraction-based RRT (SR-
RRT) for a wide variety of environments that have or do not have
narrow passages. Our method performs the optimization-based retrac-
tion operations in order to explore more important regions. Instead of
performing retraction operations exhaustively, we selectively perform
retraction operations, only if samples to be retracted are deemed to be
around narrow passages. To decide whether a sample is near a narrow
passage, we propose a bridge line test, an inexpensive filtering opera-
tion, which checks whether narrow passages exist along a line segment.
In order to achieve a high accuracy even in high dimensional config-
uration spaces, we perform principal component analysis (PCA) and
generate the line with a higher probability to cross narrow passages.
In addition, in order to generate more random samples near narrow
passages, we present a noncolliding line test that detects wide-open
free spaces and cull samples near such spaces (see Section IV).

We have implemented our SR-RRT method integrated with these
two line tests. In order to demonstrate benefits of our method, we have
tested SR-RRT with various types of benchmarks that have different
characteristics (see Section V). For these tests, we assume free-flying
systems because the same assumption is also used for the retraction
method. Our method achieves up to 21 times, 31 times, and 3.5 times
performance improvement (6.7 times, 6.8 times, and two times on av-
erage) over a basic RRT [4], a dynamic-domain RRT (DD-RRT) [8],
and an optimization-based retraction method [9], respectively. More-
over, while the basic RRT and the optimization-based retraction method
show lower performance than the other tested methods in some bench-
marks, our method consistently improves the performance across all
the tested benchmarks that have or do not have narrow passages. As a
result, we can conclude that our method is more robust and general in
free-flying systems than other tested methods.

A preliminary version of this paper has appeared in ICRA 2012 [14].
In this paper, we have additionally compared proposed algorithms with
an alternative sampling-based technique, the DD-RRT. We have also
performed in-depth analysis on both the results with several perfor-
mance metrics and the relative contributions of each algorithmic com-
ponent. For better exploitation, we have also added implementation
details of the algorithm.

II. RELATED WORK

In this section, we discuss prior work on sampling-based motion
planning that has been especially designed to efficiently handle narrow
passages.

A. Sampling-Based Motion Planning

The sampling-based algorithms have been successfully used to solve
various motion planning problems in practice. Among them, the Prob-
abilistic Roadmap Method (PRM) [3] and Rapidly-exploring Random
Tree (RRT) [4] are the most widely used approaches [15]. These tech-
niques have been extensively studied, and an excellent survey is avail-
able [16].

Our method is built upon the RRT methods, since they have been
extended to solve a wide variety of practical single-query problems

1552-3098 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON ROBOTICS

in robotics and other related domains [17]–[20]. RRT methods have
been improved in many different directions by considering workspace
information [5], [21], biasing sampling strategies [8], [22], and de-
composing environments and focusing sampling on critical paths [23],
taking into account the optimality of solutions [24], etc.

B. Narrow Passages

One of the most difficult challenges for sampling-based methods is to
efficiently handle narrow passages in the free space of a robot. Uniform
sampling commonly used in both PRM and RRT has been identified to
show poor performance on environments with narrow passages or bug
trap shapes [15]. Many strategies have been proposed to improve the
performance on these difficult problems [16].

Many PRM or RRT variations have tried to alter the sampling dis-
tribution to efficiently guide the expansion of roadmaps or trees inside
narrow passage regions by the use of the workspace geometric infor-
mation [5], [25], dynamic sampling distributions [26], simultaneously
mapping roadmaps at C-free and C-Obstacle spaces [27], utilizing lo-
cal free space information [28], filtering techniques toward important
regions including narrow passages [6]–[8], [29]–[33], and retraction-
based approaches [9]–[13].

Filtering techniques: Filtering techniques aim to generate lots of
samples at the robot’s free space and filter out some of them that are
not located near difficult regions such as narrow passages, leading to
adaptive sampling. Boor et al. [30] proposed the Gaussian sampling
strategy that distributes samples near the boundary of the free space.
The Bridge test proposed by Hsu et al. [7] uses three sampled configu-
rations to boost the sampling density inside narrow passages. Yershova
et al. [8] proposed a DD-RRT that adapts its sampling domain to bias
toward the visibility domain by obstacles. Obstacle-based PRM pro-
posed by Amato et al. [29] generates a ray from invalid samples to
find a surface configuration, and UOBPRM [32] improves the perfor-
mance by generating surface configurations uniformly. Shkolnik and
Tedrake [33] proposed the ball tree algorithm that approximates the
reachable free space in a similar way to our noncolliding line test.

Retraction-based techniques: The main idea of the retraction-based
approach is to retract initial samples normally generated from uni-
form sampling on the C-space toward more useful regions such as the
boundary of the C-Obstacle, the medial axis of the free space, and so
on. Its final sample distribution, therefore, is not uniform, but biased
toward more useful regions. Some of retraction-based algorithms uti-
lize the contact information for retraction [9], [10], [12], dilate the free
space [11], [13], or use the approximation of medial axes or boundary
of the motion for the robot [34]. These techniques can efficiently handle
narrow passages. However, these can run slower than a simple method
when the free space does not have such difficult regions, because of
their computational overheads for retraction operations.

At a high level, our approach integrates these two different ap-
proaches, i.e., filtering and retraction-based techniques, in order to
robustly handle various environments that do or do not have narrow
passages. The new integrated planner, i.e., SR-RRT, utilizes the retrac-
tion technique to bias the uniform sampling distribution inherited from
the standard RRT and reduces unpromising retraction operations by
using a relatively cheap filtering method in order to improve the overall
performance of the planner.

Hsu et al. [35] also considered to use different sampling methods and
adaptively used them for a higher performance. Unlike this approach,
this paper explores another direction of integrating different techniques;
our method uses a filtering method as a culling technique to decide
whether it is desirable to perform an expensive retraction method or
not. Our work exploits an optimization-based retraction technique [9]

Fig. 1. Living room benchmark: This figure shows three image shots of getting
a sofa out through a door, which creates narrow passages in 6-degrees-of-
freedom (DoFs) configuration space. Our method achieves ten and two times
improvement over a basic RRT and an optimization-based retraction method,
respectively.

Fig. 2. Sampling generation of an optimization-based retraction: RRRT in-
crementally retracts a randomly generated in-colliding sample qr to a more
desirable place in order to generate more samples in the narrow passages. This
figure shows that the original random sample qr is in-colliding, and it is then
incrementally retracted from qc to qc ′ and so on.

as a retraction method, which has performance problems in relatively
easy environments (see Section III-C). We apply PCA to our filtering
methods in a similar manner as PCA-RRT [28] for increasing the
accuracy of our filtering methods (see Section IV-C), while the PCA-
RRT used the PCA to control random sampling.

III. BACKGROUND

In this section, we give a brief review on a basic RRT and its variant
based on an optimization-based retraction RRRT [9], which is designed
for efficiently handling narrow passages. We then discuss their issues
that arise when we apply them to various environments which have or
do not have narrow passages.

A. Review of an Rapidly-Exploring Random Tree

A basic RRT algorithm starts with a single or multiple random trees
[4]. The basic RRT randomly generates a sample qr in the configuration
space and finds its nearest neighbor qn among the nodes of existing
random trees. It then attempts to connect qn with qr . If qr is in collision
or there are any obstacles in between qr and qn , a first in-contact
configuration qc that touches the boundary of a C-Obstacle is computed
along a straight line from qr to qn [15]. qc is then added to the tree and
is connected with qn (see Fig. 2).

It has been known that the basic RRT explores the free space with
a bias related to the Voronoi diagram [4]. Specifically, a probability
that a node of a random tree is chosen as the nearest neighbor node is
proportional to the volume of the Voronoi region associated with the
node.

This basic RRT or its variants, however, can take a prohibitively long
planning time when the free space of a robot contains narrow passages,
because the volume of regions associated with narrow passages are
significantly smaller than other regions. As a result, the probability of
exploring and getting out the narrow passage region is quite low.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 3

Fig. 3. S-tunnel Benchmark: The leftmost figure shows the S-tunnel bench-
mark. The right two figures show the average performance of two variations of
the S-tunnel benchmark. 0.85 and 1.3 indicate the scaling factor of the cubic
robot. S-tunnel 0.85 includes no narrow passages, while S-tunnel 1.3 includes
them.

B. Review of an Optimization-Based Retraction Technique

In order to address the problem of the basic RRT, an optimization-
based retraction technique RRRT [9] was proposed by Zhang and
Manocha. Its pseudocode is shown in Algorithm 1. Its main idea is to
iteratively retract a randomly generated in-colliding sample to a more
desirable place, which is the nearest boundary of the free space. To
overcome computational prohibitiveness, RRRT formulates the retrac-
tion computation to an optimization problem based on a local contact
analysis, while iteratively minimizing an objective function (i.e., a dis-
tance metric is used here); for example, Fig. 2 shows that qc ′ is a newly
retracted from in-contact configuration from qc .

OptimizedRetraction(qc) used in the pseudocode of Algorithm 1
is performed as follows: First, the closest feature pairs are computed
between qc , the first in-contact configuration from qn to qr , and the
obstacles. It then computes a new sample qc ′ , which is not in-collision
and minimizes the distance to qr by searching over the local contact
space constructed implicitly from the closest feature pairs. These steps
are repeated by replacing qn with qc ′ until the distance to qr is converged
or the maximum number of iterations has been reached. Even though
this optimization technique behaves in a greedy manner, this technique
has been demonstrated to work well in environments that have narrow
passages. For example, this optimization-based retraction technique
shows about four times higher performance than the basic RRT in the
S-tunnel benchmark 1.3 (see Fig. 3), which has narrow passages.

C. Issues With Optimization-Based Retraction

The optimization-based retraction technique works quite well with
scenes that have narrow passages. This result is achieved by perform-
ing extra operations to the basic RRT, such as local contact analysis,
additional sampling, etc. These operations have relatively higher com-
putational overheads, compared with other operations of the basic RRT

method [9]. In addition, while this technique explores and gets out of
narrow passages efficiently by generating samples on the contact space,
it covers all the contact spaces equally well. In other words, this tech-
nique tends to generate many samples near the contact space, even
though the contact space is not on narrow passages.

As a result, if an environment does not have narrow passages or
have many obstacles that create the contact space without generat-
ing narrow passages, the optimization-based retraction technique can
show even lower performance than the basic RRT, because of both the
computational overhead and excessive sampling on the contact space.
For example, it shows 84% lower performance than the basic RRT in
the S-tunnel benchmark 0.85 (see Fig. 3) that does not have narrow
passages.

IV. SELECTIVE RETRACTION-BASED RAPIDLY-EXPLORING

RANDOM TREE

Our technique is based on the optimization-based retraction-based
RRT (RRRT) method [9]. To efficiently handle various types of en-
vironments that have or do not have narrow passages, it is critical to
identify regions that are likely to be narrow passages and to selectively
perform the expensive retraction operation only on those regions.

In order to efficiently identify such narrow passages within our
RRT-based planner, we present a bridge line test, which is inspired
by the bridge test [7] originally proposed for probabilistic roadmap
techniques. Our bridge line test uses a line passing through an in-
contact configuration to test whether it is likely to have narrow passage
around the configuration. We also propose a noncolliding line test, a
dual operator to the bridge line test, to generate more samples near
narrow passages.

A. Selective Retraction-Based Extension

We first explain our extension method of SR-RRT, whose pseudo-
code is at Algorithm 2. Once a random sample qr and its near-
est neighbor node qn are computed, as mentioned in Section III-A,
then we perform our extension method SRExtend(qn , qr), shown in
Algorithm 2. The first step of our extension method is exactly the same
to the extension method of the basic RRT explained in Section III-A.
Note that at this step, we may create an in-contact configuration qc .

As the second step of our extension method, we perform our bridge
line test to decide whether we need to perform the retraction operation.
If the bridge line test indicates that there is a narrow passage around
the in-contact configuration qc , we perform the retraction operation
and generate another in-contact configuration qc ′ in a way that we can
reduce the distance between qr and the newly generated in-contact con-
figuration qc ′ . This operation is represented as OptimizedRetraction(qc)
in the pseudocode of our extension method (see Algorithm 2) and ex-
plained in Section III-B.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON ROBOTICS

Fig. 4. (a) Two figures show the procedure of generating and performing a
bridge line test. (b) Probability distribution function (PDF) for the line direction
parameterized with θ. (a) Procedure of the bridge line test. (b) PDF for the line
direction.

B. Bridge Line Test

The bridge line test BridgeLineTest(qc) determines whether a narrow
passage exists around an in-contact configuration qc . To perform the
bridge line test, we first generate a line whose one end is located at
qc . The line can have an arbitrary line direction. Instead of generating
the line direction in a uniform manner, we take into account available
local information around qc to make the line direction to cross narrow
passages with higher probability.

Note that it has been identified that a collision-free path exists from
qc to qn [see the left image of Fig. 4-(a)]. As a result, we can assume
that there are no narrow passages along that particular direction, �ld ,
which is qn − qc . On the contrary, a line segment between qc and qr

is in C-Obstacle. As a result, we can also assume that there are no
narrow passage along a line direction �l′d = (qr − qc) from qc . This
local information leads us to generate an arbitrary line direction with
a higher probability in these intervals defined between these two line
directions to make the randomly generated line to cross potentially
existing narrow passages.

1) Generating a Bridge Line: In particular, we use a line generating
function as a probability distribution function (PDF) pl (·), which is
a mixture of two reflected Gaussians, each of which has near zero
probability at these two line directions �ld and �l′d , while they peak at a

plane whose normal is either �ld or �l′d . Fig. 4(b) shows the 2-D example
of this distribution function.

Once we generate a line direction starting from qc , then we compute
the other end point, qe of the line by computing a random distance d
according to another probability function pd (·). We use the Gaussian
function whose mean is the average distance between successive in-
contact configurations computed by the retraction operation [e.g., DR

in Fig. 4(a)]. We set the standard deviation of the Gaussian function to
be small, but to have a meaningful probability (e.g., DR /2) to identify
very small narrow passages; we make sure that pd (0) has a nonzero
probability to detect narrow passages with infinitely small width.

After computing a line whose two end points are qc and qe , i.e. qc qe ,
we check whether there is a narrow passage in the line. Specifically,
the narrow passage is defined by collision regions at both ends of the
line with a free space in the middle of the line. Since qc is an in-
contact configuration, we mainly check whether there is a free space
in the middle and collisions in the other end qe of the line. If we have
such a case, in other words, there is a bridge line that connects two
obstacle regions, we treat the region around these two configurations

of qc and qe as they are in a narrow passage, thus performing the
retraction operation. We ignore the case where the tested line is located
in obstacles, i.e., penetrates the obstacles, since this is not considered
to be within a narrow passage. For detecting collisions on the line,
we can use either continuous or discrete collision detection methods.
For discrete collision detection methods, we check a fixed number of
intermediate configurations on the line.

2) Retesting: Our bridge line test can fail with a low probability to
identify a region to be in a narrow passage, even though the region is
in a narrow passage. This failure is mainly because our bridge line test
considers only 1-D line in multiple dimensional configuration spaces
to check whether a node is in a narrow passage. Instead of performing
the bridge line test only one time for each node, we perform the bridge
line test whenever an in-contact configuration that was not identified
as narrow passages with earlier bridge line tests is chosen as a near-
est neighbor node of a random sample. This retesting is defined as
Retest(qn) shown in Algorithm 3.

Note that it is quite reasonable to retest the node with the bridge
line test, since the node selected as a nearest node to others many times
implies that the tree expansion may be stuck there by potentially exist-
ing narrow passages around the node. Moreover, by allowing multiple
retesting, the bridge line test can correctly identify the existence of
narrow passages in a probabilistic manner with many random samples.

C. Accuracy Improvement of Bridge Line Test by Principal
Component Analysis

Our bridge line test is very efficient, since the line test considers
whether there are collisions between the line of robot configurations
and the environment. However, its accuracy degrades as the dimension
of the configuration spaces goes higher because of its 1-D nature of
checking collisions. In order to ameliorate this problem, we consider
how local free spaces grow and generate random lines of bridge line
tests more frequently in dimensions that may contain narrow passages.

Inspired by a recent dimension reduction technique developed for
random motion planning approaches [28], we perform the PCA [36]
to see how local free space is distributed, and treat a region to be in a
narrow passage when the local free space is not uniformly distributed
in the configuration space. For example, if the free space is located in
a narrow passage, we can assume that the free space is not uniformly
distributed but is severely constrained and, thus, has an elongated shape
(see the left image of Fig. 5).

The PCA is a well-known statistical procedure that transforms a
set of points to a new coordinate system whose first axis corresponds
to the direction with maximum variance of the input data and second
axis maximizes the variance in subspace orthogonal to first axis and
so on [36]. The PCA is commonly used for dimensionality reduction
preserving most of the information. The PCA can be computed by
using the covariance matrix of input points and finding the eigenvec-
tors and their corresponding eigenvalues of the matrix. The computed
eigenvectors are treated as principal components of input points.

We apply the PCA in a similar manner as used in the PCA-RRT [28].
When we need to generate a random line from qc , we first collect

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 5

Fig. 5. (Left) Shapes of local free spaces (green and red ones) computed
from two nodes. The red one located in a narrow passage has an elongated
shape, while the green one located in the wide-open free space is uniformly
distributed in the space. (Right) Transformed line direction �d′r from an initially
generated direction �dr . Note that orange vectors are eigenvectors scaled by the
corresponding eigenvalues computed from the local region of qn .

k-nearest neighbors from qc by a breadth-first search and then perform
the PCA on those nearest neighbors. We assume that the principal
component with the maximum eigenvalue, i.e., variance, aligns with
the longest axis of the elongated-shaped narrow passage. Our goal of
choosing the random line direction is to increase a probability that the
generated direction crosses the longest axis of the narrow passage.

To meet our goal, we transform �dr , which is computed in the line
generating PDF pl (·) in Section IV-B, into a new line direction �d′

r

based on the following equation:

�d′
r =

k∑

i=1

(
1
λi

�dr · Ui

)
Ui ,

where Ui is ith eigenvector, and λi is its corresponding eigenvalue.
This equation transforms �dr to follow principal components more that
have lower variances, leading to crossing a potentially existing narrow
passage, since 1/λi , a transforming weight, becomes bigger as we have
lower variances.

The accuracy of the PCA-based technique for transforming the line
direction depends on how well our assumption is valid given a local
configuration. Moreover, this technique makes a bias for generating
line directions for our bridge line test. In order to mitigate the negative
effects of our PCA-based technique, we adopt the transformed line
direction �d′

r with a probability pl (�d′
r): the line generating PDF. If �d′

r is
rejected, we generate a line direction according to pl (·), as mentioned in
Section IV-B. As a result, the PCA-based bias has (1 − pl (�d′

r))pl (�d′
r)

higher probability over our prior line generating function pl (·), given
the PCA-based computed line direction �d′

r .

D. Noncolliding Line Test

We can generate more samples near narrow passages by using both
the bridge line test and the optimization-based retraction operator. How-
ever, these retraction operations can be performed once a random sam-
ple is located closely to such regions. In order to increase the probability
to generate samples near such regions in an efficient manner, we pro-
pose a sampling bias technique using the non-colliding line test, which
is a dual operator to our bridge line test.

Our main idea is that once we identify wide-open free spaces in the
configuration space, it is more desirable to discard samples generated
within such free spaces and to generate more samples outside those
areas and potentially towards narrow passages.

It is, unfortunately, challenging to exactly define wide-open free
spaces in high-dimensional configuration spaces. Instead of construct-
ing them deterministically, we define them in a probabilistic manner.
At a high level, we generate a line segment from a node (similar proba-
bilistic manner used in the bridge line test) and check whether the line
is a collision-free path. If so, we treat the region around the node as a
wide-open free space.

Fig. 6. (Left) Free hyperspheres that approximate wide-open free spaces.
Dotted circles represent to the hypersphere with the center of node and radius
of it. (Right) Example that a node qc is generated from a random sample qr ,
generated outside of hypersphere (dotted circle) by a basic RRT expansion.

Let us first define a free hypersphere in the configuration space to
be a hypersphere, whose contained configurations have no collisions
against the environment. Specifically, we define the center of each
hypersphere to be located at a node of the random tree, except for in-
contact configurations; in-contact configurations have contacts by the
definition, and thus, we do not consider them as wide-open free spaces.
In addition, we set the radius of each hypersphere to be the distance
computed between the center node of the hypersphere and its nearest
neighbor node (Fig. 6). Note that when we add a new node to the
random tree, we compute the distance dN N between the new node and
its nearest neighbor node and use the distance for the radius of each
hypersphere associated with the new node and its nearest neighbor
node.

In order to determine whether a hypersphere of a node is free hyper-
sphere or not, we use the non-colliding line test in order to approximate.
NonCollidingLineTest(qn) generates a random line starting from the
center node qn of the hypersphere. If there are no collisions in the ran-
dom line, we treat the hypersphere to be free hypersphere. Note that the
noncolliding line test acts as an efficient probability function in terms
of identifying whether a region can be classified as a wide-open free
space; even though performing the non colliding line test one time may
incorrectly identify a hypersphere as a free hypersphere, performing it
whenever a node is chosen as the nearest neighbor node can identify a
region correctly in a probabilistic manner.

To generate a line used for a noncolliding test, we uniformly generate
a random direction for the line segment starting from the center node
qn of a hypersphere. Then, we compute another end point qe of the
line along the chosen line direction. qe is computed by a random
distance generated by a Gaussian distribution function, whose mean
and standard deviations are set to be the half of the radius of the
hypersphere associated with qn .

Once we have a set of approximated free hyperspheres, we discard
a random sample if the random sample is within the free hypersphere
of its nearest neighbor node.

E. Overall Algorithm

A pseudocode of the overall algorithm of our SR-RRT planner is
shown in Algorithm 4. We randomly generate a sample qr and find
its nearest neighbor node qn . Then, we discard it if the random sam-
ple qr is inside the wide-open free spaces probabilistically defined
by performing the non-colliding list-test. Otherwise, we perform our
extension algorithm (see Algorithm 2) after performing the re-testing
process (see Algorithm 3). As the last step of our method, we update the
nearest neighbor distance dN N and the tree T . We iteratively perform
these steps until we find a collision-free path between the initial and
goal configurations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ROBOTICS

Fig. 7. Two different benchmarks that have narrow passages. Note that a robot
of a bug-trap benchmark is initially located outside of a trap. (a) Bug-trap. (b)
Flange.

V. EXPERIMENTAL RESULTS

We have implemented SR-RRT for 3-D rigid body robots on an Intel
i7 desktop machine that has 3.33 GHz CPU. Our method is built upon
a basic RRT integrated with an efficient optimized-based retraction
method RRRT [9]. For the local planning, we use a linearly interpo-
lated motion between two configurations and check whether we have
collisions on a fixed number of intermediate configurations on the lin-
early interpolated motion.

A. Benchmarks

We test our method against ten benchmarks that have different char-
acteristics. We classify our benchmarks as three types in terms of
relative difficulty: environments with a tight narrow passage and thus
requiring longer computation time to find a solution (Hard), environ-
ments consisting of relatively wide spaces, i.e., environments that are
relatively easy to solve (Easy), and in-between environments (Mod-
erate). The S-tunnel model (see Fig. 3) has an S-shape of tunnel
and we change its characteristics by scaling a cubic-shaped robot;
S-tunnel x uses a scaling factor of x for the robot. Benchmarks with an
easy type include S-tunnel 0.85, whose robot is quite small enough to
pass through the tunnel easily. Benchmarks with a hard type include
S-tunnel 1.3, bug-trap [see Fig. 7(a)], flange [Fig. 7(b)], wiper 1.0 [see
Fig. 8], pipe (see Fig. 9), and living room (see Fig. 1), which all include
narrow passages in environments. Finally, S-tunnel 1.0 and wiper 0.9
benchmarks belong to the class of moderate; Wiper x uses a scaling
factor of x for the robot (wiper). The dimensions of the configuration
spaces in all of these benchmarks are six. The benchmark information
is summarized in Table I.

Fig. 8. Three image shots that show animation sequences of getting a wiper
out of the windscreen model. Since there are not much rooms between two
models, this benchmark has narrow passages.

Fig. 9. Four image shots are shown for moving the pipe out of an industrial
environment (clockwise starting from the top left).

B. Results and Comparisons

In order to demonstrate the relative benefits of our method, we have
also implemented the basic RRT, called RRT, and the optimization-
based retraction RRT, called RRRT, which are described in Section III-
A. We use the same values for parameters (e.g., the collision checking
frequency used in a local planner) that are shared between different
versions of RRT methods. We run all the methods including ours,
i.e., SR-RRT, with each of our benchmarks 100 times and report the
average running time in Table I for a fair comparison by removing the
randomness in the performance inherited from the random sampling
procedure.

For all the benchmarks, our method computes collision-free paths in
less than 3 min. In the pipe and living room benchmarks, our method
spends over 1 min on average to compute a collision-free path, since
these models consist of more than 40 K triangles and have narrow
passages.

For the Hard-typed benchmarks, our method shows higher (e.g.,
72% higher on average) performance over RRRT and much higher
(e.g., 7.7 times higher on average) over RRT. Since RRT does not bias
its sampling toward narrow passages, it runs quite slowly in Hard-typed
benchmarks. RRRT shows higher performance than RRT. However,
because of its higher computational overheads caused by perform-
ing retractions on all the contact spaces, RRRT runs slower than our
method.

For the Easy-typed benchmarks, RRRT shows lower (e.g., 46% on
average) performance over RRT, because RRRT excessively generates
many in-contact configurations, most of which do not capture a new
connectivity of free spaces but pose the computational overheads. On
the other hand, our method still shows 91% improvements on aver-
age over RRT. Even though its improvement over RRT is weaker than
improvements made with Easy-typed benchmarks, our method shows
improvements over RRT even in these benchmarks that do not have
narrow passages. Furthermore, our method shows 3.51 times improve-
ments over RRRT, since our method selectively performs retraction

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 7

TABLE I
PERFORMANCE OF OUR METHOD, SR-RRT (SR-RRT), THE BASIC RRT (RRT), THE DYNAMIC-DOMAIN RRT [8] (DD-RRT), AND THE OPTIMIZATION-BASED

RETRACTION RRT (RRRT) [9] FOR EACH BENCHMARK MODEL WITH ITS REPRESENTATIVE IMAGE, AND MODEL COMPLEXITY, AND DIFFICULTY LEVEL

TABLE II
NUMBER OF ITERATIONS AND THE CONTRIBUTION OF EACH COMPONENT

ON SR-RRT

operations. These results indicate that the overheads of our line tests
are small and demonstrate the robustness of our methods.

For the Moderate-typed benchmarks, RRRT shows slightly lower
(e.g., 15% on average) performance over RRT, while our method still
shows 2.20 times improvement over them. Therefore, we can conclude
that our method works more robustly than RRT and RRRT for a wide
variety of environments that have or do not have narrow passages.

We have tested the DD-RRT [8] with all the benchmarks which
adapts is sampling domain to bias toward the visibility domain by ob-
stacles. DD-RRT shows overall 1.57 times performance improvement
over the basic RRT. The DD-RRT performs well in general compared
with RRT in many environments, but its performance rather depends on
the size of the sampling domain specified for an environment. For ex-
ample, when the space of C-obstacles is relatively large compared with
the sampling domain, DD-RRT shows worse performance than RRT.
While the performance of the DD-RRT is dependent on environments,
our planner shows better performance with all the benchmarks with or
without narrow passages. Our planner shows 6.8 times performance
improvement overall compared with DD-RRT (See Table I).

Table II shows the number of iterations of RRT, RRRT, and SR-RRT
needed to compute a collision-free path for benchmarks. For all the
benchmarks, RRT takes the largest number of iterations, while RRRT
takes the smallest number of iterations, and SR-RRT takes the middle.
Overall one iteration of RRRT (0.0040 s) shows four times slower
performance than one iteration of RRT (0.0168 s). Our planner, i.e.,

SR-RRT, reduces the number of retraction iterations, which takes a
relative amount of time and increases the number of a basic RRT-like
iterations exploring C-space. Overall, the total number of iterations of
ours is less than the one of RRT, and the average running time of one
iteration (0.0042 s) is similar to RRRT. As a result, our method shows
higher performance than RRT and RRRT.

VI. DISCUSSIONS

In this section, we discuss a few important issues of our method.

A. Contributions of Each Component

We measure how much improvement we make with each component
of our contributions. By enabling bridge line tests (see Section IV-B)
only, we observe 74.6% improvement over RRRT. We achieve 5.48%
further improvement on average by additionally enabling noncolliding
tests (see Section IV-D). In addition, by adopting the PCA-transformed
line direction (see Section IV-C), we observe additional 5.04% im-
provement on average. Table II shows incremental effects by enabling
each component on each tested benchmark.

The effectiveness of our PCA-based operations is smaller than that
of the bridge line test in our tested benchmarks. This is mainly because
we have tested only free-flying robots that have six DoFs. The PCA
operation would be more effective for high-dimensional robots, where
accuracy of the bridge line test would decrease. The noncolliding line
test is effective when the configuration space consists of widely open
free spaces. For example, we observe about 20% improvement in S-
tunnel 0.85, where a robot is small and most of the space is relatively
wide-open free space. Our tested benchmarks are mostly hard-typed
ones that include narrow passages and fewer widely open free spaces.

B. Breakdown of Running Time

Table III shows a breakdown of the running time of our method for
different components including the retraction, two types of line tests,
and other parts (e.g., computing in-contact configurations, connecting
nodes, etc. related to the basic RRT); time spent for performing PCA is
included in the bridge line test. Depending on benchmarks components
take different portions of the overall running time. In most of the
benchmarks, two line tests take about 7% to 17% of the overall running
time. For the bug-trap benchmark, these two tests take 37% of the
overall running time, since many in-contact samples are chosen as
nearest neighbors for the tree expansion. Still retractions and basic
RRT operations take much larger portions than our two tests.

The culling ratios of samples due to the noncolliding line tests
are quite high (e.g., 78% to 97%) across all the benchmarks. On the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON ROBOTICS

TABLE III
BREAKDOWN OF THE RUNNING TIME OF THE SR-RRT

contrary, the culling ratios of retraction operations due to bridge line
tests relatively vary a lot. The flange benchmark shows the lowest
culling ratio (e.g., 35%) because there are a lot of narrow passages,
while getting the flange out of the curved pipe. In the S-tunnel 1.0
benchmark, we achieve up to 98% culling ratio, since the benchmark
does not have any narrow passages.

C. Statistical Error of Two Line Tests

Proposed two line tests, i.e., bridge and noncolliding line tests, are
approximations of narrow passage and free hypersphere detection, re-
spectively. Although we have shown that these tests work successfully
with our tested benchmarks in a probabilistic manner, both tests have
certain statistical errors.

In the bridge line test, the probability of making a type I error,
i.e., a false positive, is zero, because a bridge line is never found
when there is no narrow passage (see Section IV-B1). On the other
hand, we can have a type II error, i.e., a false negative. We designed
our method to have these characteristics, since a type I error causes
unnecessary retraction operations and lowers the overall performance,
but an additional computational overhead for a type II error is relatively
small.

On the other hand, the probability of making a type II error, a false
negative, is zero and a type I error can occur in the noncolliding line
test (see Section IV-D). When a type I error occurs, it rejects a sample
inside of a nonfree hypersphere that may contain important regions and
be useful for expanding a random tree (e.g., an entrance of a narrow
passage). The influence of this error is, however, reduced as we generate
nodes within hyperspheres.

Specifically, the influence of this error is limited by its correspond-
ing hypersphere, whose radius is set to be the distance from the nearest
neighbor in the tree to the center of the hypersphere. As a result, each
hypersphere associated with a node is getting smaller, and thus its influ-
ence of error is also reduced. Although samples inside of hyperspheres
can be rejected by an error of the noncolliding line test, nodes can be
created inside of hyperspheres from samples generated outside of any
hyperspheres by constructing in-contact configurations during a basic
RRT expansion (see Section III-A). The right-hand side of Fig. 6 shows
an example.

D. Implementation of Principal Component Analysis Operations

Table IV shows portions of time spent for performing PCA compared
with the overall running time and the bridge line test. We implemented
an incremental PCA [37] in order to reduce the running time of PCA
operation by eliminating recomputation of the diagonalization of the
covariance matrix [28]. The PCA operation still takes a large portion

TABLE IV
BREAKDOWN OF THE RUNNING TIME OF PCA OPERATIONS

of the bridge line test, but its portion of the overall running time is
relatively low (6% on average).

A parameter k, which is the number of nearby nodes for performing
PCA, should be large enough to approximate a local shape of the free
space. We have tested different parameter values and found that 10 to
30 for k works reasonably well and shows similar performance.

E. Implementation Issues

When we compute a probability distribution function pd (·) to sam-
ple an end point of a bridge line test (see Section IV-B1), we use the
Gaussian function with the mean used for an optimization-based re-
traction operation DR . The main reason for choosing the mean in such
a way is that since we go deeper on average in the amount of DR in a
narrow passage with a retraction operation, we aim to identify narrow
passages with that amount of width. A uniform distribution function
also could be used for pd (·), but we have observed that the accuracy of
detecting a narrow passage is decreased.

In order to perform our two types of line tests, we use a discrete col-
lision detection method, which checks for collisions in a fixed number
of intermediate configurations on a line. For the frequency of check-
ing collisions for our line tests, we simply use the same resolution as
employed in the local planner.

F. Analysis With Varying Scaling Factors

We have tested S-tunnel models with varying scaling factors for the
cubic-shaped robot (see Table I). As we increase the scaling factor,
the benchmark poses a more challenging narrow passage problem. In
this setting, our method achieves noticeably higher performance im-
provements over RRT, as we have more challenging narrow passage
problems (e.g., 1.9, 7.8, and 8.19 times improvements over S-tunnel
0.85, 1.15, and 1.3, respectively). On the other hand, our method shows
slowly diminishing improvements over RRRT as we increase the scal-
ing factor. This is mainly because there are more narrow passages and
thus the culling ratio of our line tests decreases. For example, the flange
benchmark has narrow passages in most of its free space. As a result,
our method shows almost similar, but still higher, performance to that
of RRRT. These results also demonstrate both the low computational
overheads and robustness of our method.

G. Limitations

Our method works quite well with all the tested benchmarks. Even
though the proposed line tests with PCA computations can be per-
formed without much overheads, their accuracy in terms of identifying
narrow passages and wide-open areas may not be high in other scenes.
This is mainly because we check a fixed number of configurations on
a line in the configuration space. In addition, even though there are
no narrow passages, our bridge line tests may treat sharp corners as
narrow passages. Our method does not guarantee to always improve
the performance over the basic RRT and the optimization-based re-
traction RRT, because of these properties. In addition, even though we
identify narrow passages, they may not contribute to the final solu-
tion. Nonetheless, among all the tested benchmarks, our method shows

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 9

improvements over other tested RRT methods, because of its low com-
putational overheads and probabilistically high accuracy.

VII. CONCLUSION AND FUTURE WORKS

We have presented a novel retraction-based planner, i.e., SR-RRT,
which selectively performs the retraction operations only near narrow
passages. To perform such adaptive retraction operations, we proposed
a bridge line test that can efficiently identify whether a region contains
narrow passages or not. We perform PCA with local free spaces and
generate lines that can cross potentially existing narrow passages with
a high probability. In addition, in order to generate samples near such
narrow passages, we presented a noncolliding line test that can identify
whether a region is a wide-open free space or not. These line tests have
minor computational overheads and can work for high dimensional
configuration spaces. Moreover, our method has been demonstrated to
show up to 21 times, 31 times, and 3.5 times (6.7 times, 6.8 times,
and two times on average) performance improvement compared with
DD-RRT, a basic RRT, and an optimization based RRT method, respec-
tively. More importantly, our method shows the highest performance
among all the tested methods with all the tested benchmarks, while the
performance of other methods depend on the type of environments. This
result demonstrates higher robustness and generality of our method.

There are many avenues for future research directions. We would
like to design more accurate, yet efficient filtering methods. In addi-
tion, we would like to identify collision-free paths in a multiresolution
approach [23], [25] in order to more efficiently find such paths. It will
be very challenging to design a multiresolution technique for environ-
ments that contain narrow passages shown in this paper. Our planner
requires some parameters, including ones inherited from the retraction
operation. Eliminating the effort to tune the algorithm can be benefi-
cial. In addition, adopting better sampling techniques [38] or nearest
neighbor search methods [39] can further accelerate the performance
of our approach. Finally, the optimization-based retraction method has
been extended to articulated robots [40]. We would also like to extend
and test our method to such cases.

REFERENCES

[1] P. W. Finn and L. E. Kavraki, “Computational approaches to drug design,”
Algorithmica, vol. 25, no. 2–3, pp. 347–371, 1999.

[2] J. Latombe, “Motion planning: A journey of robots, molecules, digital
actors, and other artifacts,” Int. J. Robot. Res., vol. 18, pp. 1119–1128,
1999.

[3] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Aug.
1996.

[4] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2000,
pp. 995–1001.

[5] H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle: An
adaptive sampling strategy for PRM planning,” in Proc. Int. Worksh. Al-
gorithm. Found. Robot., 2006.

[6] T. Simeon, J. P. Laumond, and C. Nissoux, “Visibility based probabilistic
roadmaps for motion planning,” Adv. Robot. J., vol. 14, no. 6, pp. 477–493,
2000.

[7] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling narrow
passages with probabilistic roadmap planners,” in Proc. IEEE Int. Conf.
Robot. Autom., 2003, pp. 4420–4426.

[8] A. Yershova, L. Jaillet, T. Simeon, and S. LaValle, “Dynamic-domain
RRTS: Efficient exploration by controlling the sampling domain,” in Proc.
IEEE Int. Conf. Robot. Autom., 2005, pp. 3856–3861.

[9] L. Zhang and D. Manocha, “An efficient retraction-based rrt planner,” in
Proc. IEEE Int. Conf. Robot. Autom., 2008, pp. 3743–3750.

[10] S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-based
rapidly-exploring random tree,” in Proc. IEEE Int. Conf. Robot. Autom.,
2006, pp. 895–900.

[11] D. Hsu, G. Sanchez-Ante, H. lun Cheng, and J.-C. Latombe, “Multi-level
free-space dilation for sampling narrow passages in prm planning,” in
Proc. IEEE Int. Conf. Robot. Autom., 2006, pp. 1255–1260.

[12] S. Redon and M. Lin, “Practical local planning in the contact space,” in
Proc. IEEE Int. Conf. Robot. Autom., 2005, pp. 4200–4205.

[13] M. Saha and J.-C. Latombe, “Finding narrow passages with probabilistic
roadmaps: The small step retraction method,” in Proc. Int. Conf. Intell.
Robots Syst., 2005, pp. 622–627.

[14] J. Lee, O. Kwon, L. Zhang, and S. Yoon, “SR-RRT: Selective retraction-
based RRT planner,” in Proc. IEEE Int. Conf. Robot. Autom., 2012,
pp. 2543–2550.

[15] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[16] D. Hsu, J. Latombe, and H. Kurniawati, “On the probabilistic foundations
of probabilistic roadmap planning,” Int. J. Robot. Res., vol. 25, no. 7,
pp. 627–643, 2006.

[17] J. Bruce and M. Veloso, “Real-time randomized path planning for robot
navigation,” in Proc. Int. Conf. Intell. Robots Syst., 2002, pp. 2383–2388.

[18] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in Proc.
IEEE Int. Conf. Robot. Autom., 2006, pp. 1243–1248.

[19] M. Branicky, M. Curtiss, J. Levine, and S. Morgan, “Sampling-based
planning, control and verification of hybrid systems,” Proc. Inst. Elect.,
Control Theory Appl., vol. 153, pp. 575–590, 2006.

[20] J. Cortes, L. Jaillet, and T. Simeon, “Molecular disassembly with RRT-like
algorithms,” in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 3301–3306.

[21] B. Burns and O. Brock, “Single-query motion planning with utility-guided
random trees,” in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 3307–
3312.

[22] S. Lindemann and S. LaValle, “Incrementally reducing dispersion by in-
creasing voronoi bias in RRTS,” in Proc. IEEE Int. Conf. Robot. Autom.,
2004, pp. 3251–3257.

[23] J. Guitton, J.-L. Farges, and R. Chatila, “Cell-RRT: Decomposing the
environment for better plan,” in Proc. Int. Conf. Intell. Robots Syst., 2009,
pp. 5776–5781.

[24] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.

[25] S. Rodriguez, S. Thomas, R. Pearce, and N. Amato, “RESAMPL: A
region-sensitive adaptive motion planner,” in Proc. Int. Workshop Algo-
rithm. Found. Robot., 2006, pp. 4037–4044.

[26] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. Amato, “A machine
learning approach for feature-sensitive motion planning,” in Algorithm.
Found. Robot. VI. vol. 17, Berlin, Germany: Springer, 2005, pp. 361–
376.

[27] J. Denny and N. M. Amato, “Toggle PRM: Simultaneous mapping of
C-free and C-obstacle—A study in 2D,” in Proc. IEEE Int. Conf. Robot.
Autom., 2011, pp. 2632–2639.

[28] S. Dalibard and J. Laumond, “Linear dimensionality reduction in random
motion planning,” Int. J. Robot. Res., vol. 30, no. 12, pp. 1461–1476,
2011.

[29] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “OBPRM: An
obstacle-based PRM for 3D workspaces,” in Proc. Int. Worksh. Algorithm.
Found. Robot., 1998, pp. 197–204.

[30] V. Boor, M. Overmars, and A. van der Stappen, “The Gaussian sampling
strategy for probabilistic roadmap planners,” in Proc. IEEE Int. Conf.
Robot. Autom., 1999, pp. 1018–1023.

[31] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. Reif, “Narrow passage
sampling for probabilistic roadmap planning,” IEEE Trans. Robot., vol. 21,
no. 6, pp. 1105–1115, Dec. 2005.

[32] H.-Y. Yeh, S. Thomas, D. Eppstein, and N. M. Amato, “UOBPRM: A
uniformly distributed obstacle-based PRM,” in Proc. Int. Conf. Intell.
Robots Syst., 2012, pp. 2653–2662.

[33] A. Shkolnik and R. Tedrake, “Sample-based planning with volumes in con-
figuration space,” CoRR, 2011. Available http://arvix.org/abs/1109.3145.

[34] E. Ferre and J.-P. Laumond, “An iterative diffusion algorithm for part
disassembly,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, pp. 3149–
3154.

[35] D. Hsu, G. Sanchez-Ante, and Z. Sun, “Hybrid PRM sampling with a
cost-sensitive adaptive strategy,” in Proc. IEEE Int. Conf. Robot. Autom.,
2005, pp. 3874–3880.

[36] I. Jolliffe, Principle Component Analysis. New York, NY, USA:
Springer-Veriag, 1986.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON ROBOTICS

[37] D. Erdogmus, Y. N. Rao, H. Peddaneni, A. Hegde, and J. C. Principe,
“Recursive principal components analysis using eigenvector matrix per-
turbation,” EURASIP J. Appl. Signal Process., vol. 2004, pp. 2034–2041,
2004.

[38] D. Kim, J. Lee, and S. Yoon, “Cloud RRT*: Sampling cloud based RRT*,”
in Proc. IEEE Int. Conf. Robot. Autom., 2014.

[39] T. L. Loi, J.-P. Heo, J. Lee, and S.-E. Yoon, “VLSH: Voronoi-based locality
sensitive hashing,” in Proc. Int. Conf. Intell. Robots Syst., 2013, pp. 2543–
2550.

[40] J. Pan, L. Zhang, and D. Manocha, “Retraction-based RRT planner for ar-
ticulated models,” in Proc. IEEE Int. Conf. Robot. Autom., 2010, pp. 2529–
2536.

