SR-RRT: Selective Retraction-based RRT Planner

Junghwan Lee¹, OSung Kwon¹, Liangjun Zhang², Sung-eui Yoon¹

¹Dept. of CS, KAIST

²Dept. of CS, Stanford University

http://sglab.kaist.ac.kr/SRRRT/

Problem statement

Motion planning problem

- Single query
- Rigid-body robot
- No dynamic/kinematic constraints
- 3D workspace including narrow passages

Sampling-based planner

PRM [Kavraki et al. 96], RRT [Kuffner & LaValle, 00]

- Handling narrow passages
 - Filtering technique
 - Adaptive sampling by filtering out some samples
 - Gaussian PRM [Boor et al. 99], Visibility PRM [Simeon et at. 00], Bridge test [Hsu et al. 03], Ball Tree [Shkolnik & Tedrake 11], etc.
 - Retraction-based technique
 - Retracts in-collision samples towards more useful regions
 - SSRP [Saha & Latombe 05], [Redon & Lin 05], OBRRT [Rodriguez et al. 06], RRRT [Zhang & Manocha 08], etc.

Retration-based RRT [Zhang & Manocha 08]

Retraction-based RRT technique handling narrow passages

image from [Zhang & Manocha 08]

 Iteratively retracts a sample near the contact space while minimizing the distance to original sample

Retration-based RRT [Zhang & Manocha 08]

Retraction-based RRT technique handling narrow passages

image from [Zhang & Manocha 08]

General characteristic:
 Generates more samples near the boundary of obstacles

RRRT: Pros and Cons

with narrow passages

without narrow passages

images from [Zhang & Manocha 08]

Motivation

- Cons of RRRT: Excessive sampling on the boundary of obstacles
 - Computational overhead
 - Not helpful for the problem without narrow passages
- If a planner can identify narrow passages, it can selectively perform retraction operations only on narrow passages

SR-RRT

Selective Retraction-based RRT

 Can efficiently handle various types of problems that have or do not have narrow passages

	w/ narrow passages	wo/ narrow passages
RRT	Slow	Fast
RRRT	Fast	Slow
Ours	Fast	Fast

SR-RRT

Bridge line-test

Non-colliding line-test

Bridge line-test

- To identify narrow passage regions
- To determine whether retraction operations will be performed
- Bridge line-test
 - 1. Generate a random line
 - 2. Check whether the line meets any obstacle
 - Inspired by Bridge test [Hsu et al. 03]

Bridge line-test

- To identify narrow passage regions
- Bridge line-test
 - 1. Generate a random line
 - 2. Check whether the line meets any obstacle

Bridge line-test

- Approximation of hypersphere search to line search
- It can fail with some probability to identify a narrow passage region (false negative)
- Re-test Bridge line-test at a node where the tree expansion is stuck during iteration
 - in-contact node selected as nearest neighbor of sample
- The accuracy of the Bridge line-test become probabilistically ensured after multiple re-testing

For high-dimensional space

- Use the local free space distribution to improve the accuracy of Bridge line-test
 - measured by PCA (Principle Component Analysis)
 - PCA-RRT [Dalibard & Laumond 11]

For high-dimensional space

 Use the local free space distribution to improve the accuracy of Bridge line-test

 Treat a region to be near narrow passages when the local free space is biased

Non-colliding line-test

- Sampling bias technique using a dual operator to the Bridge line-test
 - More samples potentially towards narrow passages
 - Reject samples on wide-open free space
- Free hypersphere:
 - Approximation of wide-open free space
 - Center is a node in the tree, radius is distance to NN node

Non-colliding line-test

- A sample inside a free hypersphere is discarded
- Non-colliding line-test determines whether it's free
 - Very similar to the Bridge line-test

Non-colliding line-test

- A sample inside a free hypersphere is discarded
- Non-colliding line-test determines whether it's free
 - Very similar to the Bridge line-test

Similar probabilistic manner to Bridge line-test

Results

Results: benchmarks

		Pipe				
RRT	776.5	634.0	589.2	145.0	283.6	53.7
RRRT	140.9	225.8	33.1	39.7	141.5	98.8
Ours	77.2	166.1	28.0	22.2	82.9	28.1

On average, 6.7 times and 2 times improvement over RRT and RRRT

Summary

- SR-RRT:
 - Selectively performs the retraction operations only near narrow passages
 - Bridge line-test: efficiently identifying narrow passage regions
 - With high probability by performing PCA using local free space
 - Non-colliding line-test: efficiently identifying wide-open free regions
- Shows improvements on variety environments which have or do not have narrow passages

Thank you

