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Abstract. The knowledge of the vehicle sideslip angle provides useful information about the state of 

the vehicle  and it is often considered to increase the performance of the car as well as to develop safe-

ty systems, especially in the vehicle equipped with Torque Vectoring control systems. This paper de-

scribes two methods, based on the use of Kalman filters,  to estimate the vehicle sideslip angle and the 

tire forces of a vehicle starting from the longitudinal and yaw velocity data. In particular, these data re-

fer to on-track testing of a Range Rover Evoque performing ramp steer maneuvers at constant speed. 

The results of the sideslip estimation method are compared with the actual vehicle sideslip measured 

by a Datron sensor and are also used to estimate the tire lateral forces.  

Keywords: Sideslip angle, Kalman Filter, Vehicle, State estimation, Random 

walk method 

1 Introduction 

Over the last few decades, with the rapid development of assisted and automated 

driving, industrial and academic research has dedicated great effort towards safer 

and better performing vehicles. Nowadays, common cars are equipped with many 

active safety systems such as Anti-Lock Braking Systems (ABS) and Electronic 

Stability Control (ESC) systems. Each of them is based on control algorithms that 

take as inputs the data coming from inertial and velocity sensors that are 

commonly installed on vehicles. To date, to the best of the authors’ knowledge, 

there is no commercial active system based on the direct measure of the sideslip 

angle. This parameter is more frequently used in more complex performance and 

safety systems, i.e. Torque Vectoring Systems [5,13,19], specifically using the 

vehicle sideslip angle in direct yaw moment controllers, to enhance vehicle safety 

[12,18]. The sideslip acquisition is obtained via two different ways: the first is a 

direct measurement by the use of expensive sensors which, most likely, cannot 
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equip commercial vehicles. The second strategy, more industrially appealing, is 

based on the estimation of the sideslip angle starting from the information 

provided by sensors (inertial and gyroscopic) commonly installed on commercial 

vehicles.  

All the state of the art estimation methods in the literature can be classified as 

neural network-based or observer-based [4,7]. The former estimation method is 

based on training artificially intelligent systems where a database of input data 

(e.g. acceleration, wheel speed, steering wheel etc.) is provided to the estimator, 

along with the measured output (i.e. sideslip angle); the neural network adapts 

itself, without the use of a physical model, to minimize the error between the 

estimated and the measured output [1,11]. The latter category is based on a 

dynamic model of the system analysed, and can be subdivided further in two 

groups depending on the type of vehicle model adopted. In particular, observers 

have been proposed which are based either on kinematic models or on dynamic 

models [4]. Selmanaj et al. [17] present a kinematic-based model that uses a 

special parameter to define the mean longitudinal vehicle velocity. Chen et al. [3] 

also propose a kinematic model, along with an adaptive procedure to update the 

process noise covariance matrix at each time step. In [14] Madhusudhanan et al. 

estimate the lateral tire forces using a kinematic model and  validate the results 

with measurements from special bearing sensors by SKF. In [8] Gadola et al. 

implement a dynamic model based on a single-track vehicle model. In [6,9,15] 

different authors propose dynamic models based on double-track vehicle models.  

The present paper focuses on observer-based estimation, in particular on an 

Extended Kalman Filter (EKF) using a dynamic vehicle model. Two approaches 

are herein developed: the first is based on a Pacejka tire model, while the second is 

based on a random walk approach, which includes the tire lateral forces in the 

Kalman Filter state vector, and introduces a physical constraint to boost filter 

convergence. The two approaches have been tested on experimental data. 

 

Fig. 1 Double-track vehicle schematic  
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2 Vehicle model  

The vehicle model considered in this analysis is the two-track model shown in Fig. 

1, where the main geometric and kinematic quantities are identified. The model 

includes some simplifying hypotheses, e.g. no geometric variations due to vehicle 

rolling and no effect on tire forces due to camber variation. 

The system is described through three state variables: the longitudinal and lat-

eral velocities, identified respectively with the letters  and , and the yaw veloc-

ity, identified with . The model equations are obtained from the translational 

equilibrium of the vehicle along the longitudinal (x) and lateral (y) axes, and from 

the rotational equilibrium equation around the z axis: ̇ =  
1

( cos + cos + + − sin − sin − )

+  ̇ = 1
(  cos + cos + + + sin + sin ) −  ̇ = 1

( ( cos + cos + sin + sin ) − ( + )  

+ ( cos − cos )
2

+ ( − )
2

+ ( sin − sin )
2

)  

(1) 

where  is the vehicle mass,  is the yaw moment of inertia,  and  are re-

spectively the longitudinal and lateral forces for each wheel ( = 1 left, = 2 

right) of each axle ( = 1 front, = 2 rear),  is the drag force due to aerodynam-

ics and rolling resistance, and  is the steering angle of each front wheel.  

3 Kalman Filter theory and implementation 

The KF, along with its variants, addresses the general problem of trying to esti-

mate the state vector  ∈  ℜ  of a controlled process which, in the case of discrete 

time sampling, is governed by the generic set of equations [4]: 

= ( , , )  

= ℎ( , )  
(2) 

where  is the system input,  the system output (i.e., the measured variables),  

and , respectively, the process and measurement noise. The process noise mod-

els the inevitable difference between the dynamics of the actual system and the 

model used to represent it. On the other hand,  accounts for measurement errors, 

which depend, e.g., on the accuracy of the available sensors. The process noise 

and the measurement noise are assumed to have a Gaussian distribution with zero 

mean and covariance Q and R, respectively for  and  [20]. In particular, the ve-

hicle model is used in first instance, then the output is corrected based on the 

available measurements. 
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The Kalman Filter is grounded on the idea that the evolution of the state vari-

ables can be computed in a predictor-corrector fashion: i) the first step is the pre-

diction of a future state through propagation forward in time of the current belief 

for state and covariance, according to Eq. (2); ii) the second step corrects the pre-

vious estimates in order to maximise the maximum a-posteriori probability to 

match the sensor readings. If the system is linear, Eq. (2) can be written as 

= + +  

= +  
(3) 

Denoting with  the state estimate at step k according to the dynamic evo-

lution of the system (first equation in (2)), the KF estimation is 

= + ( − )  (4) 

One form of  (denoted as Kalman gain) is given in [20] which depends on 

Q and R. For example, if Q tends to zero, then ≈ 0 and = , which means 

that the model is deemed exceptionally accurate. On the other hand, if R ap-

proaches zero, i.e. in the hypothesis of an extremely reliable measurement, then ≈  hence ≈ , so the measurement is deemed representative of the 

state. Clearly neither of those limit conditions is satisfied in general: the Kalman 

Filter uses both the model and the measurements to estimate the state variables. 

If the analyzed system is nonlinear (general form, Eq. (2)), it can be lin-

earized and written in a form similar to Eq. (3), at the cost of some approximation. 

Such approach is known as Extended Kalman Filter (EKF) [20]. A different ap-

proach, denoted as Unscented Kalman Filter (UKF), is used for highly nonlinear 

system, generally performing better than the EKF but introducing significant 

complexities [4]. In this paper, an EKF is used, based on the vehicle model de-

scribed in Section 2 and on the following measured signals: 

 longitudinal velocity , which is calculated as an average of the longitu-

dinal component of each wheel center velocity, as described in [17]; 

 the yaw rate , which is provided by the gyro sensor.  

In a first implementation of the filter, the lateral forces  are calculated based on 

a Pacejka tire model [16]:  
= ( + )  sin( atan  ) (5) 

where coefficients ,  ,  and  were available for the particular tire installed 

on the vehicle prototype,  are the vertical loads at each corner (computed taking 

into account static loads and load transfers), and  are the tire slip angles of each 

vehicle corner. The tire slip angles  were computed according to the well-

known approach [2,10]: 

= − ( − (−1) )  (6) 

where  is the sideslip angle. As well-known, a tire model such as Eq. (5) might 

not be actually representative of the real conditions, for instance due to tire wear, 

friction conditions, temperature etc. Therefore, in a further implementation of the 
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filter, a random walk approach was implemented (denoted in the remainder as 

EKF+RW). The idea is to add four variables in the state vector , i.e. the four lat-

eral forces , imposing their derivatives to be ̇ = 0 since no information on 

their dynamics was available. This means that the filter will also estimate .  

4 Model validation using experimental data 

In order to validate the estimation methods, on-track acquired data have been con-

sidered. Such data were acquired on a vehicle equipped with four independent 

electric motors, one per  wheel, and a Corrsys Datron S-350 sensor, measuring the 

vehicle sideslip angle (details on the whole experimental campaign are in [2]). In 

particular, two constant speed steering ramp maneuvers are considered, with refer-

ence constant speed 60 km/h and 80 km/h, and very low steering angle rate. Both 

the maneuvers were performed using a rear wheel drive (RWD) architecture with 

even torque distribution between left and right wheels. Here, the longitudinal forc-

es  were approximated as the ratio between each wheel torque (available for 

each drivetrain) and the wheel radius. To help the EKF+RW filter to converge, an 

additional measurement equation was implemented, imposing the overall vehicle 

yaw moment to be zero. Indeed due to the low steering angle rate, ̇ (and thus the 

yaw moment, see Eq. (7)) is expected to be very small, as experimentally verified. 

4.1 Sideslip angle estimation 

Figure 2 shows the sideslip angle for the 60 km/h and 80 km/h maneuvers, ob-

tained through the Datron direct measurements and through the estimation per-

formed with the EKF and EKF+RW methods. For each maneuver the sideslip an-

gle is initially zero (straight line trajectory before the steering pad) and it globally 

decreases as the lateral acceleration increases for both the measurement and the 

estimation results. The EKF+RW method shows better results than the EKF one, 

being the value of the estimated sideslip generally closer to the measured one, es-

pecially for high lateral accelerations. Concerning the EKF method, the results (in 

this section or in the following) are plotted only in the range of > 2 m/s2 for the 

60 km/h maneuver and > 4 m/s2 for 80 km/h maneuver, because for lower ac-

celeration values the estimated sideslip was extremely scattered. On the contrary, 

the sideslip angle values estimated via EKF+RW are significantly less scattered 

than those obtained through EKF and, especially for low values of  lateral acceler-

ation, no significant oscillation arises, being the estimated value correctly close to 

the real one even for almost straight-line trajectories. The accuracy of the results is 

fairly satisfactory because the error between the measured and EKF+RW estimat-

ed sideslip angle, detached from noisy signal oscillation, never exceeds ≈0.5 deg. 
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Fig. 2 Sideslip angle – 60 km/h (left) and 80 km/h (right) steering ramp 

4.2 Lateral force and Yaw moment analysis 

Since no direct measurement of each tire force was performed during the experi-

mental campaign, the vehicle equilibrium was analyzed to validate the tire force 

estimation. In particular, the total lateral force  and the yaw moment  were 

computed for both the real vehicle and the estimation models. Concerning the real 

vehicle,  was obtained multiplying the acquired lateral acceleration by , while 

 was obtained computing, after proper filtering, the time-derivative of the yaw 

velocity signal  multiplied by . On the other hand, to compute  and  in the 

models, it is necessary to know each (estimated) tire lateral force since, for the 

considered architecture,  and  are defined as follows: 

= cos + cos + +  

= ( ( cos + cos ) − ( + ) + ( sin− sin )
2

 

(7) 

The total lateral force plots are shown in Fig. 3 for the 60 km/h and 80 km/h ma-

neuvers. It is worth noting that the experimentally computed lateral force is, by 

definition, directly proportional to the lateral acceleration. The estimated total lat-

eral force trend is satisfactory for the EKF+RW method, where both the data scat-

tering and the error related to the experimentally computed total lateral force are 

restrained, particularly for the 60 km/h maneuvers. Higher data scattering appears 

at 80 km/h, which might also be ascrivable to the higher noise to signal ratio in the 

computation of   and  since, given the same lateral acceleration, the steering 

wheel angle is lower for the 80 km/h than for the 60 km/h maneuver. The data ob-

tained through the EKF are more scattered and more distant from the experimen-

tally computed values.  

Similarly, the yaw moment plots are shown in Fig. 4 for the 60 km/h and 80 

km/h maneuvers. The difference between the experimentally computed and the 

models estimated data is not negligible in this case, for both the EKF and the 

EKF+RW data. In particular, the EKF+RW method appears, here again, more ac-
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curate than the EKF method, even if the data scattering (even for the experimen-

tally computed data) is very high, especially for the 80 km/h maneuver.  

 

 

Fig. 3 Total lateral force – 60 km/h (left) and 80 km/h (right) steering ramp 

 

Fig. 4 Yaw moment – 60 km/h (left) and 80 km/h (right) steering ramp 

 

5 Conclusions 

In this paper two algorithms were presented which are grounded on Kalman 

Filter Theory and include also tire lateral forces as hidden states beside lateral, 

longitudinal and yaw velocities. In the first one, simply denoted as EKF, the lat-

eral forces are linked to tire slips via the constitutive Pacejka equations, while in 

the second one, denoted as EKF+RW, the lateral forces are again treated as hidden 

states but obeying dynamics solely driven by noise (random walk model). 

The validation of the two algorithms has been performed on the available direct 

measurements of the vehicle sideslip angle obtained by the accurate Datron sen-

sor, showing satisfactory results, especially for the EKF+RW scheme, where the 

error never exceeds ≈0.5 degrees. 

An indirect, additional assessment of the performance of the algorithms has 

been performed with the respect to their ability to reconstruct quantities not direct-

ly measurable, namely total lateral force  and total moment . Here, only the 

EKF+RW has shown the ability to output values comparable to physically plausi-

ble estimations on the basis of simple equilibrium considerations, while the EKF 
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has demostrated lower accuracy and a fairly high dispersion, especially for low 

acceleration values, in reconstructing the total force and total moment. 

The simulation time of developed algorithms, implemented on a 2.26GHz CPU 

and 8 GB RAM laptop, was around 1/5 of the time of the actual maneuvers, thus 

endorsing a potential real time implementation. 

As a future prospect, we envision further testing of the algorithms on transient-

richer maneuvers, and there we expect the current force and torque reconstruction 

errors, to be become, despite the small steady-state error, much less significant. 

References 

1. Bucchi, F., Forte, P., Frendo, F.: Analysis of the torque characteristic of a magnetorheological 

clutch using neural networks. J. Intell. Material Syst. Struct, 26(6), 680-689 (2015) 

2. Bucchi, F., et al.: The effect of the front-to-rear wheel torque distribution on vehicle handling: an 

experimental assessment. 25th Int. Symposium IAVSD 2017, Rockhampton, Australia (2017) 

3. Chen, B.-C., Hsieh, F.-C.: Sideslip angle estimation using extended Kalman filter. Veh. Syst. Dyn. 

46, 353–364 (2008) 

4. Chindamo, D., Lenzo, B., Gadola, M.: On the Vehicle Sideslip Angle Estimation: A Literature 

Review of Methods, Models, and Innovations. Appl. Sci. 8, 355 (2018) 

5.  De Filippis, G. Lenzo, B., et al.: Energy-Efficient Torque-Vectoring Control of Electric Vehicles 

with Multiple Drivetrains, IEEE Transactions on Vehicular Technology, 67:6 (2018)     

6. Doumiati, M., Victorino, A., Charara, A., Lechner, D.: A method to estimate the lateral tire force 

and the sideslip angle of a vehicle: Experimental validation. Proc. 2010 Am. Control Conf. (2010) 

7. Farroni, F., et al.: A comparison among different methods to estimate vehicle sideslip angle.  

Proceedings of the World Congress on Engineering, Vol. 2 (2015)  

8. Gadola, M., Chindamo, D., Romano, M., Padula, F.: Development and validation of a Kalman 

filter-based model for vehicle slip angle estimation. Veh. Syst. Dyn. 52, 68-84 (2014) 

9. Ghosh, J., Tonoli, A., Amati, N., Chen, W.: Sideslip angle estimation of a Formula SAE racing 

vehicle. SAE Int. J. Passeng. Cars-Mechanical Syst. 9, 944–951 (2016) 

10. Guiggiani, M., The Science of Vehicle Dynamics. Springer (2014) 

11. Gurney, K., An introduction to neural networks. CRC press (2014) 

12. Lenzo, B., Sorniotti, A., Gruber, P., Sannen, K.: On the experimental analysis of single input single 

output control of yaw rate and sideslip angle. Int. Journal of Automotive Technology, 18, 5 (2017) 

13. Lenzo, B., De Filippis, G., et al.: Torque Distribution Strategies for Energy-Efficient Electric 

Vehicles with Multiple Drivetrains, ASME J. of Dyn. Systems, Meas. and Control, 139:12 (2017) 

14. Madhusudhanan A.K., Corno, M., Holweg, E.: Vehicle sideslip estimator using load sensing 

bearings. Control Eng. Pract. 54 (2016) 

15. Ouahi, M., Stéphant, J., Meizel, D.: Simultaneous observation of the wheels’ torques and the 

vehicle dynamic state. Veh. Syst. Dyn. 51, 737-766 (2013) 

16. Pacejka, H.B.: Tire and Vehicle Dynamics (2006) 

17. Selmanaj, D. Corno, M., Panzani, G., Savaresi, S.M.: Vehicle sideslip estimation: A 

kinematicbased approach. Control Eng. Pract. 67 1–12 (2017) 

18. Tota, A., et al.: On the experimental analysis of integral sliding modes for yaw rate and sideslip 

control of an electric vehicle with multiple motors. Int. Journal of Automotive Technology (2018) 

19. Wang, Z., Montanaro, U., Fallah, S. et. al.: A gain scheduled robust linear quadratic regulator 

for vehicle direct yaw moment control. Mechatronics, 51, pp.31-45 (2018) 

20. Welch, G., Bishop, G.: An Introduction to the Kalman filter. University of North Carolina at 

Chapel Hill, Department of Computer Science, TR 95-041 (2004) 

 

8 IFIT2018, 042, v2 (final): ’Vehicle Sideslip Angle Estimation Using Kalman Filters: Mod� . . .


