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Abstract. The following items are provided in the supplementary ma-
terial:
1. Experimental Details
2. Additional Experiments
3. iCIFAR Data
4. iTaskonomy Data

1 Experimental Details

For full details on our configs, please refer to ./configs in provided code on our
website at http://sidetuning.berkeley.edu.

1.1 Experimental Setup for Incremental Learning

Taskonomy Our data is 4M images on 12 single image tasks. The tasks that we
use are the following: curvature, semantic segmentation, reshading, keypoints3d,
keypoints2d, texture edges, occlusion edges, distance, depth, surface normals,
object classification and autoencoding. The tasks were chosen in no particular
special order. Our base model and side model are ResNet-50s. We pretrain on
curvature. Then, we train each task for three epochs before moving on to the
next task. We use cross entropy loss for classification tasks (semantic segmen-
tation and object classification), L2 loss for curvature and L1 loss for the other
tasks. We use Adam optimizer with an initial learning rate of 1e-4, weight decay
coefficient of 2e-6, gradient clipping to 1.0, and batch size of 32. We evaluate
our performance on a held out set of images, both immediately after training a
specific task, and after training of all the tasks are complete.

iCIFAR We start by pretraining a model on CIFAR 10 (from https://github.

com/akamaster/pytorch_resnet_cifar10). Then we partition CIFAR100 into
10 distinct sets of 10 classes. Then, we train for 4 epochs on these tasks using
Adam optimizer, learning rate of 1e-3, batch size of 128.

http://sidetuning.berkeley.edu
http://sidetuning.berkeley.edu
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
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1.2 Experimental Setup for Additional Domains

NLP We train and test on the the question answering dataset SQuAD2.0, a
reading comprehension dataset consisting of 100,000 questions with 50,000 unan-
swerable questions. Both our base encoding and side network is a BERT trans-
former pretrained on a larger corpus. Finetuning trains a single BERT trans-
fer. We use the training setup found at https://github.com/huggingface/

pytorch-transformers (train for 2 epochs at a learning rate of 3e-5) with one
caveat - we use an effective batch size of 3 (vs. their 24).

Habitat Experiments We borrow the experimental setup from [1]:

We use the Habitat environment with the Gibson dataset. The dataset
virtualizes 572 actual buildings, reproducing the intrinsic visual and se-
mantic complexity of real-world scenes.
We train and test our agents in two disjoint sets of buildings. During
testing we use buildings that are different and completely unseen during
training. We use up to 72 building for training and 14 test buildings for
testing. The train and test spaces comprise 15678.4m2 (square meters)
and 1752.4m2, respectively.
The agent must direct itself to a given nonvisual target destination (spec-
ified using coordinates), avoiding obstacles and walls as it navigates to
the target. The maximum episode length is 500 timesteps, and the target
distance is between 1.4 and 15 meters from the start.

This setup is shared between imitation learning and RL, which differ in the data,
architecture and optimization process.

Imitation Learning We collect 49,325 shortest path expert trajectories in
Habitat, 2,813,750 state action pairs. We learn a neural network mapping from
states to actions. Our base encoding is a ResNet-50 and the side network is a five
layer convolutional network. The representation output is then fed into a neural
network policy. We train the model for 10 epochs using cross entropy loss and
Adam at an initial learning rate of 2e-4 and weight decay coefficient of 3.8e-7. We
initialize alpha to 0.5. Finetuning uses the same model architecture but updates
all the weights. Feature extraction only uses the ResNet-50 to collect features.

RL Similarly, we borrow the RL setup from [1].

In all experiments we use the common Proximal Policy Optimization
(PPO) algorithm with Generalized Advan- tage Estimation. Due to the
computational load of ren- dering perceptually realistic images in Gib-
son we are only able to use a single rollout worker and we therefore
decorre- late our batches using experience replay and off-policy vari- ant
of PPO. The formulation is similar to Actor-Critic with Experience Re-
play (ACER) in that full trajectories are sampled from the replay buffer
and reweighted using the first-order approximation for importance sam-
pling.

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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During training, the agent receives a large one-time reward for reaching the goal,
a positive reward proportional to Euclidean distance toward the goal and a small
negative reward each timestep. The maximum episode length is 500 timesteps,
and the target distance is between 1.4 and 15 meters from the start.

Due to this paradigms’ compute and memory constraints, it would be difficult
for us to use large architectures for this setting. Thus, our base encoding is a
five layer convolutional network distilled from the trained ResNet-50. Our side
network is also a five layer convoultional network. Finetuning is handled the
same way - update all the weights in this setup. Feature extraction uses the five
layer network to collect features.

1.3 Experimental Setup for Learning Mechanics

Low energy initialization In classical teacher student distillation, the student
is trained to minimize the distance between its output and the teacher’s output.
In this setting, we minimize the distance between the teacher’s output and the
summation of the student’s output and the teacher’s output. The output space
may have a different geometry than that of the input space.

2 Additional Experiments

2.1 Task relevance predicts alpha α.

In our experiments, we treat α as a learnable parameter (initialized to 0.5) and
find that the relative values of α are predictive of empirical performance. In
imitation learning, curvature (α = 0.557) outperformed denoising (α = 0.252).
In iTaskonomy, the α values from training on just 100 images predicted the actual
transfer performance to normals in [2], (e.g. curvature (α = 0.56) outperformed
object classification (α = 0.50)). For small datasets, usually α ≈ 0.5 and the
relative order, rather than the actual value is important.

2.2 Fusion

An alternative perspective views these methods as various fusions between some
base output and new side output. In this framework, side-tuning is a late-fusion
approach whereas PNN is a distributed-fusion approach. We compare various
fusion methods in iCIFAR and find that late fusion performs better than early
fusion and distributed fusion (error of 23.9 vs. 38.8 and 26.3 respectively). The
fusion is performed with a MLP. We run this analysis in iTaskonomy as well.
We fuse with no new parameters, merging with summation and combine outputs
with alpha-blending. We find that late fusion outperforms early and distributed
fusion as well (rank of 1.25 of 3 vs. 1.92 and 2.0 respectively).

2.3 Imitation Learning Data Study

We show additional results from the data study in imitaiton learning in Figure 1.
The results overall show Side-tuning ’s advantage.
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Fig. 1. Additional Imitation Learning Data Study. We ablate over different quantities
of expert trajectories. We observe that when data is scarce, features is a powerful choice
whereas when data is plentiful, fine-tuning performs well. In both scenarios, side-tuning
is able to perform as well as the stronger approach.

2.4 Additional iCIFAR Comparisons with Progressive Neural
Networks

In the main paper, for our iCIFAR experiments, we see that the average per-
formance of side-tuning weaker than that of PNN. We find that side-tuning can
bridge this gap with a multilayer perceptron (adapter) to merge the base and
side networks. This is a common practice in PNN. We see with the adapter
network, the two methods are very similar when measuring classification error
(23.69 of PNN vs. 23.91 of Side-tuning).

2.5 Extremely Few-Shot Learning

In domains with very few examples, we found that side-tuning is unable to match
the performance of other methods. We evaluated our setup in vision transfer for
5 images from the same building, imitation learning given 5 expert trajectories.

Methods

Finetune
Features
Scratch
Sidetune

Nav. Rew. (4 epi) (↑)
Curvature Denoise

-0.1 -1.2
0.4 1.2
-0.9 -0.9
-0.3 -1.8

Loss (5 ims) (↓)
Curvature to Normals

0.35
0.36
0.37
0.42



Side-Tuning: Supplementary Material 5

3 iCIFAR data

3.1 Average Final Classification error

Here, we show the average classification error at the end of training.
Avg. Error

Indep. 14.81
PNN 23.69
Side-tuning (MLP) 23.91
Late Fusion 23.91
Dist. Fusion 26.34
Side-tuning 32.77
EWC 34.86
Early Fusion 38.84
EWC λ = 104 41.39
EWC λ = 106 41.88
Feat. 42.27
Res. Adapter 46.26
Piggyback 47.72
PSP 50.82
Fine-tuning 77.75

3.2 Final Classification error for all methods on all tasks

Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

Side-tuning 31.7 31.2 33.1 36.4 30.3 34.6 33.0 36.8 33.1 27.5
PSP 57.9 63.9 50.9 60.4 47.0 51.5 46.6 47.5 50.3 32.2
Fine-tuning 94.2 87.3 91.9 91.0 89.3 88.9 88.0 79.3 54.6 13.0
Res. Adapter 47.2 53.7 46.8 49.1 45.5 43.3 45.1 43.2 44.5 44.2
Side-tuning (MLP) 26.2 24.1 23.4 26.9 23.3 23.8 23.0 26.1 23.8 18.5
PNN 25.4 27.2 24.6 23.9 23.2 24.5 22.4 28.6 22.0 15.1
Indep. 12.2 17.2 12.8 13.8 16.1 17.1 15.9 18.5 13.5 11.0
EWC 19.6 33.1 35.6 41.6 35.6 41.4 37.1 38.7 40.1 25.8
Piggyback 48.7 48.0 45.9 51.0 49.2 48.8 46.1 49.9 43.6 46.0
Feat. 45.3 37.9 47.1 41.0 40.1 45.5 42.8 46.3 40.9 35.8
EWC = 106 14.1 41.1 45.0 47.6 42.2 44.5 46.3 47.0 47.2 38.9
EWC = 104 56.5 54.5 50.6 45.0 42.7 39.5 40.0 39.1 34.7 16.2
Early Fusion 38.4 44.9 39.4 43.6 37.8 36.5 41.0 36.9 37.8 32.1
Late Fusion 26.2 24.1 23.4 26.9 23.3 23.8 23.0 26.1 23.8 18.5
Dist. Fusion 26.1 27.7 26.6 27.7 23.9 29.4 27.1 27.9 25.8 21.2
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4 iTaskonomy Data

4.1 Rank of Side-tuning and Baselines

Here we provide rankings for the baselines introduced.
Rank

Side-tuning 2.000
Indep. 2.000
PNN 3.500
Piggyback 4.333
Feat. 5.000
Res. Adapter 5.250
EWC 7.583
PSP 7.667
Fine-tuning 7.667

4.2 Rank of all methods

Here, we provide the rank of all methods that we have tested in the incre-
mental learning setup (including all ablations/analysis in addition to baselines).
Note the effectiveness of using ground truth curvatures as the base model!

Rank

Indep. 4.167
GT Curv as Base 4.333
Side-tuning 5.250
FiLM 5.667
MLP 6.417
Dist. Fusion 7.000
Xavier Init. 8.500
MLP2 8.583
PNN 8.833
Low Energy Init. 9.167
No Base 10.583
Mult. 10.583
Piggyback 10.750
Early Fusion 11.667
Feat. 12.417
No Side 12.417
Res. Adapter 14.167
EWC 17.667
EWC(λ = 0.01) 17.750
EWC(λ = 100) 18.000
Fine-tuning 18.000
PSP 18.583
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4.3 Final Task Performance for all Tasks and Methods

Here we provide the final performance for all of the tested methods on all the
incremental learning tasks in Taskonomy.

Side-tuning PSP Fine-tuning PNN Indep. EWC Feat.

Curvature 1.234 1.810 1.787 1.230 1.251 1.829 1.240
Semantic Segmentation 1.347 1.626 1.505 1.350 1.347 1.502 1.353
Reshading 0.613 2.377 2.127 0.621 0.638 1.677 0.791
3D Keypoints 1.986 3.026 3.486 2.038 1.993 3.096 1.988
2D Keypoints 0.896 4.593 5.046 1.042 0.742 4.988 2.504
Texture Edges 0.160 1.571 1.374 0.165 0.141 1.007 0.377
Occlusion Edges 0.927 1.147 1.177 0.936 0.933 1.235 0.928
Z-buffer Depth 1.011 3.222 3.587 1.060 1.018 3.706 1.214
Distance 1.117 2.900 3.401 1.098 1.001 3.860 1.187
Surface Normals 0.618 1.912 2.040 0.644 0.569 1.990 0.649
Object Classification 2.986 15.950 5.042 2.996 2.829 5.103 3.183
Autoencoding 1.271 1.337 1.179 1.477 1.138 1.155 5.337

Piggyback Res. Adapter Low E Init. Xavier Init. No Base No Side

Curvature 1.245 1.370 1.239 1.237 1.294 1.240
Semantic Segmentation 1.350 1.382 1.351 1.352 1.353 1.353
Reshading 0.646 0.743 0.699 0.702 0.923 0.791
3D Keypoints 1.976 2.226 1.984 1.988 2.060 1.988
2D Keypoints 2.442 1.009 0.890 0.889 0.870 2.504
Texture Edges 0.355 0.171 0.154 0.160 0.155 0.377
Occlusion Edges 0.935 0.979 0.929 0.930 0.944 0.928
Z-buffer Depth 1.120 1.314 1.264 1.163 1.045 1.214
Distance 1.170 1.387 1.179 1.138 1.219 1.187
Surface Normals 0.638 0.723 0.645 0.638 0.651 0.649
Object Classification 3.187 3.044 3.126 3.099 2.960 3.183
Autoencoding 4.939 1.298 1.312 1.256 1.262 5.337
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GT Curv as Base EWC(λ = 0.01) EWC(λ = 100) MLP2 MLP

Curvature 0.783 1.626 1.905 1.244 1.247
Semantic Segmentation 1.351 1.472 1.496 1.351 1.351
Reshading 0.591 1.955 1.668 0.603 0.844
3D Keypoints 1.702 3.125 3.229 2.000 1.997
2D Keypoints 0.879 4.649 6.445 0.967 0.865
Texture Edges 0.151 1.036 0.969 0.164 0.150
Occlusion Edges 0.928 1.191 1.320 0.932 0.926
Z-buffer Depth 1.050 3.726 3.168 1.074 1.011
Distance 1.076 3.640 3.389 1.132 1.080
Surface Normals 0.562 2.139 2.112 0.619 0.612
Object Classification 2.956 5.280 5.680 2.979 2.955
Autoencoding 1.294 1.163 1.223 1.383 1.312

Mult. FiLM Early Fusion Dist. Fusion

Curvature 1.235 1.243 1.318 1.230
Semantic Segmentation 1.354 1.352 1.364 1.348
Reshading 0.813 0.827 0.720 0.631
3D Keypoints 1.990 1.979 2.148 1.984
2D Keypoints 1.369 0.840 0.855 0.974
Texture Edges 0.224 0.145 0.166 0.167
Occlusion Edges 0.934 0.928 0.948 0.925
Z-buffer Depth 1.097 1.028 1.158 1.048
Distance 1.085 1.075 1.219 1.083
Surface Normals 0.625 0.610 0.691 0.626
Object Classification 3.005 2.991 3.022 2.999
Autoencoding 2.012 1.264 1.224 1.275
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4.4 Qualitative Results of Side-tuning vs PNN

We show predictions for Side-tuning and PNN side-by-side for three tasks (rela-
tive to Ground Truth and Independent). We show two variants of PNN, the first
following the paper closely, the second with minor variations.

RGB GT Indep PNN2 ST PNN

Fig. 2. Qualitative results for Reshading. Both PNN methods and Sidetune have
similar qualitative results.
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RGB GT Indep PNN2 ST PNN

Fig. 3. Qualitative results for 2D Edges. Both PNN methods and Sidetune have
similar qualitative results.
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RGB GT Indep PNN2 ST PNN

Fig. 4. Qualitative results for Surface Normals. Both PNN methods and Sidetune
have similar qualitative results.
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4.5 Qualitative Results of Baselines

We show predictions for each method (Side-tuning , EWC, PSP, PNN, Inde-
pendent) separately for some fixed set of randomly selected images throughout
training.

Side-Tuning

Fig. 5. More qualitative results for side-tuning . These images were randomly
selected from the validation set. Left-hand column is input, rightmost-column is ground
truth. Images from left to right show predictions as training progresses. Each block of
4 rows shows predictions on a different task (Reshading, 2D Edges. Surface Normals.)
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Elastic Weight Consolidation (EWC)

Fig. 6. More qualitative results for EWC. These images were randomly selected
from the validation set. Left-hand column is input, rightmost-column is ground truth.
Images from left to right show predictions as training progresses. Each block of 4 rows
shows predictions on a different task (Reshading, 2D Edges. Surface Normals.)
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Parameter Superposition (PSP)

Fig. 7. More qualitative results for PSP. These images were randomly selected
from the validation set. Left-hand column is input, rightmost-column is ground truth.
Images from left to right show predictions as training progresses. Each block of 4 rows
shows predictions on a different task (Reshading, 2D Edges. Surface Normals.)
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Progressive Neural Network (PNN)

Fig. 8. More qualitative results for PNN. These images were randomly selected
from the validation set. Left-hand column is input, rightmost-column is ground truth.
Images from left to right show predictions as training progresses. Each block of 4 rows
shows predictions on a different task (Reshading, 2D Edges. Surface Normals.)
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Independent Fine-Tuned ResNet-50

Fig. 9. More qualitative results for independent These images were randomly
selected from the validation set. Left-hand column is input, rightmost-column is ground
truth. Images from left to right show predictions as training progresses. Each block of
4 rows shows predictions on a different task (Reshading, 2D Edges. Surface Normals.)
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Piggyback

Fig. 10. More qualitative results for piggyback These images were randomly se-
lected from the validation set. Left-hand column is input, rightmost-column is ground
truth. Images from left to right show predictions as training progresses. Each block of
4 rows shows predictions on a different task (Reshading, 2D Edges. Surface Normals.)
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Residual Adapter

Fig. 11. More qualitative results for Residual Adapter These images were ran-
domly selected from the validation set. Left-hand column is input, rightmost-column is
ground truth. Images from left to right show predictions as training progresses. Each
block of 4 rows shows predictions on a different task (Reshading, 2D Edges. Surface
Normals.)
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