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INTRODUCTION

The demand for wireless spectrum use has been
growing rapidly with the dramatic development
of the mobile telecommunication industry in the
last decades. Recently, regulatory bodies like the
Federal Communications Commission (FCC) in
the United States are recognizing that tradition-
al fixed spectrum allocation can be very ineffi-
cient, considering that bandwidth demands may
vary highly along the time or space dimension.
In order to fully utilize the scarce spectrum
resources, with the development of cognitive
radio technologies, dynamic spectrum access
becomes a promising approach to increase the
efficiency of spectrum usage, which allows unli-
censed wireless users (secondary users) to
dynamically access the licensed bands from lega-
cy spectrum holders (primary users) on a negoti-
ated or an opportunistic basis.

Cognitive radio technologies have the poten-
tial to provide wireless devices with various
capabilities, such as frequency agility, adaptive
modulation, transmit power control, and local-
ization. The advances of cognitive radio tech-
nologies make more efficient and intensive
spectrum access possible. The FCC began to
consider more flexible and comprehensive use of
available spectrum. The NeXt Generation pro-
gram of the Defense Advanced Research Pro-
jects Agency (DARPA) also aims to dynamically
redistribute allocated spectrum based on cogni-
tive radio technologies.

The key component of dynamic spectrum
access is dynamic spectrum sharing, which is
responsible for providing efficient and fair spec-
trum allocation or scheduling solutions among
primary and secondary users. Traditionally,
dynamic spectrum sharing was generally regard-
ed as similar to generic medium access control
(MAC) problems in existing wireless systems
and studied from the perspective of wireless
resource allocation. However, one of the most
important characteristics of network users
equipped with cognitive radios is their cognitive
intelligence, which enables network users to
make intelligent decisions on spectrum usage
and communication parameters based on the
sensed spectrum dynamics and other users’ deci-
sions. Therefore, it is more natural to study the
intelligent behaviors and interactions of network
users (cooperative, selfish, or malicious) for
dynamic spectrum sharing from the game theo-
retical perspective.

Generally speaking, game theory models
strategic interactions among agents using formal-
ized incentive structures. It not only provides
game models for efficient self-enforcing dis-
tributed design, but also derives well defined
equilibrium criteria to study the optimality of
game outcomes for various game scenarios (stat-
ic or dynamic, complete or incomplete informa-
tion, non-cooperative or cooperative). These
game models and equilibrium criteria have been
extensively studied in the scenarios of dynamic
spectrum sharing to achieve efficient and fair
solutions for different network architectures
(centralized/distributed), spectrum allocation
behaviors (cooperative/non-cooperative) or spec-
trum access techniques (overlay/underlay). In
this article we present a comprehensive overview
of game theoretical dynamic spectrum sharing
from several aspects: analysis of network users’
behaviors, efficient dynamic distributed design,
and optimality analysis.

SYSTEM MODEL
Dynamic spectrum access networks (DSANs),
also known as NeXt Generation (xG) networks,
will enable efficient spectrum usage to network
users via dynamic spectrum access techniques
and heterogeneous network architectures.
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Specifically, secondary users are able to access
spectrum resources from primary users through
opportunistic or negotiation-based methods
while not causing harmful interference or chan-
nel collision. The main features that define
DSANs and those of interest for dynamic spec-
trum sharing are as follows:

•Consider a general scenario of DSANs with
multiple primary users and multiple secondary
users as shown in Fig. 1. Different from tradi-
tional static or centralized spectrum assignment
among different base stations or systems in cel-
lular networks, DSANs enable multiple systems
to be deployed with overlapping spectrum or
coverage. Moreover, ad hoc networking struc-
tures are also encouraged in DSANs. Therefore,
flexible spectrum access is possible by allowing
secondary users to gain access to multiple prima-
ry operators or having multiple secondary users
compete for available spectrum.

•The network users are equipped with cogni-
tive radio devices, which enable them to perform
various dynamic spectrum access techniques
including spectrum sensing, spectrum manage-
ment, seamless handoff, and spectrum sharing.

•Spectrum pooling architecture is used to
collect unused or underused licensed spectra and
divide them into orthogonal frequency channels
based on orthogonal frequency-division multi-
plexing (OFDM). In order to prevent interfer-
ence to the communications of primary users,
zeros can be fed into the channels primary users
occupy through OFDM techniques.

•Considering different applications of
DSANs, such as military, emergency, or civilian
applications, different types of users coexist in
wireless networks, including cooperative, selfish,
and malicious users. Cooperative users uncondi-
tionally cooperate with each other to serve a
common goal; selfish users aim to maximize
their own interests; malicious users intend to
cause as much damage as they can to the net-
work.

•There may not be centralized authorities. A
management point may exist to handle the billing
information for spectrum leasing activities. Con-
trol channels are assumed for exchanging spec-
trum sharing information.

•The characteristics of spectrum resources
may vary over frequency, time, and space due to
user mobility, channel variations, or wireless
traffic fluctuations.

GAME THEORETICAL MODELS FOR
DYNAMIC SPECTRUM SHARING

In this section the motivation and importance of
game theoretical approaches for dynamic spec-
trum sharing are illustrated first. Then the game
models for dynamic spectrum sharing are dis-
cussed for various networking scenarios.

MOTIVATION OF GAME THEORETICAL
DYNAMIC SPECTRUM SHARING

The imbalance between the increasing demands
of wireless spectra and limited radio resources
poses an imminent challenge in efficient spec-
trum sharing. In order to have efficient dynamic

spectrum sharing, several difficulties need to
first be overcome: the unreliable and broadcast
nature of wireless channels, user mobility and
dynamic topology, various network infrastruc-
tures, and, most important, network users’
behaviors. To be specific, network users can be
cooperative, selfish, and even malicious. Tradi-
tional spectrum sharing approaches only assume
cooperative, static, and centralized network set-
tings. Before efficient dynamic spectrum sharing
can be achieved, network users’ intelligent
behaviors and interactions have to be thorough-
ly studied and analyzed. Game theory studies
conflict and cooperation among intelligent
rational decision makers, which is an excellent
match in nature to dynamic spectrum sharing
problems.

The importance of studying dynamic spec-
trum sharing in a game theoretical framework
is multifold. First, by modeling dynamic spec-
trum sharing among network users (primary
and secondary users) as games, the network
users’ behaviors and actions can be analyzed in
a formalized game structure, by which the theo-
retical achievements in game theory can be
fully utilized. Second, game theory equips us
with various optimality criteria for the spectrum
sharing problem. Specifically, the optimization
of spectrum usage in DSANs is generally a
multi-objective optimization problem, which is
very difficult to analyze and solve. Game theory
provides us well defined equilibrium criteria to
measure game optimality under various game
settings (network scenarios in our context).
Third, non-cooperative game theory, one of the
most important game theories, enables us to
derive efficient distributed approaches for
dynamic spectrum sharing using only local
information. Such approaches become highly
desirable when centralized control is not avail-
able or flexible self-organized approaches are
necessary.

GAME MODELS
Generally speaking, a game in the strategic form
has three elements: the set of players, the strate-
gy space for each player, and the payoff func-
tion, which measures the outcome of each player.
Similarly, the intelligent behaviors of cognitive

n Figure 1. Illustration of dynamic spectrum access networks.
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network users in DSANs can be modeled as a
dynamic spectrum sharing game (DSSG). The
players in the DSSG are all the network users,
including both primary and secondary users. The
strategy space for each user consists of various
actions related to spectrum sharing. Specifically,
for secondary users, the strategy space includes
which licensed channel they will use, what trans-
mission parameters (e.g., transmission power or
time duration) to apply, the price they agree to
pay for leasing certain channels from the prima-
ry users, and so on. For primary users, the strat-
egy space may include which unused channel
they will lease to secondary users, how much
they will charge secondary users for using their
spectrum resources, and so on. Furthermore, the
payoff functions in a DSSG may vary consider-
ing the nature of network users. To be specific,
the payoff function of a group of cooperative
users represents their common communication
goal; the payoff functions of selfish users
describe their self-interests; the payoff functions
of malicious users illustrate their damage to
DSANs.

Considering the availability of centralized
authorities, we have non-cooperative DSSGs and
cooperative DSSGs. In non-cooperative DSSGs,
without centralized control, selfish network users
do not cooperate, so any cooperation among
them must be self-enforcing [1]. Thus, the study
of dynamic spectrum sharing in non-cooperative
DSSGs focuses on distributed game designs and
cooperation stimulation. Note that the Nash
equilibrium [1] is an important concept to mea-
sure the outcome of a non-cooperative game,
which is a set of strategies, one for each player,
such that no selfish player has incentive to uni-
laterally change his/her action. In order to fur-
ther measure the efficiency of game outcomes, a
Pareto optimality [1] is defined such that an out-
come of a game is Pareto optimal if there is no
other outcome that makes every player at least
as well off and at least one player strictly better
off.

In cooperative DSSGs, users are able to do
enforceable spectrum sharing through central-
ized authorities. Thus, for cooperative DSSGs,
the interests lie in how good the outcome of
spectrum sharing can be; in other words, how
to define and choose the optimality criteria in
cooperative scenarios. It is worth mentioning
that the Nash bargaining solution (NBS) [1]
plays an important role in cooperative games,
which is a unique Pareto optimal solution to
the game modeling bargaining interactions
based on six intuitive axioms. To be specific,
the NBS divides the remaining spectrum
resources among users in a ratio equal to the
rate at which the payoff can be transferred
after the users are assigned minimal resources
[1]. The NBS can be represented as a product
of extra resources assigned to each user, which
is also referred to as a linear-proportional fair-
ness criterion if no minimal resources are pre-
assigned [2].

Considering that spectrum sharing in DSANs
is a dynamic process, how the interactions among
users evolve over time based on spectrum
dynamics needs to be further studied. Therefore,
in order to better model dynamic spectrum shar-

ing, dynamic game models have been considered
to study the static DSSG in a multistage manner
or further represent DSSGs in extensive form if
users take actions sequentially. In dynamic
DSSGs, if complete information is available (i.e.,
the set of strategies and payoffs for each user
are common knowledge), a subgame perfect
equilibrium (SPE) can be used to study the
game outcomes, which is an equilibrium such
that users’ strategies constitute a Nash equilibri-
um in every subgame [1] of the original game. If
complete information is not available, sequential
equilibrium [1] is a well defined counterpart of
SPE under such circumstances, which guarantees
that any deviations from the equilibrium will be
unprofitable.

Considering the negotiated or leasing-based
dynamic spectrum sharing, primary users attempt
to sell unused spectrum resources to secondary
users for monetary gain, while secondary users
try to acquire spectrum usage permissions from
primary users to achieve certain communication
goals, which generally introduces reward payoffs
for them. Noting that the users may be selfish
and will not reveal their private information
unless proper mechanisms have been applied to
ensure that their interests will not be hurt, the
interactions among users in such scenarios can
be modeled as a multiplayer non-cooperative
game with incomplete information, which is gen-
erally difficult to study as the players do not
know the perfect strategy profile of others. How-
ever, based on the game setting of DSSGs, the
well developed auction theory [3], one of the
most important applications of game theory, can
be applied to formulate and analyze the interac-
tions.

In auction games [3], according to an explicit
set of rules, the principles (auctioneers) deter-
mine resource allocation and prices on the basis
of bids from the agents (bidders). In the DSSG
the primary users can be viewed as the princi-
ples, who attempt to sell unused channels to the
secondary users. The secondary users are the
bidders who compete with each other to buy the
permission of using primary users’ channels.
Furthermore, multiple sellers and buyers may
coexist, which indicates the double auction sce-
nario. This means that not only the secondary
users but also the primary users need to com-
pete with each other to make beneficial transac-
tions possible by eliciting their willingness to pay
in the form of bids or asks.

In the double auction scenarios of the DSSG,
competitive equilibrium (CE) [3] is a well-
known theoretical prediction of the outcomes. It
is the price at which the number of buyers will-
ing to buy is equal to the number of sellers will-
ing to sell.  Alternatively, CE can also be
interpreted as where supply and demand match
[3]. In DSSGs, the supply function can be
defined as the relationship between the acquisi-
tion costs of primary users and the number of
channels; the demand function can be defined
as the relationship between the reward payoffs
of secondary users and the number of channels.
We describe the supply and demand functions
in Fig. 2. Note that CE is also proved to be
Pareto optimal in stationary double auction sce-
narios.
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EFFICIENT DISTRIBUTED
DYNAMIC SPECTRUM SHARING

The deregulation of wireless spectrum makes
such a scarce resource a commodity that can be
dynamically exchanged among network users.
Considering the lack of centralized authorities
and network users’ selfishness, distributed
dynamic spectrum sharing needs to be further
exploited by studying users’ intelligent behaviors
from the game theoretical point of view. Recent-
ly, distributed dynamic spectrum sharing
approaches [4–7] have been well studied to
enable efficient and fair spectrum allocation dis-
tributively using local information available at
each user.

LOCAL BARGAINING
In [4] the authors propose a local bargaining
approach to achieve distributed conflict-free
spectrum assignment adapted to network topolo-
gy changes. The proposed local bargaining
approach includes two bargaining strategies for
different scenarios: one-to-one bargaining is pro-
posed to efficiently exchange channels between
two neighbor users; one-buyer-multiple-seller
bargaining is proposed for a buyer user to pur-
chase spectrum channels from several neighbors
based on Feed Poverty strategies [4] for fairness
considerations. Note that the product of user
throughput is considered the optimization goal of
local bargaining, which indicates the application
of the NBS. By using the proposed local bargain-
ing, the optimal spectrum assignment does not
need to be completely recomputed after each
topology change, which significantly decreases
the computation and communication overhead.

REPEATED SPECTRUM SHARING GAME MODEL
In [5] the authors study the spectrum sharing
problem among multiple secondary users for
interference-constrained wireless systems in a
non-cooperative game framework. Their study is
focused on investigating self-enforcing spectrum
sharing game rules and the corresponding game
efficiency measured in total throughput obtained
from available spectrum resources. Since the
static game formulation leads to inefficient Nash
equilibrium outcomes due to users’ selfishness, a
repeated game model is proposed to study the
spectrum sharing interactions in a long-run sce-
nario. Generally speaking, repeated games
belong to the dynamic game family; they play a
similar static game many times. The overall pay-
off in a repeated game is represented as a nor-
malized discounted summation of the payoff at
each stage game. Since the game is not played
only once, the users in a repeated game are able
to make decisions conditioned on past moves,
thus allowing for reputation effects and retribu-
tion. One of the most important results in
repeated game theory is Folk Theorem [1], which
asserts that for infinite repeated games there
exists a discount factor δ^ < 1 such that any fea-
sible and individually rational payoff can be
enforced by an equilibrium for any discount fac-
tor δ ∈ (δ^, 1). Folk Theorem is further applied
in [5] to show the efficiency of self-enforcing
spectrum sharing in long-run scenarios.

AUCTION-BASED SPECTRUM SHARING GAME

Considering the leasing relationship between
primary and secondary users ,  the auction
mechanism becomes a natural solution for
efficient distributed spectrum sharing on a
negotiated basis. An auction-based spectrum
sharing approach was proposed in [6] ,  in
which many secondary users purchase chan-
nels from one primary user or spectrum bro-
ker through an auction process .  For such
scenarios, a Vickrey-Clarke-Groves (VCG) is
usually used to achieve a socially optimal [3]
solution, which may not be suitable for spec-
trum sharing due to the interference tempera-
ture constraints, information overhead, and
computational  burden.  In [6]  two auction
mechanisms were proposed considering differ-
ent payment metrics: one is to charge sec-
ondary users  according to their  received
signal-to-interference-plus-noise ratio (SINR);
the other is to charge secondary users accord-
ing to their received power. Furthermore, an
iterative and distributed bid updating algo-
rithm was derived to have auction-based spec-
trum sharing converge to the social optimal
equilibrium by VCG mechanisms.

BELIEF-ASSISTED PRICING
Considering the general scenarios of DSANs
where multiple primary and secondary users
coexist, dynamic spectrum sharing becomes
much more complex, and the outcome of the
DSSG is difficult to measure without proper the-
oretical criteria. Asmentioned in the previous
section, such scenarios can be modeled using
double auction mechanisms and measured using
a competitive equilibrium. However, a double
auction mechanism is usually implemented in
powerful centralized authorities such as the New
York Stock Exchange (NYSE). In DSANs that
lack centralized control, having varying spectrum
status and selfish users, it is difficult to imple-

n Figure 2. Illustration of the relationship of the spectrum supply and demand.
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ment bilateral pricing through double auction
mechanisms. In [7] the authors propose a belief-
assisted pricing approach for multiple primary
and secondary users to efficiently share spectrum
resources.

In order to achieve efficient pricing dis-
tributively in DSSGs with incomplete informa-
tion, the belief metrics are proposed in [7] to
predict other users’ future possible strategies
according to the game histories and assist each
user’s decision making. Considering that there
are multiple players with private information
in the DSSG, and the bid/ask prices directly
affect the outcome of the game, it is more effi-
cient to define one belief function for each
user based on the observable bid/ask prices
instead of generating a specific belief of every
other user’s private information. Hence, pri-
mary/secondary users’ beliefs are defined as
the ratio of their bid/ask being accepted at dif-
ferent price levels. However, in DSSGs only a
relatively small number of players are involved
in spectrum sharing at a specific time. Beliefs
cannot be practically obtained for any price
level directly, so historical bid/ask information
needs to be incorporated to build up empirical
belief values.

In [7] the belief functions are obtained based
on several intuitive observations: if an ask x~ < x
is rejected, the ask at x will also be rejected; if
an ask x~ > x is accepted, the ask at x will also be
accepted; if a bid y~ > x is made, the ask at x will
also be accepted. By using the proposed belief
functions, each user is able to make the optimal
decision for the next bid/ask with only local
information. Therefore, a distributed algorithm
can be developed through the belief-based bid-
ding process that can not only approach the
optimal competitive equilibrium, but also sub-
stantially decrease the overhead of bid/ask infor-
mation compared to traditional continuous
double auction mechanisms.

GAME THEORETICAL
OPTIMALITY ANALYSIS

One important aspect of dynamic spectrum shar-
ing is how to analyze the optimality of the DSSG
game outcomes. The original difficulty of opti-
mality analysis comes from the fact that many
users (primary or secondary) coexist in DSANs,
which implies a complicated multi-objective opti-
mization scenario. One common approach to
such a problem is to generate an overall optimal
criterion considering all users’ objectives in cer-
tain ways, such as the max-min criterion or maxi-
mizing the total payoff. However, the desired
spectrum sharing needs to be both efficient and
fair instead of focusing on only one aspect.
Moreover, in non-cooperative DSSGs, users will
not follow the overall criteria, and aim to maxi-
mize their own payoffs. In this section a compre-
hensive optimality analysis overview is given for
dynamic spectrum sharing from the game theo-
retical perspective.

PRICE OF ANARCHY
In non-cooperative DSSGs without centralized
authorities, the interactions among selfish users
may lead to inefficient Nash equilibriums. In
order to study the optimality of the non-cooper-
ative game outcomes, the price of anarchy is an
important measure, which is the ratio between
the worst possible Nash equilibrium and a social
optimum that can be achieved only if a central
authority is available. Thus, studying the bounds
on the price of anarchy is of great importance in
understanding the Nash equilibrium outcomes of
non-cooperative DSSGs.

In [8] the price of anarchy is extensively stud-
ied for non-cooperative spectrum sharing games,
in which channel assignment for access points
(APs) is studied for WiFi networks. The price of
anarchy in this scenario represents the ratio
between the number of APs assigned spectrum
channels in the worst Nash equilibrium and the
optimal number of covered APs if a central
authority assigns the channels. The analysis of
Nash equilibrium in spectrum sharing games is
performed by considering it as a maximal color-
ing problem. The theoretical bounds on the
price of anarchy are derived for the scenarios of
different numbers of spectrum buyers and sell-
ers. One interesting finding is that the price of
anarchy is unbounded in general DSSGs unless
certain constraints are applied such as the distri-
bution of users. Similarly, in [4] the price of
anarchy is studied for spectrum assignment in
local bargaining scenarios.

NBS IN SPECTRUM SHARING GAMES
In order to achieve efficient and fair dynamic
spectrum sharing, the NBS is important for opti-
mality analysis in different spectrum sharing sce-
narios [4, 9]. In the scenarios of multiple
secondary users sharing spectrum resources, a
local bargaining process [4] is carried out to
approach the NBS of spectrum sharing among
many users proportional to their reward payoffs
of using the acquired channels. In the scenarios
of multiple primary and secondary users
exchanging spectrum channels through pricing,

n Figure 3. Comparison of the total payoff for the belief-assisted scheme and
theoretical competitive equilibrium.
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the NBS can be applied to study efficient and
fair spectrum sharing of the worst case consider-
ing user collusion among primary or secondary
users [9], which can be described as follows.

An efficient spectrum sharing scheme can be
achieved by balancing the supply and demand of
spectrum resources as shown in Fig. 2. Thus, it is
straightforward that the most inefficient spec-
trum allocation occurs when all the supply and
demand information is concealed by the collu-
sive behaviors of users, which happens only
when two all-inclusive collusions are formed
among the primary and secondary users, respec-
tively. Under this situation, the spectrum alloca-
tion game becomes a bargaining game between
two players: the primary user p(1) with the lowest
acquisition cost and the secondary user s(1) with
the highest reward payoff for the channels in the
spectrum pool. Generally speaking, primary user
p(1) and secondary user s(1) value a spectrum
channel differently, so a surplus is created. The
objective of the bargaining game is to determine
in which way the primary and secondary users
agree to divide the surplus. The NBS provides a
unique and fair Pareto optimal solution under
such a scenario, which also indicates the lower
bound of spectrum efficiency in DSANs with
user collusion [9].

DYNAMIC PROGRAMMING FOR DSSGS
Considering the spectrum dynamics over time,
frequency, or space, optimality analysis needs to
be further performed in dynamic fashion such as
in a dynamic programming framework. In [7],
considering each secondary user has a total
monetary budget for spectrum leasing, the opti-
mal spectrum sharing needs to be solved using
dynamic programming approaches. The optimal
sequential strategies for each user can only be
obtained by considering the spectrum sharing
states, such as the number of channels to be
allocated at each stage or the residual monetary
budget at each spectrum sharing stage for sec-
ondary users. The Bellman equation [10] is
applied in [7] to describe the expected payoff of
each secondary user in the form of the summa-
tion of two terms: one represents its current pay-
off given current spectrum sharing states; the
other represents its expected future payoff given
the updated spectrum sharing states. Based on
the principle of optimality in dynamic program-
ming [10], the solution of the proposed Bellman
equation is also the optimal solution for the gen-
eral overall optimization problem. Moreover, the
value iteration algorithm [10] can be directly
applied to solve the spectrum sharing Bellman
equation as long as the expected payoff function
is bounded.

NUMERICAL RESULTS
In this section we consider a general scenario
with multiple primary and secondary users in
wireless networks, as in Fig. 1, and evaluate the
performance of our proposed belief-assisted
dynamic spectrum sharing approach [7]. Con-
sidering a wireless network covering a 100 m ×
100 m area, we simulate J primary users by ran-
domly placing them in the network. Here we
assume that primary users’ locations are fixed

and their unused channels are available to sec-
ondary users within a distance of 50 m. Then
we randomly deploy K secondary users in the
network, which are assumed to be mobile
devices. The mobility of the secondary users is
modeled using a simplified random waypoint
model as in [7]. The primary user’s payoff is
represented as the price paid by secondary
users for his/her unused channels minus his/her
acquisition cost for those channels. The sec-
ondary user’s payoff is represented as the
reward payoff of using the unused channels
from primary users minus the corresponding
price paid to primary users. Without loss of
generality, let the cost of an available channel
in the spectrum pool be uniformly distributed
in [10, 30] and the reward payoff of leasing one
channel be uniformly distributed in [20, 40]. If
a channel is not available to some secondary
users, let the corresponding reward payoffs of
this channel be 0. Note that J = 5 and 103 spec-
trum sharing stages have been simulated.
Assume that each primary user has four unused
spectrum channels, and the discount factor of
the repeated game is 0.99.

In Fig. 3 we compare the total payoffs of all
users of the proposed belief-assisted scheme
with those of the theoretical CE outcomes for
different numbers of secondary users. The figure
shows that the performance loss of the belief-
assisted dynamic spectrum sharing is very limited
compared to that of the theoretical optimal
results. Moreover, when the number of sec-
ondary users increases, the proposed scheme
approaches the optimal CE. Then we study the
dynamic programming approach to spectrum
allocation when each secondary user is con-
strained by his/her monetary budget. For com-
parison, we define a static scheme in which the
secondary users make their spectrum sharing
decisions without considering their overall bud-
get limits. Assume that the budget constraints

n Figure 4. Comparison of the total payoffs of the dynamic programming
scheme with those of the static scheme. 
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for the secondary users are the same. In Fig. 4
we compare the total payoffs of the proposed
dynamic programming scheme with those of the
static scheme for different budget constraints. It
can be seen from this figure that the proposed
scheme achieves much higher spectrum efficien-
cy than the static scheme by exploiting the time
diversity of spectrum resources through dynamic
programming.

CONCLUSIONS
Next-generation wireless networks are expected
to use flexible spectrum sharing techniques for
achieving more efficient and fair spectrum usage.
By studying the intelligent behaviors of cognitive
users, game theoretical dynamic spectrum shar-
ing is important for developing efficient dis-
tributed spectrum sharing schemes and ensuring
the optimality of spectrum sharing in various
scenarios. However, to ensure efficient and fair
spectrum sharing in next-generation networks,
more research is needed along the lines of game
theoretical study.
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By studying the 

intelligent behaviors

of cognitive users,

game theoretical

dynamic spectrum
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for developing 
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various scenarios.
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