- N e o

-

L RN SR

DECEMBER 1981 Vol.4 NO. 2

a quarterly
bulletin

of the IEEE
computer society
technical
committee

on

-

Database
Engineerin

Contents
Letter fromtheEditor 1 A Methodology for the Determination of Statistical

Database Machine Performance Requirements 31
A Survey and Taxonomy of Database Machines 3 P. Hawthorn
S.W. Song

- The NON-VON Database Machine: A Brief

The Laboratory for Database Systems Research at OV EIVIBW .ottt ittt et et e s 41
the Ohio State Universitycolt 14 D.E. Shaw, S.J. Stolof, H. Ibrahim, B. Hillyer,
D. K. Hsiao G. Wiederhotd, and J.A. Andrews
Database Machine Activities at The University of The System Architecture of a Database Machine
LY oTo T T 1 o H R 20 (OBM) i e 53
H. Boral and D.J. DeWitt SB. Yao, F. Tong, and Y.-Z. Sheng
The Intelligent Database Machine 28 Well-Connected Relation Computer 63
M. Ubell SK. Arora and S.R. Dumpala

Chalirperson, Technical Committee
on Database Engineering

Prof. Jane Liu

Digital Computer Laboratory
University of lllinois

Urbana, Ili. 61801

(217) 333-0135

Editor-In-Chief,
Database Engineering

Dr. Won Kim

IBM Research
K55-282

5600 Cottle Road

San Jose, Calif. 95193
(408) 256-1507

Database Engineering Bulletin is a quarterly publication
of the IEEE Computer Society Technical Committee on
Database Engineering. lts scope of interest includes: data
structures and models, access strategies, access control
techniques, database architecture, database machines,
intelligent front ends, mass storage for very large data-
bases, distributed database systems and techniques,
database software design and implementation, database
utilities, database security and related areas.

Contribution to the Bulletin is hereby solicited. News
items, letters, technical papers, book reviews, meeting
previews, summaries, case studies, etc., should be sent
to the Editor. All letters to the Editor will be considered for
publication unless accompanied by a request to the con-
trary. Technical papers are unrefereed.

Assoclate Editors,
Database Engineering

Prof. Don Batory

Dept. of Computer and
Information Sciences
University of Florida
Gainesville, Florida 32611
(904) 392-5241

Prof. Alan Hevner

College of Business and Management
University of Maryland

College Park, Maryland 20742

(301) 454-6258

Or. David Reiner

Sperry Research Center
100 North Road
Sudbury, Mass. 01776

(617) 369-4000 x353

Prof. Randy Katz

Dept. of Computer Science
University of Wisconsin
Madison, Wisconsin 53706
(608)262-0664

Opinions expressed in contributions are those of the indi-
vidual author rather than the official position of the TC on
Database Engineering, the IEEE Computer Society, or
organizations with which the author may be affiliated.

Membership in Database Engineering Technical Commit-
tee is open to IEEE Computer Society members, student
members, and associate members. (Application form in
this issue.)

Letter from the Editor

This special issue of Database Engineering is intended to report on the status
of various on-going projects in the area of database machines and to serve as a
forum for presenting some initial results from recently started research
projects. S.W. Song surveys existing database machiné designs under an inter-
esting taxonomy he proposes. David Hsiao describes research programs in
multi-mini database management and database machine architecture at the Ohio
State University. The results obtained from the DIRECT prototyping efforts at
the University of Wisconsin at Madison are summarized in a paper by Haran Boral
and David DeWitt. They also indicate proposed research activities on database
machines at Wisconsin.

Michael Ubell shows the hardware/software architecture of the IDM-500 currently
being marketed by Britton-Lee, Inc. He also indicates design decisions that
went into architecting the system, and gives concrete cost/performance figures
for the system. Paula Hawthorn describes a proposed methodology for determining
the cost/performance requirements for a database machine architecture to sup-
port applications that access a large volume of data. David Shaw, et al., pre-
sents an overview of the NON-VON machine currently being constructed at the
Columbia University. The architecture of a backend database sysem being studied
at the University of Maryland is described in a working paper by S. Bing Yao, et
al. The system is being prototyped to study feasibility of VLSI implementation.
S5.K. Arora and S.R. Dumpala introduce us to the Well-Connected Relation Comput-
er, which has been designed to simultaneously support the relational, hierarchi-
cal and network models of data on the same physical data. They also propose two
different storage structures for the physical data.

This issue takes up nearly twice the number of pages that I initially estimated
it would. The reason is simply that I vastly underestimated the number of
authors who have affirmatively responded to my invitation for papers. To my
pleasant surprise, I now realize that I also seriously underestimated the quali-
ty of the papers that these authors eventually contributed to this issue. I
would like to thank them again for the enthusiasm and cooperation they have
shown. Due to constraints to our budget and the editors' time, however, we will
restrict ourselves to publishing short papers (4 to 10 double-spaced pages) in
the future. We will accept (and invite) papers that describe the status of
on-going research projects, that explain design decisions that have gone into
constructing commercial systems, and that motivate and summarize (with no formu-
las or theorems) important new ideas being developed.

I would like to tpke this opportunity to say that it is my privilege to be
assisted by four of my most outstanding colleagues. The pleasure of interacting
with the associate editors to reach editorial decisions, solicit papers from
prospective authors and chart the course of this publication has been more than
enough of a reward for my time. In fact, each of them has volunteered to publish
one issue for 1982. Our plans for 1982 are as follows. Don Batory is preparing
for a special issue on Directions in Physical Database Research for the March
issue. He is soliciting short papers (2 to &4 pages) that describe on-going
projects on physical database design. Deadline for submitting papers for the
March issue is December 1, 1981.

The June issue will be managed by Randy Katz. He plans a special issue on Data-
base Applications for VLSI Designs. He is interested in papers that describe the

status of and/or initial results from on-going research projects in the area.
Deadline for the June issue is March 15.

David Reiner will manage a special issue on Database Query Processing for Sep-
tember. He is soliciting papers that describe relatively new ideas on query
processing for both the centralized and distributed database systems. Deadline
for the issue will be June 15.

Alan Hevner will be in charge of a special issue on Research in Distributed
Database Systems for December 1982. He would like to solicit papers that empha-
size the current status of research in progress, express opinions about the cur-
rent state of the art and future researh directions, or papers that describe

interesting new ideas that have not been widely publicized. Deadline will be
September 15, 1982.

All papers that fall into any of these categories should be submitted to the
associate editors in charge of the special issues. Although our plans for 1982
place emphasis on the four topics mentioned above, short papers on other topics
related to database engineering will be welcomed. Papers that do not deal with
topics that the special issues are planned for and papers that dre submitted too
late for publication consideration in one of the special issues should be sent
to me. We will consider publishing a special issue (?) on general topics during
the summer. Also please send any comments on the contents and direction of our
publication to me. We will publish selected comments in the feedback section.

Yhn o

A Survey and Taxonomy of Database Machines’

S.W. Song"
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

The purpose of this paper is twofold. We survey existing database machine designs, and propose a
taxonomy. Some recent designs that exploit the rapidly advancing VLSI technology are included in
the survey. At the risk of oversimplification, the proposed taxonomy attempts to group many
seemingly different designs into a few categories by concentrating on their similarities. First we
characterize the problem by identifying two bottlenecks. Then we describe the several dimensions
the taxonomy is based on. The remainder of the paper can then be viewed as a detailed presentation
of these categories, with a brief survey of previous database machine designs that fall into each
category.

1. Problem Characterization

We can identify two potential bottlenecks, namely the 1/0 bottleneck and the so-called von
Neumann bottleneck. Latency and bandwidth constitute the main problems of 1/0. Careful design of
access paths and maintenance of appropriate indices help in reducing the number of disk accesses.
To eliminate the need for access paths and indices, database machines with fast retrieval times have
been proposed. Most database machine designs use the logic-per-track approach [29] which can
provide fast on-the-fly retrieval.

In a compute-bound task a data element participates in many operations. The best place to carry
out such a task is inside the primary memory, because of its faster access speed. It was observed in
[18] that in a conventional von Neumann machine, each operation typically fetches one or more
operands from memory. Hence the amount of 1/0 (between the memory and the central processing
unit) is proportional to the number of operations to be performed rather than the number of inputs
required for the computation. The von Neumann bottleneck is in fact an 1/0O bottleneck in lesser
scale. To reduce traffic through this bottleneck, many works have been done in the context of optimal
register allocation or usage of cache memory. Studies of such solutions abound in the literature and
fall outside the scope of the present work.

.This research was supported in part by the Office of Naval Research under Contracts NO0O014-76-C-0370, NR 044-422, and
NOD014-80-C-0236, NR 048-659, in part by the National Science Foundation under Grant MCS 78-236-76, and in part by the
Defense Advanced Research Projects Agency under Contract F33615-78-C-1551 (monitored by the Air Force Office of
Scientific Research).

"Present address: University of Sao Paulo, Institute of Mathematics and Statistics, Department of Applied Mathematics,
C. P. 20570, CEP 01451, Sao Paulo, SP, Brazil. At the time this work was done, the author was supported in part by CNPq,
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil, under Contract 200.402-79-CC, and was on leave
trom University of Sao Paulo.

2. Dimensions of the Space of Database Machine Designs

Location

of logic

Allocation

Database Machines

(

Logic-enhanced

secondary storage

| R

Static Dynamic

|

Logic-enhanced

primary storage

|
| |

Static Dynamic

of logic i | L L
T I N A | |

of logic Low High Low High Low High Low High
distribution I l l l I l I |

CASSM CAFS DBC Bentley, Kung

Song
(Sorting engine)

RAP étagg DIRECT Song
RARES Shaw (PAM)
Chang Kung, Lehman

Shaw (SAM) Kim, Kuck, Gajski

Leitich et al.
Figure 2-1: An overall framework.

The taxonomy is based on several dimensions. Depending on where special-purpose logic is
applied, we have logic-enhanced secondary or primary storage designs. Most previous designs, as
we shall see, are variations of the first type. Another dimension along which designs can be classified
is the way logic is allocated to storage units, whether statically or dynamically. A third dimension is
the degree of distribution of logic among memory elements, defined in [27] as the number of storage
elements associated with each processing unit. Along this dimension, we may have a wide spectrum
of designs. High degree of logic distribution signifies faster computation rate, and this should be
such that a balance between computation and data access rate is achieved. Classification of designs
along this dimension is also important since it is related to the cost of physical implementation. As an
example, we can view a conventional von Neumann machine as a logic-enhanced primary storage
device occupying the lowest end of the logic distribution spectrum. The allocation of logic is dynamic
since one processing unit serves the entire memory. Figure 2-1 shows an overall framework,
illustrated with a few particular designs. The reader can refer to this figure when reading the rest of
this paper. Its purpose is to illustrate the several categories and not to show the exact positions of the
various designs. No attempt should therefore be made to derive quantitative conclusions. Only with a
more specific definition of degree of logic distribution and a more detailed analysis of the
implementations involved can such positions be made more precise.

3. Logic-enhanced Secondary Storage Designs

3.1. Uni-Search-Processor Scheme

Storage Units

Primary memory

Search Processor

TIY

Figure 3-1: Uni-search-processor model.

One search processor is attached between the secondary storage devices and the primary memory
(Figure 3-1). Irrelevant data can be filtered out before they reach the primary memory, and thereby
reducing 1/0 traffic. Some early examples of database machines are of this kind. This scheme
occupies the low end of the logic distribution spectrum. The allocation of logic is dynamic since one
search processor serves the entire secondary memory. Examples include the Content Addressable
File Store, or CAFS [1, 9], and the designs by Bancilhon and Scholl [2], and by Lang et al. [19].

3.2. Multi-Search-Processor Scheme - Static Allocation

A storage unit considered in the following is usually a disk track, bubble memory, or charge-
coupled device. The static allocation scheme pre-allocates one search processor to each storage
unit, requiring as many search processors as there are storage units (see Figure 3-2). With such
designs, the search time is typically tens of milliseconds. They occupy the high end of the logic
distribution spectrum.

Among the designs which fall into this category, we cite the following. (Some of these designs,
conceived with static allocation in mind, are now shifting to the dynamic allocation scheme, to be
discussed shortly afterwards.) CASSM [32], or Content Addressed Segment Sequential Memory,
designed and with a prototype built at the University of Florida at Gainesville, is one of the earliest
design efforts and thus has exercised considerable influence over other designs. RAP [25, 26], or
Relational Associative Processor, was designed and implemented at the University of Toronto. it
supports the relational data model and uses CCD memories as storage units. Chang [8] proposes
slightly modified major/minor loop bubble chips to accommodate storage and access for relational
databases. RARES [23], also designed to support the relational model, differs from others mainly in
that tuples are stored across the tracks of the head-per-track disk storage. A system of up to 14
search processors has been designed and implemented by Leilich et al. [21].

Storage Units Search Processors

Primary memory

TIY

Figure 3-2: Multi-search-processor (static allocation).

In the static allocation scheme, each storage unit has its own private search processor and it does
not matter in which storage units a file should reside. Therefore storage organization is quite simple.
The main problem, of course, is the waste of too much potential resource. The global database may
contain information for many different users and applications. In processing one specific query,
however, the actual load (i.e., the amount of data needed for the processing) may well constitute a
tiny fraction of the whole database. Providing logic to all disk tracks of the entire database is
analogous to a memory management system in which enough physical memory is provided to hold all
programs ever written by all the users of a given installation.

3.3. Multi-Search-Processor Scheme - Dynamic Allocation

Still using our analogy with a memory management system, a virtual memory system allocates
physical memory dynamically to segments of programs only when their presence in the main store is
required for execution. The amount of physical memory can thus be significantly less than the total
program space. Similarly, in the dynamic allocation scheme, a number of search processors are
allocated dynamically to those storage units containing information to be processed. The search
logic is therefore distributed to the entire database and hence will occupy the lesser end of the logic
distribution spectrum as compared to those with static allocation. Depending on how search
processors are connected to storage units, we have many variations of this scheme. Two of these,
which correspond to real database machine designs, will be examined.

3.3.1. Complete-Bipartite-Graph Connection

In this scheme -each search processor is connected to every storage unit of the database, as
depicted in Figure 3-3. It works in the foliowing manner. Each storage unit keeps broadcasting its
contents to all the search processors. An individual search processor can choose to listen to one of
the storage units and ignore the others. We have thus a very flexible connection. Any search
processor can operate on any storage unit. Furthermore, several search processors can operate
independently on the same storage unit, as long as they do not contend (for instance, they should not
all try to update at the same time). This connection also allows a multi-user system in which some
search processors may be operating to answer one user's queries, while some other search
processors are working on another user’s queries. Flexibility is of course obtained at the cost of the
number of connections and the more complex control mechanism of the search processors. DeWitt

Primary

Memory

Search Processors

Storage Units

Figure 3-3: Complete-bipartite-graph connection.

[10], at the University of Wisconsin, Madison, proposes a design of a system called DIRECT which
uses essentially this connection. A prototype has been built.

3.3.2. Partitioned-Storage-Units Connection

in this connection scheme, if we have t search processors and n storage units (typically, t < n),
then all the storage units will be divided into n/t partitions, each with t storage units. The t search
processors can be connected to the storage units of one partition, but not to storage units of different
partitions. Data residing in one partition can be examined by the search processors in essentially one
disk revolution time (assuming a storage unit to be a disk track). Therefore, if related data are
clustered into the same partition, they can be searched very quickly. We thus see that this scheme
can provide the same performance as the static allocation scheme, given that we have enough search
processors (i is sufficiently large) and related data are properly clustered.

The Data Base Computer [3], or DBC, designed by a group headed by D. Hsiao at the Ohio State
University, fits into this model. The DBC design uses moving-head disks as storage devices, the only
requirement being the parallel read-out capability of the t tracks of one disk cylinder. Data read out
from one cylinder are then fed into t search processors. The DBC design was conceived with
dynamic allocation approach in mind, and has provided extensive literature on such issues as data
clustering and security checks [4].

3.4. Appraisal

Logic-enhanced secondary storage designs are based on the logic-per-track philosophy and have
one common goal: that of providing efficient on-the-fly search of massive amounts of data in one or a
few disk rotations. They constitute promising approaches to the important selection operation. Some
other frequently used database operations, however, require not only knowledge of the values of
individual data items, but depend on some kind of interaction among data items. The relational join
between fwo relations of size n each, for example, requires O(n2) comparisons in its straightforward
implementation. With a secondary associative storage device, it can be implemented as follows. For
each tuple of one relation, we extract the specific field over which the join is being performed. Then

in one revolution time we compare it with the corresponding field of all the tuples of the second
relation. Therefore the join operation can in principle be obtained in approximatcly O(n) revolutions,
where n is the number of tuples of the first relation. While this linear performance result might seem
quite acceptable at a first sight, we have to keep in mind that one revolution time is on the order of
tens of milliseconds. Therefore this mechanism is acceptable as long as we have a small number of
argument tuples.

Some recent designs combine the secondary associative storage devices with a logic-enhanced
primary memory. [n such designs, the secondary associative memory plays an important role in the
case when the problem size is too large to be handled entirely in the primary memory. Appropriate
partitions can be retrieved by the logic-enhanced secondary storage devices and delivered to the
primary store. For example, Lin [24] discusses the usage of associative secondary storage to aid in
external sorting. Sorting is also discussed in the article on RARES [23]. The method is based on the
knowledge of a histogram concerning the key values. By using content addressability of the
secondary store, the appropriate partition is brought into the main memory which is assumed to be
fast enough to produce sorted sequences in a pipelined fashion as a new partition is being retrieved.
Discussions of several partitioning schemes can be found in [27, 31].

4. Logic-enhanced Primary Storage Designs

Depending on the degree of logic distribution, several kinds of logic-enhanced primary storage
designs can be considered. At the low end of the spectrum is the attachment of special-purpose
hardware of limited size to a conventional passive memory. In such designs, logic is allocated
dynamically to the entire memory. At the other end of the spectrum are the designs using the so-
called smart memory (which we will refer to as logic-per-datum designs), in which there is a
commingling of logic and memory elements in a fine grain. Such designs are of very high
performance and constitute a departure from the von Neumann architecture.

4.1. The Post-Processors of The DBC Design

In the DBC design mentioned earlier, functions such as sorting of retrieved records, relational join
operations on two sets of records retrieved from secondary memory, and such set functions as
maxima and average, are all handled by what is known as the post-processors. Recall that search
logic is allocated dynamically to the secondary memory so that a cylinder of data can be content
searched in essentially one disk rotation. The retrieved data are fed, in a pipelined fashion, to the
post-processors. The post-processing functions are presented in a number of reports describing the
sort operation [13] and the join operation [12,14]. In particular the last report also contains a
comparison of the DBC join method with other proposed methods. The post-processing functions are
performed by a multiprocessor system consisting of a number of linearly connected processors each
with private memory. In an earlier description [12] they share an associative memory for storage and
fast retrieval of join attribute values. The associative memory maps each unique join attribute value to
an integer index. To join relations A and B, for example, the tuples of relation A is first stored in
appropriate memory locations according to the integer index provided by-the associative memory.
Then for each tuple of relation B whose join attribute value is in the associative memory, the
corresponding tuples of A can be located. The result tuples can thus be obtained by concatenation.
This first design has the drawback of not being easily hardware-extensible. All processors share the
same associative memory. which will become a bottlieneck when the number of processors increases.
A new design described in [14] distributes the associative memory among all the processors, such
that each will contain a fraction of the original associative memory.

4.2. The Hierarchical Associative Architecture

A hierarchical associative architecture has been proposed by Shaw [28] for the efticient evaluation
of relational primitives such as join, project, and select. It consists of a hierarchy of associative
storage devices under the control of a general-purpose processor. At the bottom of the hierarchy is a
secondary associative memory (SAM), which may be implemented using parallel logic-per-track disks,
as in CASSM, RAP or RARES. At the top of the hierarchy is a primary associative memory (PAM),
capable of fast content-based searches. Complex relational primitives such as the join operation on
two relations are evaluated in the primary associative memory, with the assistance of the secondary
associative memory. Shaw considers the important case of handling large problems whose size
exceeds that of the primary associative memory. He distinguishes two kinds of evaluations, namely,
internal evaluation where the argument relations can be fit entirely into the primary associative
memory, and external evaluation where the relations exceed its capacity. Shaw shows that when
argument relations are large, the time required for the evaluation of complex primitives with the
hierarchical associative architecture represents a substantial improvement over the results attainable
using only secondary associative storage devices.

4.3. Systolic Priority Queues

The systolic array approach has been proposed as a solution to offload costly computations: for a
list of systolic algorithms, see [17]; for a discussion of the philosophy of the systolic architecture, see
[18]. One systolic design especially useful in database applications is the priority queue proposed by
Kung and Leiserson [22]. A linear array of cells is used to store a collection of elements with the
possible operations of insertion, deletion and minimum extraction. (Fisher [11] presents designs of
systolic arrays for computing running order statistics where ranks other than the minimum and input
spaces of higher dimensions are considered.) In addition to storage, some comparison logic is
provided at each cell. A sequence of the above operations can be executed concurrently in a
pipelined fashion, in such a way that the response time is a constant, independent of the length of the
array. Notice that a systolic priority queue is a logic-per-datum device and, as such, occupies the
high end of the logic distribution spectrum. However, if such a device of limited size is used to aid in
the internal sorting of a much larger collection of numbers, then the degree of logic distribution will
be considerably less. (Song [31] examines internal sorting with the aid of systolic devices.) Hence,
depending on the size of a systolic device and the problem size it is able to handle, its usage may be
economically infeasible, or perfectly viable and justifiable.

4.4. The Systolic Arrays for Relational Operators

Kung and Lehman [16] consider the use of a large number of simple processors connected in a
linear array for the handling of relational operators. They describe, among others, arrays for
performing intersection (which can also be used for projection with duplicate removal) and join of two
relations. A single database transaction may consist of a number of relational operations. Therefore
to process all the operations required in one or more transactions, an integrated system containing
several systolic arrays is neaded. A crossbar scheme connecting the memories holding required data
and the special-purpose systolic arrays is proposed.

In a recent work by Kim, Kuck, and Gajski [15], a bit-serial/tuple-parallel relational query processor
is proposed. The scope of the study is limited to designing a query processor that will efficiently
process data already loaded into the primary memory. As in the case of the systolic arrays of Kung
and Lehman, the proposed query processor is designed with the view toward LSi (VLSI)
implementation.

4.5. The Tree Machine

A logic-per-datum design consisting of a binary tree of cells has been proposed by Bentley and
Kung [5] (and independently by Browning [6, 7]). The internal cells of the binary tree can propagate
information to, as well as combine the.information of the descendant cells (such as taking the logical
and, or select the minimum, etc.). Data elements reside in the leaf cells which are provided with logic
to carry out a limited repertoire of instructions. Such a structure is especially suitable for different
kinds of searching problems, because of the logarithmic path between the root cell and any leaf cell.
It has been extended by Song [30, 31] to handle the sort operation, and relational operations such as
project, join, and union. Such a design is of high performance and occupies the high end of the logic
distribution spectrum.

4.6. Appraisal

Logic-enhanced primary memory designs are useful for compute-bound tasks where a same datum
participates in many operations. On the other hand, I/0-bound tasks such as selection are better
handled by logic-enhanced secondary storage devices, before the data even get to the primary
memory. The best architecture is perhaps a hierarchy containing both kinds of devices. Logic-
enhanced secondary devices may be used to filter out the irrelevant data, and more complex
operations on the selected ones are processed in the logic-enhanced primary memory. Designs
where logic is allocated dynamically to the entire memory is usually economical to implement but
require careful study of the issue of problem partitioning, that is, how to decompose a large problem
such that it can be handled by a special-purpose device of smaller size. The logic-per-datum designs
can provide very high performance and constitute a departure from the von Neumann architecture.
Their implementation cost may however limit their usage to very specialized applications, where fast
response time and throughput are required, e.g. on-line bank-teller systems that support a huge
number of simultaneous transactions [20].

Acknowledgment
The author wishes to thank Dr. Won Kim for his valuable comments and suggestions.

References

[1] E. Babb.
Implementing a Relational Database by means of Specialized Hardware.
ACM Transactions on Database Systems 4(1):1-29, March, 1979.

2] F. Bancilhon and M. Scholl.
Design of a Backend Processor for a Data Base Machine.
In Proceedings of the ACM SIGMOD 1980 international Conference on Management of Data,
i pages 93-93g. May, 1980.

[3] J. Banerjee, D. K. Hsiao, and K. Kannan.
DBC - A Database Computer for Very Large Databases.
IEEE Transactions on Computers 28(6):414-429, June, 1979.

{4] J. Banerjee, D. K. Hsiao, and J. Menon.
THe Clustering and Security Mechanisms of a Database Computer.
Technical Report OSU-CISRC-TR-79-2, The Ohio State University, Computer and Information
Science Research Center, April, 1979,

10

[5]

(6]

(7]

8]

(9]

[10]

[11]

[12]

[13]

[14]

J. L. Bentley and H. T. Kung.

A Tree Machine for Searching Problems.

In Proceedings of 1979 International Conference on Parallel Processing, pages 257-266.
IEEE, August, 1979.

Also available as a CMU Computer Science Departiment technical report CMU-CS-79-142,
September, 1979.

S. A. Browning.

Computations on a Tree of Processors.

In Proc. Conference on Very Large Scale Integration: Architecture, Design, Fabrication, pages
453-478. Janvary, 1979.

Conference held at Caltech in Pasadena, California.

S. A. Browning.
The Tree Machine: A Highly Concurrent Computing Environment.
PhD thesis, Computer Science Department, California Institute of Technology, January, 1980.

H. Chang.
On Bubble Memories and Relational Data Base.
In Proceedings 4th International Conference on Very Large Data Bases, pages 207-229. 1978,

G. F. Coulouris, J. M. Evans, and R. W. Mitchell.
Towards Content Addressing in Data Bases.
Computer Journal 15(2):95-98, May, 1972,

D. J. DeWitt.

DIRECT - A Multiprocessor Organization for Supporting Relational Database Management
Systems.

IEEE Transactions on Computers C-28(6):395-406, June, 1979.

A. L. Fisher.

Systolic Algorithms for Running Order Statistics in Signal and Image Processing.
Technical Report, Carnegie-Mellon University, Computer Science Department, 1981,
In preparation.

D. K. Hsiao and M. J. Menon.

The Post Processing Functions of a Database Computer.

Technical Report OSU-CISRC-TR-79-6, Computer and Information Science Research Center,
The Ohio State University, July, 1979.

D. K. Hsiao and M. J. Menon.

Parallel Record Sorting Methods for Hardware Realization.

Technical Report OSU-CISRC-TR-80-7, Computer and Information Science Research Center,
The Ohio State University, July, 1969.

D. K. Hsiao and M. J. Menon.

Design and Analysis of Relational Join Operations of a Database Computer (DBC).

Technical Report OSU-CISRC-TR-80-8, Computer and Information Science Research Center,
The Ohio State University, September, 1980.

11

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

12

Won Kim, D. J. Kuck, and D. Gajski.
A Bit-Serial/Tuple-Parallel Relational Query Processor.
Research Report RJ 3194, IBM Research Laboratory, San Jose, California, July, 1981.

H. T. Kung and P. L. Lehman.

Systolic (VLSI) Arrays for Relational Database Operations.

In Proceedings of the ACM SIGMOD 1980 International Conference on Management of Data,
pages 105-116. ACM, May, 1980.

Conference held in Santa Monica, California. Also available as a Carnegie-Mellon University
Computer Science Department technical report CMU-CS-80-114, March, 1980.

H. T. Kung. v

Let’s Design Algorithms for VLS| Systems.

In Proc. Conference on Very Large Scale Integration: Architecture, Design, Fabrication, pages
65-90. January, 1979.

Conference held at Caltech in Pasadena, California. Invited paper.

" H. T. Kung.

Why Systolic Architecture.
To appear in Computer Magazine, 1981.

T. Lang, E. Nahouraii, K. Kasuga, and E. B. Fernandez.

An Architectural Extension for a Large Database System Incorporating a Processor for Disk
Search.

In Proceedings of the Third International Conference on Very Large Data Bases, pages 204-
210. 1977.

P.L.Lehman.

The Theory and Design of Systolic Database Machines.

Thesis Proposal. Carnegie-Mellon University, Computer Science Department, December,
1980.

H. O. Leilich, G. Stiege, and H. C. Zeidler.
A Search Processor for Data Base Management Systems.
In Proceeding 4th Conference on Very Large Data Bases, pages 280-287. September, 1978.

C. E. Leiserson. »

Systolic Priority Queues.

In Proc. Conference on Very Large Scale Integration: Architecture, Design, Fabrication, pages
199-214. Caltech, January, 1979.

Also available as a CMU Computer Science Department technical report CMU-CS-79-115,
April, 1979.

C.S. Lin, D. C. P. Smith, and J. M. Smith.
The Design of a Rotating Associative Memory for Relational Database Applications.
ACM Transactions on Database Systems 1(1):53--65, March, 1976.

C.S. Lin.
Sorting with Associative Secondary Storage Devices.
In Proceedings of the National Computer Conference, pages 691-695. 1977.

[258] E. A.Ozkarahan, S. A. Schuster, and K. C. Sevcik.
Performance Evaluation of a Relational Associative Processor.
ACM Transactions on Database Systems 2(2):175-195, June, 1977.

[26] S. A.Schuster, H. B. Nguyen, E. A. Ozkarahan, and K. C. Smith.
RAP 2 - An Associative Processor for Databases and its Applications.
IEEE Transactions on Computers C-28(6):446-458, June, 1979.

[27] D.E. Shaw.
A Hierarchical Associative Architecture for the Parallel Evaluation of Relational Algebraic
Database Primitives.
Technical Report STAN-CS-79-778, Department of Computer Science, Stanford University,
October, 1979.

[28] D.E.Shaw.
A Relational Database Machine Architecture.
In Fifth Workshop on Computer Architecture for Non-Numeric Processing, pages 84-95. ACM,
March, 1980.

[29] D.L. Slotnick.
Logic per Track Devices.
In Tou, J. (editor), Advances in Computers, Vol. 10, pages 291-296. Academic Press, New
York, 1970.

[30] S.W.Song.
A Highly Concurrent Tree Machine for Database Applications.
In Proceedings of the 1980 International Conference on Paralle! Processing, pages 259-268.
IEEE, August, 1980.
Also available as a CMU technical report, VLSI Document V055, June, 1980.

[31] S.W.Song. ‘
On a High-Performance VLSI Solution to Database Problems.
PhD thesis, Carnegie-Mellon University, Computer Science Department, 1981.

[32] S.Y.W.Su, L. H.Nguyen, A. Emam, and G. L. Lipovski.
The Architectural Features and Implementation Techniques of the Multicell CASSM.
IEEE Transactions on Computers C-28(6):430-445, June, 1979.

13

The Laboratory for Database Systems Research
at the Ohio State University

David K. Hsiao
Dept. of Computer and Information Sciences
The Ohio State University
Columbus, Ohio

The Laboratory for Database Systems Research was established in August 1980 for
the purpose of conducting experimental research in the area of database software
and hardware architectures. With substantial equipment grants from the Digital
Equipment Corporation, Office of Naval Research and The Ohio State University,
the laboratory is endowed with considerable computer equipment for supporting
experimental work. The equipment configuration is depicted in the Figure. Pres-
ently the research on datbase computer architecture has both short-term and
long-term goals. For the short term, we are concentrating on a research program
in multi-mini database management systems. For the long term, we are striving
for an ideal database machine architecture. Let us describe briefly these two
programs.

Research Program in Multi-Mini Database
Management Systems

It is generally known that the use of a single general-purpese digital computer
with dedicated software for database management to offload the mainframe host
computer from database management tasks yields no appreciable gains in perform-
ance and functionality. Research is therefore being pursued to replace this
software backend approach to database management with an approach which will
yield good performance and new functionality.

The proposed research utilizes a system of six PDP 11-44s and one VAX 11/780,
known as the test vehicle. Each of the PDP 11-44 computer systems consists of a
primary memory box of 256K bytes, at lease one disk of 67M bytes and a
memory-to-memory bus connected to the VAX 11/780 which has 1.5M bytes of primary
memory and assorted peripheral devices. The configuration is intended to achieve
concurrent operations among the six PDP 11-44s and their respective disks. The
VAX 11/780 schedules the concurrent operations on the PDP 11-44s, communicates
with other computer systems (known as front-ends) and serves as the control of
the entire configuration (i.e., the database computer backend). For our study,
the VAX 11/780 also interfaces with the systems programmers (See Figure).

The aim of the proposed research is to investigate whether, for the management
of large databases, the use of multiple minicomputer systems in a parallel con-
figuration is feasible and desirable. By feasible we mean that it is possible to
configure a number of (slave) minicomputers, each of which is driven by identi-
cal database management software and controlled by a (master) minicomputer for
concurrent operations on the database spread over the disk storage local to the
slave computers. This approach to large databases may be desirable because only
off-the-shelf equipment of the same kind is utilized to achieve high performance
without requiring specially built hardware and because identical database man-
agement software is replicated on the slave computers. The approach makes the

expansion of the capacity and concurrency of the database management system
easy.

14

To study the feasibility, we intend to investigate the software architecture
issues and hardware limitations of the master and slaves. We also intend to
investigate the replicable software for the slaves. Since these slaves are to be
operated concurrently with corresponding single-channel disks, we can investi-
gate the effects of either single-query, multiple-database stream or
multiple-query, multiple-database stream operations for performance improve-
ment. To study the desirability, we intend to consider factors relating to the
problem of capacity growth and cost effectiveness. The central issue may be
whether we can realize a high-performance and great-capacity database manage-
ment backend with the cheapest possible minis, large number of single-channel
disks and replicable software cost-effectively.

The above program is termed short term, because it assumes only available hard-
ware and present technology. Furthermore, both feasibility and desirability

issues can be resolved in the time frame of two to three years.

Research Program on Database Machine Architecture

In the long run, the solution to large-capacity and high-performance database
management may lie in special-purpose machines, known as the
database computers. With the advent of LSI and VLSI, block access memories (such
as magnetic bubbles and charge-coupled devices), and modified and improved
online disk technology, it is perhaps time to replace complex and inefficient
database management system software (DBMS) with innovative and cost/performance
effective hardware solutions to very large database management. This search for
an ultimate database machine architecture to provide large-capacity,
high-performance and low-cost database .management is the goal of this research
undertaking.

Initially, the test vehicle is used to emulate the architecture of the database
computer DBC (see References). As specialized hardware, DBC is designed to han-
dle very large databases (say, beyond 10 billion characters), to perform data-
base management operations effectively, and to yield high throughput
unattainable by general-purpose computers with conventional database manage-
ment software. Due to the complexity of database applications and the diversity
of database management, analytical evaluation of database computer performance
has been mostly based on broad assumptions and simplified settings. Although
these evaluation results have been published (see References), they are too
gross to be useful for the identification of performance bottlenecks caused by
the components of the database computer. Without a closer examination and
refined evaluation of potential performance bottlenecks of various hardware
components, it is not possible to locate the strong and weak points of the data-
base computer architecture. Consequently, improvements to the database computer
design cannot be readily carried out.

By emulating the database computer on the test vehicle, experimental and realis-
tic performance evaluation of DBC in supporting various database applications
can be conducted. The evaluation of DBC in supporting various database applica-
tions can be conducted. The evaluations can focus on database management in
terms of modes of operations (e.g., retrieval-intensive vs. update-intensive),
models of databases (say, relational vs. CODASYL) and time and space constraints
of the man/database interaction (e.g., real-time requirements with redundant
data entries and integrity requirements with serial updates).

15

The information gained from the performance evaluation can then be extrapolated
to reflect the performance of DBGC. Furthermore, the information can be used to
verify the analytical results found earlier.

The objectives of the research are: (1) To identify the performance evaluation
techniques and methodology that are unique to database computer architecture.
(2) To validate the analytical study of the DBC design against the experimental
results conducted on the test vehicle. (3) To relate the findings on the emu-
lation to the design details of DBC in particular and of database computers in
general. And (4) To recommend modifications and improvements of the DBC archi-
tecture in order to support very large databases, attain high throughput and
perform effective database management.

More specifically, the test vehicle is being configured to reflect the design of
the three major components of DBC. The three components are (1) the database
comnand and control processor DBCCP (i.e., the central processing and control
unit of DBC) which executes the DBC commands, clusters the records for input and
updates, schedules various subtasks and activities of DBC, and communicates with
the host computer; (2) the online mass memory MM (i.e., the repository of the
database) which provides high-volume and high-performance database management
with track-in-parallel readout and write-in and content-addressability fea-
tures; and (3) the structure memory SM (i.e., the index storage and processing
unit) which enables access control information to be stored and processed readi-
ly so that accesses to the database can be restricted to relevant and authorized
data, thereby narrowing the content-addressable space of the mass memory MM.
Physically, the PDP 11-44s will be used to emulate the DBCCP.

Ultimately, this program will lead to the study of other database machine archi-
tectures and their relative cost and performance gain and loss compared to the
performance and cost of the DBC design.

The test vehicle of 6 PDP 11-44s and one VAX 11/780 and assorted disks, termi-
nals, tapes and printer will be funded in two stages. In the first stage, two PDP
11-44s with three disk devices, one tape station, four terminals and one printer
have been funded for the 1980-1982 period. In addition, parallel transfer buses
connecting the PDP 11-44s and VAX 11/780 are included. The equipment and its
maintenance are funded jointly by the Digital Equipment Corporation, the Office
of Naval Research and the Ohio State University.

Director of the laboratory is Douglas S. Kerr; and graduate students presently
working in the laboratory are Jaishankar Menon, Ali Orooji, Tamer M. Ozsu and
Paula Strawser

16

To Host Computers (say, DEC 20/20)

Primary Memory 67mb

l
one VAX 11/780 | | l_/_]\\ —
1 3
Computer System l j 1.5mb

256kb

7

|
|
I
| o
Printer g
| S
I 5
L]
' 2
| 5
&
L——_—_‘: T = = o~ =~ = T T TBtage IT
)]
- @
: ‘ (D
& 256kb | W
Six PDP 11-44 <
Computer Systems 256kb 67mb
256kb
Disk

Primary
Memory

Figure: A Test Vehicle for Database Computer System Research
17

REFERENCES

On the Design of a Database Computer, known as DBC:

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(9]

(10]

Banerjee, J., R. Baum, and D.K. Hsiao. "Concepts and Capabilities of a
Database Computer", ACM Transactions on Database Systems (TODS), 3, &,
December 1978, pp. 347-384.

Banerjee, J. and D.K. Hsiao. '"DBC - A Database Computer for Very Large
Databases'", IEEE Transactions on Computers, C-28, 6, 1979, pp. 414-429.

Kannan, K., D.K. Hsiao, and D. Kerr. "A Microprogramming Keyword Transfor-
mation Unit for a Database Computer', Proceedings of the 10th Annual Work-
shop on Microprogramming, New York, October 1977, pp. 71-79.

Hsiao, D.K., K. Kannan, and D. Kerr. "Structure Memory Designs for a Data
Base Computer', Proceedings of ACM Conference '77 Seattle, October 1977,
pp. 343-350.

Kannan, K. "The Design of a Mass Memory for a Database Computer",
Proceedings of the Fifth Annual Symposium on Computer Architecture, April
1978, pp. 44-51. '

Banerjee, J. and D.K. Hsiao 'Parallel Bitonic Record Sort - An Effective
Algorithm of the Realization of a Post Processor', Technical Report, The
Ohio state University, (OSU-CISRC-TR-79-1), March 1979.

Banerjee, J., D.K. Hsiao, and J. Menon. '"The Cluster and Security Mech-
anisms of a Database Computer (DBC)", Technical Report, The Ohio State Uni-
versity, (OSU-CISRC-TR-79-2), April 1979.

Hsiao, D.K. and J. Menon. "The Post Processing Functions of a Database Com-
puter", Technical Report, The Ohio State University, (OSU-CISRC-TR-79-6),
July 1979.

Hsiao, D.K. and J. Menon. '"Design and Analysis of Update Mechanisms of a
database Computer (DBC)", Technical Report, The Ohio State Universtiy,
(OSU-CISRC-TR-80-3), June 1980. '

Hsiao, D.K. and J. Menon. "Parallel Record-Sorting Methods for Hardware
Realization", Technical Report, The Ohio State University,
(OSU-CISRC-TR-80-7), July 1980.

On DBC's Capability in Supporting Existing Database Applications with Improved
Throughput:

[11] Banerjee, J., D.K. Hsiao, and F. Ng. 'Database Transformation, Query

18

Translation and Performance Analysis of a New Database Computer in Support-
ing Hierarchical Database Management", IEEE Transactions on Software Engi-
neering, SE-6,1 January 1980, pp. 91-109.

[12]

[13]

(14]

Banerjee, J., and D.K. Hsiao. "A Methodology for Supporting Existing
CODASYL Databases with New Database Machines', Proceedings of ACM Confer-
ence '78, Washington, D.C., December 1978.

Banerjee, J. and D.K. Hsiao. "The Use of a Database Machine for Supporting
Relational Databases", Proceedings of the 5th Annual Workshop on Computer
Architecture for Non-numeric Processing, Syracuse, N.Y., August 1978.

Banerjee, J. and D.K. Hsiao. "Performance Study of a Database Machine in
Supporting Relational Databases', Proceedings of the 4th International
Conference on Very Large Data Bases. Berlin, Germany, September 1978.

On General Treatment on Database Computers:

(15]

[16]

(171

[18]

[(19]

[20]

[21]

[22]

Baum, R.I. and D.K. Hsiao. 'Database Computers - A Step Towards Data Util-
ities", IEEE Transactions on Computers, C-25, 12, december 1976, pp.
1254-1259.

Hsiao, D.K., "Database Computers", Advances in Computers, Academic Press,
v. 19, June 1980, pp. 1-64.
Hsiao, D.K., "The Role of Database Computer Prototypes', to appear in the

Proceedings of the 13th International Hawaii Conference on System Science,
Honolulu, Hawaii, January 1980.

Hsiao, D.K. and S.E. Madnick. 'Data Base Machine Architecture in the Con-
text of Information Technology Evolution", Proceedings of the 3rd Interna-
tional Conference on Very Large Data Bases, Japan, October 1977, pp. 63-84.

Hsiao, D.K., "Future Database Machines'", Future Systems, Infotech State of
the Art Report, November 1977, (U.S. distributors: Auerback Publisher,
Ltd.) pp. 307-330.

Banerjee, J. and D.K. Hsiao. '"Data Network - A Computer Network of
General-purpose Front-end Computers and Special-purpose Back-end Data Base
Machines", Proceedings of the International Symposium on Computer Network
Protocols, Leige, Belgium, February 1978.

Hsiao, D.K., "Database Machines are Coming: Database Machines are Coming! -
A Guest Editor's Introduction', Computer Magazine, 11,3, 1979, pp. 7-9.

Kerr, D. "Database Machines with large Content - Addressable Blocks and
Structural Information Processors', Computer Magazine, 11,3, 1979, pp.
64-79.

19

Database Machine Activities
at
The University of Wisconsin

Haran Boral
David J. DeWitt

Computer Sciences Department
University of Wisconsin
Madison, Wisconsin

Abstract

In this paper we summarize recent database machine research activities at the
University of Wisconsin, outline current research projects, and describe our
future research plans.

1. Introduction

Rather than using this forum to discuss one current database machine research
project at the University of Wisconsin (which the reader might or might not be
interested in), we decided to present brief descriptions of several completed
and ongoing projects. We hope that this format will serve the casual reader by
permitting him/her to quickly find out what we have been doing, while, at the
same time, providing the database machine researcher with references to those
results that have not yet found (or never will find) their way into the litera-
ture.

The research projects described in this document largely grew out of the DIRECT
project. Several people have worked on DIRECT and participated in some of the
projects. Although this document is authored by only two of us this should not
be understood by the reader to mean that we did all the research work. Rather, it
was a group effort. Jim Goodman and Randy Katz joined our department after most
of the work reported here began. We included a description of their recent data-
base machine activities.

The results of some recently completed research projects are presented in
Section 2. Section 3 describes some of our ongoing database machine activities.

In Section 4, we descibe some activities that we have planned for the future.

2. Recent Research Results

In this section we present the results of some recently completed database
machine research projects.

2.1. Parallel Algorithms for the Execution of Relational Database Operations

In [BORA80] we present and analyze algorithms for parrallel processing of rela-

This research was partially supported by the National Science Foundation under
grant MCS78-01721, the United States Army under contracts #DAAG29-79-C-0165 and
#DAAG29-80-C-0041, and the Department of Energy under contract
{#{DE-AC02-81ER10920.

20

tional database operations in a DIRECT-like multiprocessor framework. To ana-
lyze the alternative algorithms, we developed an analysis methodology which
incorporates 1/0, CPU, and message costs. The paper presents parallel algorithms
for sorting, projection, join, update, and aggregate (both scalar aggregates and
aggregate functions) operations. Although some of these algorithms have been
suggested previously in the literature, we generalized each in order to handle
the case where the total amount of memory in the processors is not sufficient to
hold all the data operated on.

One (rather obvious) goal of this research was to compare alternative parallel
algorithms for relational database operations. However, the primary goal of this
research was to evaluate these alternative algorithms so that we could begin the
design of a new database machine using an algorithmic approach (top down) rather
than an architecture-directed approach [DEWI81].

This research was conducted by H. Boral, D. DeWitt, D. Friedland, and W.K.
Wilkinson.

2.2. Performance Evaluation of Four Associative Disk Designs

While our research on parallel algorithms evaluated alternative techniques for
processing complex relational operations, it did not address the problem of
efficiently processing selection operations. In [BORA82] we develop models of
alternative associative disk architectures and present the results of an
event-driven simulation based on this model. The designs analyzed are
Processor-per-Track (PPT), Processor-per-Bubble-cell (PPB), Processor-per-Head
(PPH), and Processor-per-Disk (PPD). We considered the effects of a number of
factors, including output channel contention, availability of index informa-
tion, impact of mark bits, and channel allocation policy on the performance of
these machines. Our results indicate that while in the general case the PPT
organization is best, the performance of the PPB design is remarkably good con-
sidering the slow speed of bubble memory chips. Also index information can be
used by both the PPH and PPD organizations to improve their performance to a
level almost comparable to PPT.

This research was conducted by H. Boral, D. DeWitt, and W.K. Wilkinson.

2.3. Using Data-Flow Techniques in Database Machines

After the design of DIRECT was completed (1977) we began to examine different
strategies for allocating processors to tasks in order to maximize performance.

The reults of this research are presented in [BORASla].1 The main result of this
work is that dynamic scheduling of processors using a data-flow strategy can
provide significant improvements in performance. However, this increase in per-
formance is achieved only through a significant increase in control costs. A
database machine such as DIRECT with its centralized controller is not appropri-
ate. In.fact, it was shown that the cost of controlling the processors in DIRECT
dominated the execution time even for the static strategies. We therefore began
to examine new ways of organizing database machines that could efficiently sup-
port data-flow query processing.

Using the results of our research on parallel algorithms ([{BORA80]) and our

1. This research was completed in 1979.

21

4

results on associative disk design ([BORA82]) we have finished an initial design
of a database machine, named FLASH, that uses data-flow techniques. This machine
uses broadcasting as the basic building block for all relational algebra algo-
rithms, and combines '"on-the-disk' processing of selection operations with
"off-the-disk" processing of complex relational operations.

We have recently been critical of other researchers for designing "yet another"
y)24 g Y
paper database machine. For that reason we have not prepared a document describ-

ing FLASH.2 We are beginning to study different ways of comparing the perform-
ance of database machines. We intend to demonstrate (to ourselves) that FLASH
significantly outperforms other proposed designs and that its performance jus-
tifies its complexity before we trumpet its design.

This work was performed by H. Boral and D. DeWitt.

2.4 Performance Evaluation of Database Machine Architectures

While many database machine designs have been proposed, each proposal is usually
vague about its performance with respect to a given data management application
or other database machine. Furthermore, no one has attempted,a comprehensive
performance evaluation of different database machine architectures. In

[DEWISI]3 we develop a simple analytical model of the performance of a conven-
tional database management system and four generic database machine architec-
tures. This model is then used to compare the performance of each type of
machine with a conventional DBMS for selection, join, and aggregate function
queries. We demonstrate that 1) no one type of database machine is best for
executing all types of queries, 2) for several classes of Qqueries, certain
database machine designs which have been proposed are actually slower than a
DBMS on a conventional processor, and 3) increases in complexity of hardware
generally do not result in corresponding increases in performance.

This research was conducted by D. DeWitt and P. Hawthorn of Lawrence Berkeley
Laboratory.

2.5. Implementation of the Database Machine DIRECT

DIRECT is a multiprocessor database machine designed and implemented at the Uni-
versity of Wisconsin. The initial design was completed in 1977. In the spring of
1980 we had a first working version of DIRECT running on 5 LSI 11/03 microcom-

puters. In [BORA81lc] we describe our experiences with the implementation of
DIRECT.

The paper begins with a brief overview of the original machine proposal and how
it differs from what was actually implemented. We then describe the structure of
the DIRECT software. This includes software on host computers that interfaces
with the database machine; software on the back-end controller of DIRECT; and
sofware executed by the query processors. In addition to describing the struc-
ture of the software we attempt to motivate and justify its design and implemen-
tation. The paper also discusses a number of implementation issues (e.g.,
debugging of the code across several machines) and concludes with a list of the

2An outline of FLASH is provided in [BORA81b].

3See [HAWT82] for an earlier attempt at comparing the performance of specific

database machines.

22

"lessons'" we have learned from this experience.

The implementors of DIRECT are H. Boral, D. DeWitt, D. Friedland, N. Jarrell,
and W. K. Wilkinson.

2.6 Duplicate Record Elimination in Large Data Files

This paper [FRIE81] addresses the issue of duplicate elimination in large data
files in which many occurrences of the same record may appear. The paper begins
by presenting a comprehensive cost analysis of the duplicate elimination oper-
ation. This analysis is based on a combinatorial model developed for estimating
the size of intermediate runs produced by a modified merge-sort procedure (in
which duplicates are eliminated as encountered). We demonstrate that the per-
formance of this modified merge-sort procedure is significantly superior to the
standard duplicate elimination technique of sorting followed by a sequential
pass to locate duplicate records. These results can also be used to provide
critical input to a query optimizer in a relational database system.

This research was conducted by D. Friedland and D. DeWitt.

2.7 Concurrency Control and Recovery in Transaction Processing Systems

While most of our database machine efforts have concentrated on the design of
database machines for processing 'large' queries (those that touch large amounts
of data and take a long time to execute), we have recently begun to explore data-
base machines for processing large volumes of '"small" transactions (e.g.
"debit-credit" transactions). In [WILK81] we examine issues of concurrency con-
trol and recovery in a database machine that consists of user nodes (intelligent
terminals) connected to database server nodes via an ethernet communications
device.

The central idea in this work is a "passive" concurrency control mechanism which
makes use of the broadcast nature of the communications medium. By eavesdropping
on requests that correspond to database accesses by the user nodes to the data-
base server nodes, a single concurrency control node can perform conflict analy-
sis for the entire system without explicit lock messages.

We present two algorithms: a passive locking and a passive non-locking algo-
rithm, and show that they are robust to communications and processor failures.
Simulation results indicate that the passive schemes have very low overhead and
perform better than corresponding distributed algorithms (both locking and
non-locking) in this environment. Also, we show that the cost of the recovery
protocol necessary to ensure atomic commit at all sites (i.e., the distribtued
two~-phase commit protocol) is high and, in many cases, overshadows the cost of
concurrency control.

2.8. VLSI Implications of Database Systems

Our research has also been directed at exploiting the vast capabilities avail-
able with the arrival of VLSI technology. By the middle of the decade, it will be
possible to build single-chip processors, including memory, with performance
capabilities achievable only by main-frame computers today. While this enormous
computational power will be available at a modest cost, the processor require-
ments resulting from the support of a large modern database system are also very
substantial. And though it may be possible to build a single, supercomputer from

many VLSI components, a much more cost-effective approach will probably be to
construct a system using large numbers of single-chip computers.

We have postulated a processor model, incorporating VLSI constraints. We have
concluded that a single integrated circuit type, containing a more-or-less con-
ventional von Neumann processor with a significant amount of memory, can be
employed to construct a machine with great generality in capability but which
will perform database operations in a highly efficient manner. We have analyzed
a number of possible topologies for a collection of these processors, assuming
processors approximately in proportion to the number of disk heads available. We
have studied the performance of a number of topologies for the most important
relational database operations.

In [GOOD80a] we examined the duplicate elimination problem resulting from the
relational projection operation. We concluded that the topology strongly influ-
ences the effectiveness of various algorithms, and that for each topology there
is an optimal algorithm. Comparing these pairs, we concluded that the best
topology we could think of was a variation of the X-Tree Hypertree intercon-
nection [GOOD81la], containing a perfect shuffle interconnection at the leaves of
the tree.

In [GOOD81b} we studied parallelized version of traditional join algorithms in a
similar manner, finding that performance was deficient. In [GOOD80b] we consid-
ered hashing techniques, inspired by [BABB79}, to implement the equi-join algo-
rithm, and showed that these can be used with the Hypertree interconnection to
implement extremely efficient join algorithms.

This section was written by J. Goodman.

2.9. VLST Implementation of a Join Chip

Randy Katz designed and implemented a custom VLSI <chip for processing
equi-joins. The chip accepts three serial bit streams: one each for the inner
and outer tuples of the nested loops join method, and a bit mask. A flag is set
if the tuples are equal under the mask. The concatenation of the tuples is
formed on-board the chip, and removed at twice the input bit rate. The total
design was laid out in under three weeks using the Mead-Conway design methodol-
ogy, and consists of approximately 1500 transistors. The chip is in fabrication,
and should be available for testing soon. Clearly we can make no claim as to the
utility of the chip for processing joins, but the application of VLSI technology
to database processing is certainly an intriguing area of research.

3. Current Activities

3.1. DIRECT Implementation

The implementation of DIRECT is proceeding in several directioms. In July 1981,
we finished implementing the INGRES update operations utilizing the parallel
update algorithms presented in [BORA80]. We have recently begun implementing
scalar aggregates and aggregate functions. This will complete an initial version
of DIRECT except for implementation of concurrency control and recovery (some-
thing we have not yet figured out how to do).

The host and back-end software for DIRECT is presently running on a PDP 11/40
that runs Version 6 UNIX and INGRES. This machine is on its very last legs and

24

will be retired in early November 1981. It will be replaced with a VAX 11/750,
which has been ordered. Adquisition of this new machine to run the DIRECT
back-end and controller software is a mixed blessing.

A PDP 11/40 outperforms an LSI 11/23 (of which eight are used for query process-
ors in the present DIRECT implementation) only marginally. Thus INGRES (read
"DIRECT host software') is incredibly slow. Replacing the PDP 11/40 with a VAX
11/750 will significantly enhance respone time and will permit us to perform a
number of benchmarks on DIRECT. On the other hand, VAX-INGRES runs as two proc-
esses and is written in Verison 7 C. Thus, we must redo all of our modified
INGRES software and some of the DIRECT back-end controller software. This will
probably take at least one-man year of effort.

Another change in the DIRECT configuration is that we are presently replacing
the nonDMA parallel word interfaces that have been used to connect the LSI
11/23s to the 11/40 with DMA, "ethernet-1like'" interfaces. Since these interfaces
permit DMA I/0, DIRECT performance should be enhanced.

3.2. Research Activities

3.2.1. Statistical Database Machines

We have recently begun to investigate the possibility of constructing a proto-
type database machine intended to improve performance for users of very large
statistical databases. Currently we are extending the aggregate algorithms pre-
sented in [BORA80] to cover a larger class of operations (e.g., median, cross
tabulation). We are also investigating the effect of different data layout
strategies, data compression, and mass storage technologies on each of these
algorithms.

3.2.2. Development of Database Machine Performance Evaluation Tools

Most of the research in the database machine area is devoid of performance anal-
ysis. There are no analytical or simulation tools that are suitable for measur-
ing the performance of a new design or comparing the performance of two
differnet designs. We have recently begun to develop such tools. Our basic idea
is to provide the user with an environment that includes a number of building
blocks, an easy way to specify the machine organization and workload using the
building blocks, and the ability to interface both simulated and analytic
descriptions of the behavior of particular components.

3.2.3. Filter Design

In [BORAB2] we evaluated alternative associative disk designs under the assump-
tion that the processor used could execute any arbitrarily complex selection
condition fast enough to keep up with the rotational speed of the mass storage
device. If a conventional microprocessor is used as the basis of the filtering
element, such an assumption is probably valid only for simple selection oper-
ations and not for complex (multiple tests on multiple attributes) selection
operations.

An alternative is the use of a specialized processor that executes selection
queries in the form of a finite state automaton (FSA). Together with Francois
Bancilhon of INRIA we are presently conducting a performance evaluation of hard-
ware versus software filtering.

25

3.2.4. Parallel Sorting

While [BORA80] included the evaluation of several external parallel sorting
algorithms, this evaluation did not accurately measure the loads placed by the
algorithms on the underlying mass storage system. We are presently extending the
parallel sorting models presented in [BORASO] to model I/0 activity and loads.

4, Future Activities

In Section 3 we discussed a number of ongoing projects, in particular statis-
tical database machines and performance evaluation tools for database machines.
Both of these projects have only recently been started and thus almost qualify
for a mention in this section. At this point we have no plans for beginning new
research work.

One event that will affect our future work is the award by NSF to the Computer
Sciences Department at Wisconsin of one of the NSF Experimental Computer Science
Research Grants. This grant will be used to construct a large multicomputer. The
facility, when operational (about 1983), will consist of between 50 and 100
processors (each processor will be a 32-bit processor with about 1 Megabyte of
main memory and have the performance of-a small VAX) and a number of mass storage
units. The processors will be connected together with frequency-agile communi-
cations devices that will permit us to efficiently emulate a large number of
interconnection topologies.

Our plans at this point are to use this "supercomputer” for two different
purposes. First, we intend to implement FLASH and whatever statistical database
machine we design. Second, we would like to implement various primitives to be
used by simulations, emulations, or other tools for performance analysis of
database machines as described in Section 3.2.2.

5. References

[BABB79] E. Babb, "Implementing a Relational Database by Means of Specialized
Hardware," ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979,
pp. 1-29.

[BORA8O] H. Boral, D. J. DeWitt, D. Griedland and W. K. Wilkinson, "Parallel
Algorithms for the Execution of Relational Database Operations", Universi-
ty of Wisconsin Computer Science Technical Report no. 402, submitted for
publication, October 1980.

[BORA81a] H. Boral and D. J. DeWitt, "Processor Allocation Strategies for Multi-
processor Database Machines", ACM Transactions on Database Systems, Vol.
6, No. 2, June 1981, pp. 227-254.

[BORA81b] H. Boral, "On the Use of Data-flow Techniques in Database Machines",
Ph.D. Dissertation, University of Wisconsin - Madison. Also University of
Wisconsin Computer Science Technical Report no. 432, May 1981.

[BORA81c] H. Boral, D. J. DeWitt, D. Friedland, N. Jarrell, and W. K. Wilkinson,
"Implementation of the Database Machine DIRECT", University of Wisconsin
Computer Science Technical Report no. 442, submitted for publication,
August 1981.

26

[BORA82] H. Boral, D. J. DeWitt, and W. K. Wilkinson, "Performance Evaluation of
Four Associative Disk Designs", to appear in Journal of Information Sys-
tems, Vol. 7, No. 1, January 1982.

[DEWI81)] D. DeWitt and P. Hawthorn, "Performance Evaluation of Database Machine
Architectures", Proceedings of the 1981 Very Large Database Conference,
September 1981.

[FRIE81] D. Friedland and D. J. DeWitt, "Duplicate Record Elimination in Large
Data files', University of Wisconsin Computer Science Technical Report no.
445, submitted for publication, August 1981.

[GOOD80a}] J. R. Goodman and A. M. Despain, "A Study of the Interconnection of
multiple Processors in a Database Environment", Proceedings of the 1980
Conference on Parallel Processing.

[GOOD80Ob} J. R. Goodman, "An Investigation of Multiprocessor Structures and
Algorithms for Data Base Management', Ph.D. Dissertation, University of
California, Berkeley. Also, Memo No. UCB/ERL M81/33, University of
California, Berkeley, May 1981.

[GOOD81a] J. R. Goodman and C. H. Sequin, "HYPERTREE: A multiprocessor intercon-
nection topology', to appear in IEEE Transactions on Computers, December
1981.

[GOOD81b] J. R. Goodman, "Implementing Join Algorithms Using the Hypertree
Interconnection Network', paper in.preparation.

[HAWT82] P. Hawthorn and D. J. DeWitt, "Performance Analysis of Alternative
Database Machine Architectures", to appear in IEEE Transactions on Soft-
ware Engineering, January 1982.

[WILK81] W. K. Wilkinson, 'Database Concurrency Control in Local Broadcast Net-
works", Ph.D. Dissertation, University of Wisconsin - Madison. Also Uni-
versity of Wisconsin Computer Science Technical Report no. 448, May 1981.

27

The intelligent Database Machine

Michael Ubell
Britten-Lee, Inc.
1919 Addison St. #304
Berkeley, Ca. 94702

Database machines have been discussed in computer literature for many years. We
are just now beginning to see the first of these special-purpose machines reach
the market place. With the exception of the ICL CAFS machine [MITC76], which has
been shipped in small quantities for several years, no database machines have
left the laboratory and few have even left paper. The Intelligent Database
Machine is the first of these special-purpose computers to reach the general
marketplace. It is also the first to be designed based on the idea that fast
database management can be provided at a low cost. This paper describes the
major architectural features of the system.

The Intelligent Database Machine (IDM) provides a complete relational database
management system combined with special-purpose hardware to ‘provide a high
transaction rate at a low cost. The IDM is a backend machine and requires some
host intelligence to handle communication with the user. The architecture of the
machine is designed around the idea that there are a few well-defined tasks
which a relational DBMS does very often in processing transactions. These tasks
can be microcoded in a specially designed processor, the Database Accelerator.
It is fast yet inexpensive since the amount of microcode is very limited. The
memory system is also designed around data management tasks and provides
high-speed access for these tasks using standard-speed memory components, again
keeping the cost low. Another central idea in the IDM is that a database manage-
ment system is more efficient in a dedicated environment.

The IDM software implements most of the facilities of a relational database man-
agement system except for actual source-language parsing. These include validi-
ty checking, protection, query optimization, access-path selection, logging and
crash recovery. The parsing of the source language query is done on the host
system. The division of tasks between the host and the IDM at this level
provides for the most efficient use of a backend system without restricting the
user interface to a particular language. If the interface were at a lower level,
say the "fetch a record" level of the Relational Storage Interface in System R
[ASTR76], the host would have to access the IDM almost as much as it would have
to access a disk if it were to do the same work itself. The issues of recovery
and concurrency control also become more difficult at this level. For example,
to do concurrency control in a reasonable manner the host would have to declare
how much of a relation (or file) it was going to access or update so that the
backend system could determine whether to lock the whole relation or just lock
pages as they are touched. Since the IDM does all the access-path selection it
can determine this without the need of directives from the host.

The IDM software takes advantage of a dedicated system environment. Operating
systems have traditionally tried to manage system resources based on a guess as
to what the application programs are likely to do next. This does not work well
for database management systems because their I/0 access is very different from
most programs [HAWT79]. Only the DBMS code "knows" how to optimally schedule
disk accesses. What there is of an operating system in the IDM can be best

28

described as an anarchistic operating system. Processes do their own disk I/0
except when it is better to have it queued for latter. They request to stop run-
ning at appropriate points after they have used up their time slice or have to
wait for queued I/0. These two features allow for optimal disk read ahead in
that a process will never read a page and then not process it before giving up
the CPU. If the process needs I/0 which will take some time (a long seek) it will
schedule itself out and be woken up when the I/0 is finished. In this way the IDM
can overlap the CPU and I/0 when it will improve the performance of the system.
The operating system keeps track of where each disk arm is and where on disk each
process needs to access the disk so that it may schedule intelligently. The DBMS
software on the other hand is in complete control of the in-memory disk buffer-
ing.

The IDM hardware consists of a high-speed bus and 6 different boards:

Database Processor
Database Accelerator
Channel

Memory Timing and Control
Memory Storage

Disk Controller

The IDM 500 has a 16-slot bus. Slots can be filled with extra memory or channels
as required for the application. One or more hosts communicate with each IDM
Channel. The channel implements a communication protocol with the host and buff-
ers data coming into and leaving the IDM. It also translates between host data
types and the data types used within the IDM. These two functions shield the
rest of the system from many interrupts and allow it to see just a uniform com-
mand stream. The channel consists of a microprocessor, memory and hardware to
implement 8 serial (rs232c) or one parallel (IEEE-488) interfaces. Once a com-
mand is accumulated in the channel it notifies the Database Processor which has
it transferred to the main memory of the system for the rest of its processing.

The Database Processor is responsible for controlling the other boards in the
system and also implements most of the functionality of the system. It uses a
standard 16-bit microprocessor chip (Zilog Z8000). It must execute about 45,000
lines of code written in a high-level language to implement the relational DBMS.
Part of this code emulates the Database Accelerator and the system can run with-
out the Accelerator, but at a slower rate. The Database Accelerator is made with
standard bit-slice chips (Signetics 2900 series) and contains 4 kilo-words of
microstore. The routines in the Accelerator are mainly those involved with look-
ing at data within a page from the database, in other words, the inner loop of
most processing activities. Since the processing strategy is often
single-threaded, the Accelerator also has the ability to look at data while it
is being read into memory. Once a command is given to the Accelerator it can
schedule subsequent reads from disk and look at data until it has found enough

qualifying tuples or looked at enocugh pages as determined by the Database
Processor.

The memory system of the IDM provides for up to 3 megabytes of disk buffering and
additional space for user processes. The memory system can correct one-bit
errors and detect two-bit errors. This, together with address and data parity on
the IDM bus, insures data integrity throughout the system. The memory has two
modes of operation: one is byte- and word-oriented for the Database Processor
and the other, faster mode, is block-oriented for the Accelerator and Disk Con-

29

trollers.

The IDM Disk Controller interfaces to up to four Storage Module Device disk
drives. The Disk Controller is responsible for the reliable transfer of data to
and from the disk. It implements burst-error correction and retry without any
intervention from the Database Processor. There can be up to 4 disk controllers
on the IDM with a total of 16 disks. While this limits the storage capacity to
about 9 gigabytes with current disk technology, the IDM can address up to 32
gigabytes of disk storage when disk drives become denser.

We are just beginning to collect performance information on the IDM. The Data-
base Accelerator is not yet in production, but some results against a 2-megabyte
database run without the Accelerator are available. Without the Accelerator the
IDM can run in the 3-5 transactions/sec range. To retrieve a record through a
two-level index takes .15 seconds. A simple append through unique index can be
done in .2 seconds. A "debit-credit-log" transaction, involving two replaces and
an append, takes .38 seconds. The speed and proportion of usage of the Acceler-
ator depend on the task being done. The Accelerator runs 15-30 times faster than
the Database Processor and the system spends from 50-90% of its time in the
Accelerator emulation routines; in addition the Accelerator reduces latency by
analyzing data as it comes off the disk. With the Accelerator the IDM can be
expected to reach 30 transactions/sec in some applications. Another way the IDM
improves system performance is by off-loading the host system. In initial tests
one large main-frame computer manufacturer estimated that the IDM could off-load
1/3 of their computer at 3 times the speed for their application.

The end-user price of an IDM is about §70,000. The IDM is not a complete system
and must be packaged with a host computer. With a small host computer and disks a
complete system could be as little as $120,000. Complete DBMS software packages
cost $30,000-50,000 for minicomputers and typically only run quickly on large
minicomputers. Such a software system and computer would cost about $250,000.
Qff-loading the DBMS from the host frees the host for other work. The IDM pro-
vides better functionality and greater speed at half the cost.

REFERENCES

ASTR76 Astrahan, M. M., et. al. "System R: relational approach to database man-
agement', ACM Trans. Database Systems. V1 N2 (June 1976).

HAWT79 Hawthorne, P.B., "Evaluation and enhancement of the performance of rela-
tional database management systems', Ph.D. Dissertation, University of

California, Berkeley, California, 1979.

MITC76 Mitchell, R.W. "Content addressable file store," in Proc. Online Data-
base Technology Conf., April 1976.

30

A Methodology
for the Determination of Statistical Database Machine
Performance Requirements

Paula Hawthorn
Lawrence Berkeley Laboratory
Berkeley, California

1. Introduction

This paper describes work in progress on a research topic in the design of a
statistical database machine. A statistical database is one that is used mainly
for the management and analysis of large amounts of data, where the data are
accessed and updated in large quantities. Such databases are commonly used in
applications where there is statistical analysis of the results of experiments
or surveys, hence the name "statistical databases'". Applications include socio-
logical and epidemiological studies of data derived from census records or sur-
veys; analysis of economic data for forecasting . and modeling; management
information systems; and the analysis of data resulting from instrumentation of
physical measurements (e.g., temperature, flow, etc.).

Data management research has traditionally focused on business applications,
where the problems center around those found in business databases: e.g., trans-
action management for debit/credit consistency, backup and recovery mechanisms,
concurrency control, protection, and so on. Although those problems exist in
statistical databases, the focus shifts: in a statistical database the emphasis
must be on the efficient management of large amounts of data and the calculation
of summary quantities such as means and medians. The need for compression
[EGGE81], for user models of an often unwieldy amount of data [CHAN81], for spe-
cial database operations [JOHN81] are often more important in a statistical
database than in business databases.

In this paper we discuss the determination of the cost/performance ratio neces-
sary for a statistical database machine to be a viable alternative to current
computing facilities. By database machine, we mean a specialized computing sys-
tem dedicated to data management and using especially designed hardware to
increase the performance of the system. It has been shown that database machines
can be built which, because they are designed to perform a single function, are
usually more cost-effective than general purpose machines performing the same
function [DEWI81]. Such database machines commonly operate as back-end systems,
where the front-end computer handles general-purpose computing tasks and sends
all data management tasks to the back-end system. Business database machines
exist [EPST79, BABB79] but there are no statistical database machines.

In [HAWT81] it is shown that statistical databases have ideal performance char-
acteristics for implementation within a back-end system that is dedicated to the
management of statistical data. In particular, users of a statistical database
tend to reference large amounts of data with a single instruction (e.g., "find

This work was supported by the Applied Mathematics Sciences Research Program of
the Office of Energy Research of the U. S. Department of Energy under Contract
No. W-7405-ENG-48.

31

the mean and variance of this field", where there are 10M bytes of data in that
field) so that the overhead to process the command in the front-end system is
much less than the time required to execute the command in the back-end machine.
It may also be true that statistical database machines can be built to cheaply
provide very high performance through the use of parallel multi-processors for
computation necessary for statistical analysis. An investigation of the design
of a statistical database machine is proceeding at the University of
Wisconsin-Madison by the designers of the more general-purpose database
machine, DIRECT [DEWI78].

The study described in this paper is to determine the performance and
functionality necessary for a statistical database machine, in order to avoid
the situation of designing a candidate machine, implementing a prototype of it,
and later finding that it does not meet the needs of the target community. This
will be the first such study to appear in the literature on database machines.
[DEWI81] points out the habit of database machine designers of designing a
machine from the perspective of using interesting hardware, rather than the per-
spective of solving general problems in data management performance. The method-
ology described may be useful to others who are contemplating special-function
hardware design.

To determine whether a new architecture is better than the architectures
currently in use, models of the current architectures must be developed. Section
2 defines four models of computer architecture which can be used for the manage-
ment of statistical data. These models are: (1) a large central system, (2) a
network of minicomputers, (3) a network of minicomputers where some of the com-
puters are dedicated to data management (that is, using software modifications
but no specialized hardware), and (4) a network of minicomputers with back-end
database machines attached. Cost/performance parameters are defined. These
parameters can be measured to determine what the cost/performance of a database
machine would need to be to make (4) a reasonable alternative to (1), (2) and
(3). Section 3 defines the study that will take place. Section 4, the conclu-
sion, describes further research to be based on the results of the study.

2. Defining Parameters to be Measured

The purpose of this study is to determine the necessary cost/performance ratio
of a statistical database machine such that the use of such a machine is a viable
alternative to current computing facilities. Such a study must be done before
the machine is designed because the design of such a machine can be highly
influenced by that ratio. It is apparent that database machines can be designed
with different cost/performance ratios: the Britton-Lee machine, the IDM 500,
sells for about $70,000; it is a single instruction, single data stream machine.
The ICL machine, CAFS, sells for close to §$1,000,000. It is a single
instruction, multiple data stream machine, and for some applications is extreme-
ly fast [HAWTS81].

Therefore the problem is to define the current computing environment, to define
parameters to measure to determine the cost/performance ratios within the cur-
rent environment, to measure those parameters, and to forecast changes to those
parameters due to shifting environments. Then the necessary cost/performance
ratio can be determined. We will first define the current environment, then the
parameters to be measured. The measurement techniques and forecasts will be dis-
cussed in later sections.

32

2.1 Models of Current Systems

It must be noted that statistical database management systems are not yet widely
used. Instead, scientific researchers use several different methods to analyze
and manage data: some use statistical packages that have rudimentary facilities
for data management; some use data management systems that have no statistical
analysis facilities and must move the data from the data management system,
forming temporary files on which to run statistical analysis programs; some sim-
ply use the file management facilities of the operating system, writing their
own programs, using statistical libraries, to perform data analysis. There is
some use of statistical data management systems but that use is not-.yet wide-
spread. Therefore, when we refer to the "current working environment" we mean
the current use of the system for statistical data management and analysis, not
the current use of statistical data management systems per se.

The following four models are not the only alternatives in computing environ-
ments for statistical analysis of large data sets. They are, however, represen-
tative of current or easily possible environments. The proposed models for
computer systems are listed below.

2.1.1 Large Central Systems

One of the most common computer architectures in use currently is the large,
central system. This is shown in Figure 1. In the Large Computer System (LCS)
the computer is timeshared among many batch and interactive users. The major
secondary storage devices are disks, with other devices, such as tape drives
and/or automatic tape libraries attached to the system.

2.1.2. Minicomputers

A second approach to providing computing facilities is to purchase separate
minicomputer systems for separate applications. This is shown in Figure 2. The
minicomputer network that we are modeling is one based on our experience at
Lawrence Berkeley Laboratory. In systems common at LBL, there is a loose con-
nection between some of the minicomputers. Often the minicomputers are bought
for different applications and by different departments according to varying
. requirements, so the computers tend to be made by different manufacturers; even
those made by the same manufacturer may be running different operating systems.
Additionally, a given application may support a number of homogeneous computers
that are tightly coupled with each other, but loosely coupled to the rest of the
laboratory. There are also applications where the minicomputer system is
stand-alone due either to protection and privacy requirements, or because there
is no perceived need to net it to other minicomputer systems.

33

Figure 1.

many terminals

LARGE CENTRAL

COMPUTER

1
|
|
|
|
|
|
|
|
|
|
|
]

Central System

many disks

]

[N
-
4]
b

(L

[o N
[
0
=

1 (

L

Figure 2. General-Purpose Minicomputers

Department A's minicomputers

r———X
| mini | network | mini | net
| computer|=-~-===-~~~- | computer|~=~----
| system | link | system | 1link
e S |

Department C's mini
Stand-alone system
1
| mini |
| computer|
| system |
b1

2.1.3 Networks with Dedicated Databas

Department B's mini

|

| mini |
| computer |
| system |

|

e Systems

The two systems described above are those that commonly exist; the third system
is one that may be very useful. It is a network of minicomputers, where some of
the minicomputers are dedicated strictly to running the data management system.

This is shown in the following figure

34

Figure 3. Network with Specialized Machines

1 [1
mini	network	database	net	mini
computer	-=--=-==-----	system	----------	computer
system	link		1link	system
] | O——| SO |

| link | link | link
1 1 1
database| network | mini | net | mini |
| system |---------- | computer|----==--«-- | computer |
| { link | system | 1link | system |
| —

The dedicated systems would include no specialized hardware; however, operating
systems would be modified to more efficiently interact with the data management
system. There are several advantages with the above approach. These are listed
in the following table.

Table 1. Advantages of Dedicated Systems

1. Operating system Efficiency
It has been observed that if a computer system is running only a data man-
agement system, the operating system can make use of special information
available from the data management system [HAWT79, STON81]. The incorpo-
ration of such knowledge into the operating system will increase the effi-
ciency of the system as a whole.

2. Data Sharing
Centralizing the databases on a few computer systems means that the users
can easily share data.

3. Lower Cost of Software
The data management system resides on only a few machines, making it easier
to maintain. Also, vendors charge per CPU, so the fewer systems there are
that have the data management system installed, the lower the cost.

The dedicated system architecture is to be modeled because it is a reasonable
alternative to the expense of developing specialized hardware.

2.1.4. Statistical Database Machines

The fourth architecture to be explored is the use of specially designed database
machines. It is proposed that these machines be back-end systems; their use is
shown in Figure 4.

35

Figure 4. Network with Database Machines

1 1
| database] | database]
| machine | | machines]|
| | | |
- |

| link link |
1 1 f_—’——"l
| mini | network | mini | net | mini
computer	------=-=---	computer	---=-------	computer
system	link	system	1link	system
S		I		

| link | link | link
1 1 - 1
mini	network	mini	net	mini
computer	----------	computer	=------=----	computer
system	link	system	link	system
S| | | A

The above architecture includes a network of minicomputer systems, some of which
are attached to statistical database machines.

2.1.5 Model Choice

The following section justifies the choice of the particular models above. The
larger central system (LCS) and the network of minicomputers were chosen because
those two models are in common use. The use of dedicated minicomputers for data
management (model 3) is included because such systems may have a lower
cost/performance ratio than systems that include database machines, and should
therefore be included in comparisons. We exclude making an LCS a dedicated data-
base machine because the expense of an LCS is such that it appears to be prohibi-
tive to dedicate one to data management.

The fourth model, the network of minicomputers with statistical database (SDB)
machines attached to some, is included because that appears to be the most rea-
sonable architecture to develop at this time. In order to achieve high efficien-
cy at low cost, the SDB machines are back-end systems that cannot directly
communicate with users but must be front-ended by other computers. A design
where the front-end system is a minicomputer is chosen, rather, than using an
LCS as the front-end, for development purposes: for communications between the
two systems, it is sometimes necessary to have dedicated use of the front-end
system. The cost of using an LCS system for that purpose would be prohibitive at
this time.

2.2 Parameter Definition

The basis for this study is strictly cost/performance. It is assumed that the
same functionality can be provided across all the models, and that the only rea-
son to use an SDB machine is that it has a lower cost/performance ratio than the

36

other models. This is a simplifying assumption; in reality, decisions are made
to use database machines based other criteria, such as the ability to connect
the machines to heterogeneous systems, etc. Such functional requirements should
be the basis of other studies.

The parameters to be measured are listed below.

2.2.1 Cost

Selling price is the cost associated with each system; this includes the selling
price of software (data management and operating systems) as well as hardware.
Selling price is used, rather than raw component cost, because the selling price
truly reflects the cost to the target population. Additionally, selling price
reflects the cost of development, which must be included, especially in the pro-
posal of new systems.

2.2.2. Performance

The performaﬁce of a system is defined as the ratio of the number of users and
the response time for an "average' job step:

n/r

performance

number of users

response time for average job step

KB oY
I

The maximum performance for a given system will be used (i.e., the values of n
and r such that the performance is maximum). For example, if an LCS has maximum
performance at 200 users, response time at 10 seconds for an average job step, P
= 20. Then, if the LCS costs $2,000,000 (hardware + software), the
cost/performance ratio is 100,000. If the same "average job step" is run on a
$300,000 (hardware + software) minicomputer, the maximum performance might be
obtained at 20 users, with a response time of 20 seconds. Then the
cost/performance ratio is 300,000/1 = 300,000.

2.2.3. Average Job Step

The average job step is defined by measuring current use of existing systems for
the purpose of statistical data analysis and management. An average job step is
a unit of work: a differentiable portion of a job which can be identified by the
user as performing a given high-level task and perhaps even expressed in a sin-
gle statement in an SDB query language. The method of determining the average
job step is discussed in Section 3.

2.2.4. Loading Parameters -

To estimate the performance of the nonexistent model (3) and to aid in guiding
the development of the SDB machine, the loading parameters of the average job
step will be measured for existing systems. These include:

d = number of disk references
cpu = amount of CPU time required

37

mem = amount of main memory required

3. Measuring the Parameters

The methodology for this study is as follows:

1) Determine average job step.

2) Measure it on current systems (models (1) and (2)) to determine their
cost/performance ratios, and to discover system loading factors.

3) Use system loading factors to forecast the cost/performance ratio of
(3).

4) Based on the above cost/performance ratios, conclude what the
cost/performance ratio of model (4) must be.

The key problem is a statistically valid approach to determining the "average
job step". This will be accomplished by measuring the current use of the two
existing systems. A combination of approaches will be used: user surveys, and
performance analyses of some of the current computer systems.

The test bed will be the Lawrence Berkeley laboratory. With 3000 workers in many
areas of scientific research, LBL provides a diverse environment which appears
to reflect the general use of computing for the analysis of data. Determining
the cost/performance ratio for an SDB machine that would make it an alternative
to current systems at LBL will fix the result for at least one laboratory. The
results must be compared with others, of course, to identify possible anomalies.

To determine the average job step:

1) Randomly sample computer users at the laboratory. Ask them to fill out ques-
tionnaires concerning their use of the computing systems. A part of that
questionnaire is a list of 20 candidate SDB "job steps'. The user is asked
which of his/her computer jobs contain which of the job steps, and which
systems those jobs regularly run on. Some jobs will be found that are com-
posed entirely of job steps.

2) Using the list of jobs identified in (1), measure the loading factors and
response times of the job steps. Insure that there is a large enough set of
steps at this point that standard statistical tests can be used to determine
the average job step.

It can be expected that step 1 above is an iterative process in that the "candi-
date job steps", which are our ideas of the basic processes involved in the
analysis and management of large data sets, will not necessarily correspond to
what users regard as the basic job steps. Therefore, the questionnaire may have
to be redesigned several times to capture the information needed.

Once the users have identified which jobs contain which job steps, the response
times and system loading patterns of the job steps can be determined from exam-
ining logging facilities for most of the systems to be studied. Where those
facilities do not exist, measurements will have to be taken.

The purpose of this study is to obtain the cost/performance ratio for the SDB
machine, not to define a detailed performance profile for statistical data man-

38

agement queries. Therefore, extensive tracing facilities for finer determi-
nation of loading factors according to subprocesses within the job step will not
be used for this study. It may be necessary to have such information when pre-
dicting the cost/performance ratio of a given SDB machine architecture, since,
as found in ([HAWT81, DEWI81] the performance profiles of applications greatly
influence the utility of a given database machine architecture. Instrumentation
and tracing of the SDB job steps may then be a logical extension of this study.

At the end of steps (1) and (2) above, there may be a single, "average job step"
which has associated with it an average CPU time on cach of two systems (models
(1) and (2)), an average number of I/0 requests, and an average response time
from each of the two systems. This result would be very nice, since such a single
step would be easy to model analytically, and is conceptually easy to deal
with. However, such an "average'" may mean nothing since the variation may be
huge - different job steps may have radically different performance patterns. In
that case, a suite of job steps will have to be devised, with each included job
step indicative of a certain type of process used in the statistical analysis
and management of data. This job-step suite can then be used in the place of a
single average job step.

4. Conclusion

This paper has described work in progress on the design of a statistical data-
base machine. A methodology for the exploration of the necessary
~cost/performance ratio for the database machine has been specified. This method-
ology is: (1) determine the target application for the database machine; (2)
find a candidate user population for that machine; (3) devise tests to quantify
the user population's current computing usage; and (4) forecast the necessary
cost/performance ratio based on its current value.

Such a methodology does not account for a change in computer usage due to a
change in functionality. That is, if a functionally complete statistical data
management system existed, and if that system were very fast due to its imple-
mentation on a special-purpose database machine, the user population would prob-
ably change drastically due to the change in environment. In simply surveying
present use of a computing system, it is difficult to determine if a given oper-
ation is not performed often because it is not needed, or because it is too
hard, inconvenient, or slow on the current system.

Conversely, it is difficult to forecast the actual use of a new system, such as
an SDB machine, if its use means extensive user re-training. The users of sta-
tistical databases may not wish to change from the systems they are familiar
with because they may resist having to change systems.

Further research is required to determine how such changes in the user popu-
lation should be reflected in the study of the design of an SDB machine.

39

REFERENCES

[BABB79] Babb, E., "Implementing a Relational Database by Means of Specialized
Hardware', ACM Trans. on Database Systems, Vol. 4, No. 1, March 1979, pp.
1-29.

[BRIT80] Britton-Lee, Inc. "IDM 500 Intelligent Database Machine Product
Description", Britton-Lee Inc., 90 Albright Way, Los Gatos, Calif., 95030.

[CHAN81] Chan, P., and A. Shoshani, "SUBJECT: A Directory Driven System for
Organizing and Accessing Large Statistical Databases', Proc. VLDB, 1981.

[DEWI78] DeWitt, D.J., "DIRECT - A Multiprocessor Organization for Supporting
Relational Data Base Management Systems', Proc. Fifth Annual Symposium on
Computer Architecture, 1978. ’

[DEWI81) DeWitt, D.J. and P. Hawthorn, "A Performance Evaluation of Database
Machine Architectures', Proc. VLDB, 1981.

[EGGE81] Eggers, S., F. Olken and A. Shoshani, "A Compression Technique for
Large Statistical Databases', Proc. VLDB, 1981.

[EPST80] Epstein, R. and P. Hawthorn, '"Design Decisions for the Intelligent
Database Machine'", Proc. 1980 NCC, AFIPS Vol. 49, pp.237-241.

[HAWT79] Hawthorn, P. "Evaluation and Enhancement of the Performance of Rela-
tional Database Management Systems', Memo. no. M79/70, Electronics
Research Laboratory, Universtiy of California at Berkeley.

[HAWT81] Hawthorn, P. "The Effect of Target Applications on the Design of Data-
base Machines", Proc. SIGMOD, 1981.

[JOHN81] Johnson, R. "Modelling Summary Data", Proc. SIGMOD, 1981.

[STON81] Stonebraker, M. "Operating System Support for Database Management',
Commun. ACM, July, 1981.

40

~m

The NON-VON Database Machine:

A Brief Overview

David Elliot Shaw
Salvatore J. Stolfo
Husseir. Ibrahim
Bruce Hillyer

Department of Computer Science
Columbia University

Gio Wiederhold
J. A. Ardrews

Department of Computer Science
Stanford University

Abstract

The NON-VON machire (portions of which are presently under construction in the
Department of Computer Science at Columbia, in cooperation with the Knowledge
Base Management Systems Project at Stanford) was desigred to apply
computational parallelism on a rather massive scale to a large share of the
information processirg functions now performed by digital computers.

The NON-VON architecture comprises a tree-structured Primary Processing
Subsystem (PPS), which we are implementing using custom nMOS VLSI chips, and a
Secondary Processing Subsystem (SPS) incorporating modified, highly
intelligent disk drives. NON-VON should permit particularly dramatic
performance improvements in very large scale data manipulation tasks,
inecludirg relational database operations and external sortirg. This paper
includes a brief overview of the NON-VON machine ard a more detailed
discussion of the structure and function of the PPS unit and its constituent
processing subsystems.

1This research was supported in part by the Defense Advanced Research
Projects Agercy under contract N00039-80-G-0132.

41

1 Introduction

Recently, a great deal of commonality has become apparent among the
fundamental operations involved in a surprisirngly 1large number of
superficially disparate computational approaches to high 1level database
maragement. Although these operations have been formulated in different ways
by different researchers, their essential, characteristics are captured by the
primitive operators of the relational algebra defined by Codd [1972]. Among
these operators are the set theoretic operations unior, intersectiorn, and set
difference, the relational operators equi-joir ard projectior, ard several
other operations derivable from these five. T

Although the best sequential algorithms known for these operations are still
quite irefficient on a von Neumanr machire, particularly in the case of very
large databases, we believe it possible to implement alternative machine
architectures supporting the highly efficient, but cost-effective, parallel
execution of each of these relational algebraic operations, along with a
number of other operations of practical importance, including large-scale
external sorting. It is this belief which motivated the design of the NON-VON
database machine.

NON-VON comprises a Secondary Processing Subsystem (SPS), based on a barnk of
"intelligent" rotating storage devices and designed to provide very high
access and processing bandwidth, and a smaller, but faster Primary Processing
Subsystem (PPS), again utilizing a high degree of parallelism, in which the
relatioral algebraic operators may be very quickly evaluated. Transfer
between the two devices is based on a process of hash partitioning, which is
performed entirely in hardware by logic associated with the 1ndividual disk
heads, and which divides the argument relations into key-disjoint buckets
suitable for "internal" evaluatior.., The top-level organization of the NON-VON
machine is illustrated in Figure 1.1.

primary buffer J|___:.| secondary
processing J: processing
"]
subsystem control subsystem
(PPS) unit —] ©r9

—————— - - - - - - -

42

This paper examines the orgarnization and behavior of the NON-VON machire,
illustrating the essential mecharisms involved ir its operation in database
management applications. After tracing the theoretical origins of the NON-VON
architecture ir the next section, we focus in Section 3 on the central
elements of the PPS unit. The most important functions of the PPS are
described in Section 4, while the fifth section illustrates the way in which
these functions are employed ir the rapid parallel execution of the most
"difficult" relational algebraic operations. Sections 6 and 7 outline the
organization of the Secondary Processing Subsystem and illustrate its use in
the external evaluation of relational database operations.

2 Theoreticgi Foumdatiogg

The theoretical basis for the NON-VON architecture was established in the
course of a doctoral research project at Stanford [Shaw, 1979], and was
accompanied by a mathematical analysis of the attainable time complexity of
the equi-join and projection operators on such a machinre. The architecture
was shown to permit a rather surprisirg 0(log n) increase in efficiercy over
the best evaluation methods krown for a conventioral computer system, without
the use of redundant storage, and using currently available and potentially
competitive techrology. In many cases of practical import, the proposed
architecture was also found to permit a sigrificant improvement (by a factor
roughly proportional to the capacity of the Primary Processing Subsystem) over
the performance of previously implemented or proposed database wmachire
architectures based on associative secordary storage devices.

Subsequently [Shaw, 1980a], algorithms for evaluating the selection,
restriction, union, intersection and set difference operators (each with
comparable or more favorable performance improvements) were also described,
ard the key procedure on which the architecture is based was contrasted with a
related, but irn this application, inferior method based on an associative
sortirg technique described earlier in the literature. More recently, we have
beer. studying several highly efficient, linear expected time algorithms for
exterral sorting on the NON-VON machine.

3 Organization of the Primary Processing Subsystem

The PPS unit functions as the site of what we call internal evaluation of the
relatioral algebraic and other operations performed by NON-VON. Borrowing
from the termirology of sorting, we use the term "interral" to distinguish
that case in which the operands are small erough (or can be broken into small
enough pieces) to fit entirely within the primary storage device -- in our
case, the intelligent PPS unit; "external" evaluation refers to the case where
the data exceeds the capacity of the PPS, and must be selectively partitioned
ard transferred from SPS to PPS.

43

For purposes of this discussion, the PPS may be thought of as composed of a
large rumber of very simple processing elements (on the order of several
thousand, if a full-scale prototype were to be built using 1981 technology,
and betweern a hundred thousand and a million durirg that period during which
NON-VON-like machires would in fact be targeted for practical wuse),
intercornected to form a complete birary tree., With the exceptior of minor
differences in the "leaf nodes", each processing element (PE) is laid out
identically, and comprises:

1. A single common data bus

2. A very simple (and area-efficient) - one-bit-wide ALU capable of
marnipulating a small set of local flag registers

3. An intelligent memory/comparator unit contairing a small amount
(perhaps 32 to 64 bytes) of local random-access storage, and
capable of arithmetic comparisors (ircludirg equality) between
values taken from the bus and from specified memory locations

The top-level structure of a single PE is illustrated in Figure 3.1.

By contrast with a conventional microprocessor, no finite-state control logic
is incorporated within the constituent PE's. Instead, a single programmable
logic array (PLA) associated with each chip services all PE's on that chip, as
described below.

The PPS will be implemented largely using two custom-designed VLSI chips,
which we call the PPS Bottom Chip and PPS Middle Chip. Bottom Chips will each
contain a subtree of the full PPS tree, and will thus embody 2K_1 constituent
PE's for some Kk depending on device dimensions. Rough preliminary estimates
based on 2.5 micron desigrn rules suggest that a value of k = 3, correspording
to 7 PE's per Bottom Chip, might be feasible for our initial prototype.
Within a single Bottom Chip, the PE's will be configured geometrically
according to a "hyper-H" embedding of the binary tree [Browning, 1978], as
illustrated in Figure 3.2.

Because of its fixed I/0 bandwidth requirements, irdependent of the size of
the embedded subtree, the realizable capacity of the PPS Bottom Chip will
increase quadratically with inverse changes ir minimum feature width, thus
permitting dramatic increases in the computational power of the NON-VON PPS
unit as device dimensions are scaled downward with continuing advances in VLSI
technology. (During the target time frame for a production version of a NON-
VON-1ike machine, a k value of 7 or 8, corresponding to several hundred
processing elements per PPS Bottom Ch;p, seems feasible.)

The PPS Middle Chip, on the other hand, will embed 2™-1 "internal nodes" of
the PPS tree (where m is a constant determined by pinopt limitatiorns, and
indeperdent of device dimensions), serving to combine 2™ subtrees, embedded
either in separate Bottom Chips or (recursively) in lower-level subtrees

44

A

to parent PE
i/o
random
r‘:z(:::rs comparator bit-wide
y unit : ALU
(32 bytes)
L i/0 B
to left child PE to right child PE

Figure 3.1 Comporents of a Single Processing Element

e et e

rooted in other Middle Chips, into a sirgle complete binary subtree. Because
the number of processors per Middle Chip will be constrained by pinout
limitations, and not by by mirimum feature width, the capacity of the PPS
Middle Chips will rot benefit from the effects of scaling as will the Bottom
Chips. This (provably unavoidable) I/0 bandwidth limitation, however, will
result in only a small, constant waste factor; the tree-structured intra- and
inter-chip interconrection topology of the NON-VON Primary Processing
Subsystem is in fact extremely well suited to the effects of future downward
scaling.

45

finite
state
control

(PLA)

Figure 3.2 Structure of the PPS Bottom Chip

- > s W . - - — - - -

- - - - - -

The NON-VON PPS functions as a SIMD (Single Instruction stream, Multiple Data
stream) processing ensemble, with all PE's executing the same operation on
different data at any giver poirt ir time. The tree structured inter-PE bus
structure functions in three distiret modes in the course of such execution:

1. Global broadcast by any PE to all other PE's in the PPS

46

2. Physically adjacent reighbor communication (to the Parent, Left
Child and Right Child PE within the physical PPS tree

3. Linearly adjacent neighbor communication (to the Next or Previous
PE 1n an arbltrary linear logical sequence)

The global broadcast function supports the rapid (especially as VLSI device
dimensions scale downward) parallel communicatiorn of instructions and data to
the individual PE's as required for SIMD operation, and is employed for most
I/0 operations. In some algorithms (real-time parallel sorting, for example),
data is passed between parent and child PE's. In others (associative matching
of arbitrary-length tuples, for instance), data and control information is
exchanged with the immediate predecessor or successor PE in some preadefined
total ordering. Several mappirgs between the lirear logical sequerce and the
hierarchical physical topology of the PPS are possible, but are beyond the
scope of this paper.

The NON=-VON PPS instruction set supports a number of operations involving
associative retrieval, arithmetic comparison, logical manipulation of local
(to the individual PEs) flags, various kinds of I/0, and a number of
incidental functions. While space does not permit a discussion of all these
functions, two associative operations executed by the PPS hardware are of
sufficient importance in the implementation of database management
applications to merit special attention here.

In performing associative operations, the NON-VON PPS unit functions as a
relatively fast, but inexpensive content-addressable memory which performs
what is essentially the relational selectior operation in a short, fixed
amount of time, independent of the size of the argument relation. In both of
the associative operations under consideration, a partial match criterion--
that is, a set of attribute/value pairs which musSt be satisfied by all
"matching" tuples--is broadcast in parallel to all PE's. NON-VON is then

capable of either

1. Associative marking: Simultareously setting a flag bit in all PE's
associated (in a marner to be explicated shortly) with a matching
tuple, or

\Y)

. Associative enumeration: Readinrg successive matching tuples out of
the PPS unit (and into the control module) irredundantly, with each
rew tuple produced ir a small, fixed amount of time.

For simplicity, we may assume (at least in the context of this paper) that a
given PE will store at most one tuple. The corverse, however, is not the
case: a single tuple, or even a single attribute value, could well exceed the
capacity of one PE, there being no restrictior on the length of either. Such
tuples are stored in linearly adjacent PE's. Inter-PE propagation of the
matching activity is effected by passing flags irn parallel from each
"successful-so-far" PE to its linear successor.

47

At the end of an associative marking operatiorn, every PE that contains a
matching tuple (or, in the case of large tuples, every PE in which a matching
tuple starts) will have ore of its internal one-bit flags set to 1. The
corresponding register in all other PE's will be set to 0. 1In some cases,
associative marking may be followed by another parallel operation involving
this "mark register"; in other applications, however, it may be recessary to
output all marked tuples (or the relevant portions thereof) through the root
of the tree in an arbitrary sequential order, using the global communication
bus. This associative enumeration operation is supported by a simple and
elegant multiple match resolution scheme which uses the tree-structured
comunication path to very rapidly clear the mark register in all but an
arbitrary "first" marked PE.

It is expected that the NON-VON PPS architecture will perform associative
matching operations extremely rapidly--in fact, at a pace limited largely by
the speed at which the partial match specification itself can be input.
Through the exploitation of recent architectural advances applicable to VLSI
systems, however, along with the careful balancing of storage capacity against
distributed intelligence, we hope to brirg the cost of PPS storage to within a
small constant multiple of the price of an equivalent amount of ordirary
randon access memory implemented using comparable technology.

5 Internal Evaluation of the Relational Algebraic Operators

s s s e P D D S A P A AP D D D il T e D D A e Sl el e

As noted above, the PPS unit's associative marking and enumeration operations
may themselves be regarded as implementations of the relational selection
operator, which returns a relation consisting of all tuples satisfying a
particular attribute-value specification. Selectior, though, can be performed
entirely withirn NON-VON's Secondary Processing Subsystem, obviating the need
for transfer to, and processing within, the PPS. The importance of the
associative marking and enumeration operations instead derives from its use as
a building block in the implementation of the "difficult" operations (project,
equi-join, and the set theoretic operations, for example) which, in contrast
with relational selection, can rot be evaluated by the SPS alone. While a
detailed exposition of the algorithms for each of these "difficult" operations
is beyond the scope of this paper, the essential behavior of the NON-VON PPS
and SPS units may be illustrated by considering a sirgle, particularly
demanding operatiorn which has a particularly simple realization within the
NON-VON PPS: the equi-join.

The join operation may in general be extremely expensive on a conventional von
Neumann machire, since the tuples of the two relations must be compared for
equality of the join attributes before the extended cartesian product of each
group of matching tuples can be formed. In the absence of physical clustering
with respect to the join attributes (whose identity may vary in different
joins involving the same relations), joinirg is most commonly accomplished on
a von Neumann machine by pre-sorting the two argument relations with respect
to the join fields. The order of the tuples following the sort is actually

48

gratuitous information from the viewpoint of the join operation. From a
strictly formal perspective, the requirements of a join--that the tuples be
paired in such a way that the values of the join attribute match--are
significantly weaker than those of a sort. The distinction is moot in the
case of a von Neunarn machire, where no better general solution to this
pairing problem than sorting is presently known. On the NON-VON machine, on
the other hand, we are able to exploit the weaker requirements of the join
operation to eliminate the need for pre-sorting in favor of a more
straightforward associative approach.

The algorithm for the internal equi-join on the NON-VON machine is in fact
extremely simple; it may be regarded as an associative version of the naive
join algorithm in which each tuple in the source relation in turn is compared
with all tuples of the target relation. On a von Neumann machire, this nraive
algoritlm has quadratic (in the size of the argument relations) time
complexity--specifically, the number of sequentially executed steps is equal
to the product of the combined cardinalities of the source and target
relations. Within the NON-VON PPS, however, only the source tuples are
processed sequentially, since a given source tuple may be compared with all
target tuples in parallel using the associative marking operation introduced
earlier,

In applications where the result relation is to be retaired in the PPS (as,
for example, in the case where the join is to be followed immediately by
another parallel operation on the result relation), the number of steps is
thus equal to the cardinality of the source relation, and is independent of
the cardinality of the target relation. Where it is necessary to sequentially
output the result relation (either to the SPS, or to some system external to
the NON-VON machine), a number of additional steps proportioral to the size of
the result relation is required; the complexity of our algorithm, however,
remains linear in the cardiralities of the source and result relations.

It should be noted that, in the worst case (in which the join attributes of
both argument relations have only a single value, so that the join produces
the full extended cartesian product of the two relations as its result), the
result relation will itself contain a number of tuples equal to the product of
the cardinalities of the two argument relations. As must be the case for any
algorithm involvirg fixed-bandwidth sequential enumeratiorn of the result
relation, the NON-VON internal join thus has a worst case which is quadratic
ir the size of the argument relations considered alore.

Qur analysis of time complexity in terms of the size of the argument and
result relations 1is motivated by empirical observations involvirg The
relationship between argumert and result cardinalities in realistic relational
database applications. 1In practice, the degenerate case of a single-valued
join appears to appear so infrequently by comparison with joins in which the
argument and result relations are of roughly comparable size that the
argunent/result model seems to better reflect performance differences of
practical significance. Under the assumptions of this model, the NON-VON
internal Jjoin algorithm offers a very sigrificant advantage over the best
algorithms known for a join on a von Neumanr machine.

49

6 Organization of the Secondary Processing Subsystem

The SPS unit is based on a potentially large bank of highly intelligent
circulating mass storage devices. Either single- or multiple-head disk drives
are suitable as a basis for the NON-VON PPS unit, but it is assumed (in the
interest of economy) that the number of tracks considerably exceeds the number
of read/write heads--that is, that "ordirary", as opposed to "head-per-track",
drives are employed. Each head must have its own sense amplification
electronies, permitting all heads to simultareously read their respective
tracks.

A small amount of hardware is associated with each disk head. The following
capabilities are assuned for this "per-head" logic. First, it must be
possible to examire ar arbitrary attribute ir each tuple that passes under the
associated head, comparing each such value against a single specified pattern
value. As in the case of many earlier database machine designs (RAP
{Ozkarahan, Schuster and Smith, 1974], CASSM [Su, Copeland and Lipovski, 1975]
and DBC [Baum and Hsiao, 1976], for example), the SPS is able to collect for
output all tuples found to match, or to bear some specified arithmetic
relationship (less than, less than or equal to, etc.) to the given pattern
value.

In additior, though, the NON-VON SPS is capable of sequentially computirg a
hash function for which the resulting hashed value falls within the range [0,
1J. (Sequential computation of an exclusive or function is sufficient, and
requires little additional 1logic.) Tuples wnose selected values hash to
withirn specified subranges of the [0, 1] interval may be dynamically
identified and transferred to the PPS urit through the Buffer and Control
Unit. T

7 External Evaluation of the Relational Algebraic Operators

R ol il A s e A A s A e P D D A AR D A S ettt

In the case where the arguments to the join exceed the capacity of the PPS
device, NON-VON attempts to partition the argument relations into a set of
key-disjoint buckets, the vast majority of which are small enough to fit
entirely within the PPS. A set of buckets is called key-disjoint if no join
value is represented in more than one bucket. Ir general, one such bucket
will then be transferred into the PPS during each successive revolution of the
disk-based SPS, and an internal joirn performed on the subrelations in
question.

To accomplish the partitiorning, the [0, 1] range of the hash function is
divided into a number of equal subintervals somewhat larger than the combined
size of the argument relations in PPS-fulls. Urless the argument relations
consume ar unusually large share of the total amount of storage available
within the system, it is possible to associatively examire, and perform simple
processing on, all tuples in both argument relations within a single disk

50

revolution. During the first revolution of the SPS drives, all disk heads
hash each join value passing beneath them, and those tuples whose join values
hash into the first subinterval are transferred "on the fly" into the PPS for
internal evaluation. Tuples hashing into the second interval are transferred
during the second revolution, and so on. Even aftér recovery from
(statistically unlikely) "bucket overflows", the hash partitioning procedure
preserves the lirearity of the internal join algorithm in the case of large
argument relations.

References

Baum, Richard E. and Hsiao, David K., "Data Base Computers--a Step Towards

A

Browning, Sally, "Hierarchically Organized Machines", in Mead, Carver and

R ey

Codd, E. F., "A Data Base Sublanguage Founded on the Relatioral Calculus",
Proceedings of the 1971 ACM SIGFIDET Workshop on Data Description, Access and

- o P D s el - T Y " T -

Control, "Association for Computirg WMachirery, 1977.

Codd, E. F., "Relational Completeness of Data Base Sublanguages", in Rustin,
Randall (ed.), Courant Computer Science Symposium 6: Data Base Systems,

- =

Englewood Cliffs, New Jersey, Prerntice-Hall, Inc., 1972.

Gallaire, Herve, Minker, Jack, and Nicolas, J. M., "An Overview and
Introduction to Logic and Data Bases", in Gallaire, Herve and Minker, Jack,
Logic and Data Bases, New York, Plerum Press, 1978.

Kaplan, S. Jerrold, Cooperative Responses from a Portable Natural Larguage

- - > ") s e S Y D Gl s D el s el

Database Query System, Ph(D. Thesis, Departmert of Computer and Information
Scierce, University of Pernsylvania, May, 1979.

Kruth, Donald E., The Art of Computer Programming, vol. 1: Fundamental

Algorithms, Addisor-WesTey, 1969.

Lee, C. Y. "Intercommuricating Cells as a Basis for a Distributed Logic
Computer", Proceedings of the AFIPS 1962 Fall Joint Computer Conference,
Baltimore, Spartan Books, pp. 130-136, 1952° -

Ozkarahan, Esen A., Schuster, Stewart A., and Sevcik, K. C., "A Data Base
Processor™, Technical Report CSRG=43, Computer Systems Research Group,
University of Toronto, September, 1974,

Shaw, David Elliot, "A Hierarchical Associative Architecture for the Parallel
Evaluatiorn of Relational Algebraic Database Primitives", Stanford Computer

51

Science Department Report STAN-CS-79-778, October, 1979.

Shaw, David Elliot, "A Relatioral Database Machire Architecture", Proceedings
.of the 1980 Workshop on Computer Architecture for Non-Numeric Processing,

i gy . . . - . A W D A R D B D D D A N P P W W > W -

SIGARCH, SIGIR ard SIGMOD publications.)

Shaw, David Elliot, Krowledge-Based Retrieval on a Relational Database

- - > T P = D - — > S w w D - - P - - - -

Machire, Ph.D. Thesis, Departmert™ of Computer Sclence, Stanford University,
1980a.

Su, Starnley Y. U., Copelard, George P., and Lipovski, G. J., "Retrieval
Operations and Data Representations irn a Content-Addressed Disec System",
Proceedings of the Interrational Conference on Very Large Data Bases,

- > - - D - = > b P MD b W e D = N T A A P > - > A > o s

Wiederhold, Gio, Kaplan, S. Jerrold, ard Sagalowicz, Daniel, "The Krowledge
Base Maragement Systems Project", ACM SIGMOD Record, 1981.

52

THE SYSTEM ARCHITECTURE OF A DATABASE MACHINE (DBM)

S. Bing Yao, Fu Tong, and You~Zhao Sheng

Database Systems Research Laboratory
University of Maryland
College Park, Maryland 20742

1l. Introduction

Recent advances in computer hardware technology have made it possi-
ble to design special processors for dedicated functions. The internal
organization of a data base system contains many concurrent operations
which may be implemented by dedicated hardware that functions con-
currently. This will have the advantage of reduced system complexity
and increased performance through parallel processing.

Database machines using conventional technology have been proposed
[DEW79,EAHS80] . In this paper we will briefly describe the architecture
for a new approach to database machine DBM. Figure 1 illustrates the
use of DBM in a local network environment. The DBM nodes are the back-
end machines that manage the data. The workstation nodes are the
front-end processors that interact with the user. Data base access
requests can be expressed by user in languages such as SEQUEL or QUEL
[AST76,SWK76] . These queries are parsed by the workstations and the
resulting query packets are sent to the appropriate DBM nodes. The DBM
commands contained in the query packets cause the DBM to send instruc-
tions to its special processors to initiate query processing. When the
processing is completed, the query result is sent by the DBM to the
appropriate workstations in result packets.

We assume that the data base consists of a collection of relations
and the query received by the DBM is encoded in relational calculus. 1In
an earlier paper [YAO 79], we have shown that relational queries can be
decomposed into a series of simple data base operations including selec-
tion, projection and join. These operations will be implemented in
hardware in the proposed DBM architecture.

Special processors to perform selection and projection have been
proposed in other database machine. For example, in CAFS a micro-
programmed processor evaluates the data stream from the secondary
storage for satisfying a given query. The result is coded in a one-
dimensional array [MAL79]. In [PAD 79] a logic matrix structure is pro-
posed to sequentially evaluate Boolean functions. The "systolic'" array
[KUN 80] processes the selection operation using a pipelining algorithm.
Other proposals include [HAN77,LSZ78]. In our DBM system, selection
operations are processed by a "data filter" which extends the concepts
of these previous designs. We will briefly discuss the architecture of
our "data filter" in Section 3.

53

Several designs for join processors were also proposed. The '"sys-
tolic" array join processor [KUN 80] is basically a one-dimensional pro-
cessor array. The two relations to be jolned are piped into the array
from two opposite directions. The two pipelines move in synchronous,
one step for each time unit. Join processing takes place when tuples
from different relations meet 1in a join processor element. The join
processor array in DBC [MEN 81] is arranged in a circular fashion. One
of the relations to be joined 1is partitioned and loaded into the
memories of the join processors. The other relation to be joined is
then piped into the join processors. Except for the use of associlative
memories and hash functions, this approach is basically the same as the
systolic array. In the bit-sliced associative join processor of DIALOG
[WAY 80)], the join values from one of the relations to be joined are
stored in a bit-sliced associative memory. The tuples from the other
relation are processed serially by matching their join wvalues in bit-
slice. All of these three designs are, in fact, variations of one-
dimensional processor arrays. In this paper we will introduce a two-
dimensional join processor array used in DBM.

It should be pointed out that, contrary to the belief of some
researchers in this field (see e.g., [DEW 81]), the DBM components using
array processors can be readily implemented with existing VLSI technol-
ogy. A small-scale prototype of DBM is presently being implemented.
Experiments and performance of the system will be reported in forthcom-
ing papers.

2. DBM System Architecture

The general architecture of the system is similar to a conventiomnal
computer with the exception of a few additional processors. Figure 2
shows that the system is composed of memory (M), central processor (CP),
direct memory access control (DMA), data filter (DF), and join processor
(JP). The disk controller (DC) is interfaced to the system by the data
filter and direct memory access controller. Communication with the net-
work is performed by the communication controller (CC).

The query sent to the DBM is assumed to be represented in a query
tree structure and coded in a standard notation. For example, the fol-
lowing query

RETRIEVE Name
FROM Employee
WHERE (salary > avg (salary)) and (dept = CS)

will be represented in the tree structure as shown in Figure 3. Multi-
ple query trees may be entered into the system. The evaluation and
coordination of the queries are controlled by a system monitor. The
main functions of the system monitor include: 1) Concurrency control; 2)
backup recovery; 3) receiving query packets from the communication con-
troller; 4) interpret the query tree and decompose the query into one
variable queries; 5) initiate the operations for the data filter and
join processor; 6) assemble query result in system buffer area; and 7)
initiate the process of sending result packets.

54

The decomposition of the queries uses an algorithm similar to that
found in System R [AST76]) and INGRES [SWK76]. The transaction manage-
ment is based on an implementation of a data base operating system
[GRA78] . Similar to many relational data base systems, all the meta
data for the purpose of system control and directory are also stored as
relations in the system. In summary, the system architecture resembles
a conventional computer system. The unique aspect of the system is the
use of a data base operating system and the implementation of special
processors for performing selection and joining. In the following sec-—
tions, 'we will further describe the design of these special processors.

3. The Design of a Data Filter

The function of the data filter is to perform selection and projec-
tion operations. The data filter always performs the processes on a
single relation. An instruction to the data filter always specifies a
one-variable query in disjunctive (or conjunctive) normal form. The sym-
bolic reference to relation names and attribute names are mapped to phy-
sical addresses by the DBM using an internal schema. The internal sche-
mas are stored in special relations maintained by the data filter.
Indices are used to quickly reduce the scope of search. Given a query,
the existence and utilization of indices are determined by the data
filter. Once the physical location for data access is determined, the
data filtering process begins. The data stream retrieved from the disk
is examined by the data filter for satisfying one query. If a match is
found, attributes in the tuple are then projected to form the query
result.

The central component of the data filter is a m*n processor array
as shown in Figure 4. Each row of the array is connected by an AND/OR
network. The result of all the rows are then evaluated by another
OR/AND network. Each processor unit performs a simple comparison
between an input attribute and a query value. It is easy to see that
this processor array evaluates a disjunctive (conjunctive) normal form
query depending upon the selection of the AND/OR operations.

The processor array has two input data streams: one comes from the
query and the other comes from the stored relation. Before the com-
parison can take place, the input data streams are loaded into each pro-
cessor rows in parallel and within each row of processors the data are
propagated in a pipeline fashion. If we assign each row of the proces-
sor array to a conjunct (disjunct) then the input data can be loaded to
all the rows in parallel. Similarly, if we reserve one processor for
each term within a conjunct (disjunct) then the query values could be
loaded to the comparators in parallel. In the case when there 1is not
sufficient processors to handle a query, multi-pass operation that seri-
ally loads and compares the query values with the data stream must be
performed. That is, there are two ways to load the query values [Figure
5]: a) serial query loading. Only one single processor 1is required.
For each input data value, the processor compares each query value in
turn. The results are accumulated in the AND/OR network, and b) paral-
lel query value loading. In order to load all the query values into the
processors simultaneously, a large number of processors may be required
to handle arbitrarily complex queries.

55

The scheduling of the processors in a data filter must insure that
the loading of query wvalues 1is synchronous with the flow of data
streams. The constraint is that all the query values must be loaded and
compared before the next data value is loaded from the data stream. In
[STY81] this constraint was found to be tg > ty + tp, if the selection
is to be processed by a single processor. Where tO is the minimum time
required for input a byte from the data stream, ta is the time required
for 1loading a byte of query wvalue, and t, is the time required for
obtaining the comparison results of the processor. Assuming that it
takes two clock periods to load a query value and one clock period to
read the query result, the synchronization constraint becomes tg> 3 *

tc . This condition imposes a constraint on the lower bound of the DBM
sygtem clock frequency.

As an example, assume that the disk has a transfer rate of 2 mega-
byte per second (t8 = 0.5 pus). This implies that the system clock cycle

must be less than 16 ps, which corresponds to a frequency of 6.25 MHz.

4. The Join Processor Array

The join operation is the most complex relational operation,
because two relations to be joined must be accessed simultaneously and
iteratively. If the number of tuples in the two relations are m and n,
respectively, then the complexity of this operation is proportional to m
* n. If we divide the two relations into x and y subfiles, respec-
tively, and process all of the subfiles in parallel, as shown in Figure

6, then the complexity of the join operation can be reduced to.%;%-

In order to increase the processing speed of the Jjoin processor,
data are broadcasted to all the processors simultaneously. The join
processor array could be considered as an independent peripheral device
which could communicate with the system through a data bus. When a join
operation is initiated, the DBM controller transfers the initial parame-
ters to the join processor array, sends the selected values of both
relations into the buffer memories in the join processor array, and then
issues a start signal to activate it. The addresses of the matched
tuples will be returned to the system.

We must emphasize that before putting the join processor unit into
action, the two relations to be joined are taken from the result of
selection/projection and stored in buffers. Only the +values from the
specified domain (not the entire tuples) are stored in the internal
buffer memories of the join processor. These values are masked out and
stored into the internal buffers concurrently with the
selection/projection process. In this sense, the join processor is not
really an independent unit; there must exist some common control logic
which controls both the selection/projection unit and the join processor
unit.)

The architecture of the join processor array is shown in Figure 7.
The detail of 1its design is given in [TAY81A,TAY81B]. There are four
components of the system: the internal buffer storages for partitioned
key values from the relations R and S; the processors which compares the
key wvalues read from the buffer storages; the output buffer storages

56

which store the addresses (or pointers) of the matched records; and the
control/timing logic which issues the micro-operation control signals.
Each of the four components, except the control/timing logic, is in turn
composed of a set of identical cells. The highly regular structure
makes it a candidate for VLSI implementation.

Assume that the relations R and S are partitioned into x and vy
subrelations respectively, the selected values from the tuples of these
two relations are pre-stored in the buffer storages R, ., R, and

l1ge*sS respectively. To process the join operation, a set of x R-
values Are broadcasted to x rows of processors. At the same time, a set
of y S-values are broadcasted to y columns of processors, in which they
are compared with x R-values simultaneously. The comparison results are
stored as a bit-matrix for the controller to generated the partial join
results. The next comparison operation will not take place until the
contents of the bit-matrix are consumed. After all S-values in S.7g zre
broadcasted and compared, we then start to process the next set “of R-
values in R;“s in the same way. This continues until all R-values in
R;’s are processed.

5. VLSI Implementation Considerations

One of the most important problems in hardware implementation of
relational database operations 1is the high development cost caused by
the hardware complexity. Recent advances 1in VLSI technology have
removed many of the hardware design and implementation difficulties
[PAT80]. Using computer aided design tools, an enormous amount of logic
circuits can be integrated on a single silicon chip.

There are three major constraints that must be considered for VLSI
implementation:

1) the equivalent number of gates or transistors required must fit
the present state-of-the-art of VLSI technology;

2) the chip area occupied by the internal bussing and connections
must be confined to a reasonable percentage of the total chip area;

3) the input/output terminals, including both the data and the con-
trol signals, must not exceed the maximum allowable pins on the
package.

The regular structure of the processor arrays and the limited
input-output data lines makes them suitable for VLSI implementation.
The complexity of the processor can be evaluated by counting the number
of transistors required. The total number of transistors for a single
data filter processor is estimated to be approximately 13.2 K. In addi-
tion, 12.3 K transistors are required for the output buffer storage.
The estimation of the total transistors required for the data filter
depends upon the number of processors used in the processor array. If
we assume a 4 X 2 process array and a 10% overhead for control 1logic,
then the estimated number of transistors required by the data filter is
130 K [STY 81]. Suppose the data bus width is 8 bits, the address bus
width is 16 bits, and there is only one data input line from the disk to

57

the data filter. A 40-pin package should satisfy all the input-output
requirements.

The number of equivalent transistors contained in each functional
logic block of a two-dimensional join process array is evaluated and
listed in Table 1.

Table 1
Functional block | Number of equivalent

| transistors

|
comparator cell | 400
key-value memory block | 2216
out-put memory block | 4958
controller | 3654
auxiliary logic | 1306

Suppose we have a 16 x 16 processor array. The maximum number of key
values that could be processed in parallel is 4096 bytes. Each memory
block of the double output buffer has a capacity of 17 * 8 = 136 16-bit
words. We could evaluate the approximate number of transistors required
for each functional block as listed in Table 2. The total number of
transistors required is approximately 260K.

Table 2

Functional Number of Estimated number of

block basic cells transistors required
Processor matrix 256 102400
Internal key-
value buffers 32 70912
Output buffer 16 79328
Control logic 3 8614
Total 261254

An alternative way to implement the two-dimensional join processor
array, 1is to integrate each row of the array into a single chip. The
design has a fewer number of transistors per chip, but is more flexible
in structuring a join processor array. Figure 8 shows a block diagram
of such organization. In this example, only one R-value storage module
and one output buffer module are needed. The number of processor cells
is also greatly reduced.

58

6. Summary

We have briefly described the architecture for DBM. The system has
an architecture similar to conventional computers. Its unique feature
is the addition of a few special processors to perform critical data
base operations. The system architecture is also based on system com-
ponents of software database systems. A small-scale prototype system is
presently being developed. We have adopted many algorithms developed in
other relational data base systems. The first implementation will also
include a small-scale processor array for selection and joining. We
plan to further study the performance of the prototype system. Investi-
gation of the implementation of the special processors in VLSI devices
will also be undertaken.

REFERENCES

[AST76]Astrahan,M.M.,et. al,(l4 authors), "System R: A Relational
Approach to Data Base Management,'", ACM Trans. on Database Systems,
Vol. 1, No.2, June 1976.

[BAB79]Babb,E., "Implementing a Relational Database by means of Special~
ized Hardware", ACM TODS, Vol. 4, No. 1, Mar. 79, pp 1-29.

[BAN78]Banerjee,J. and Hsiao,D.K., "Concepts and Capabilities of a Data-
base Computer", ACM Trans. on Database Sys., Vol.3, No.4, Dec,
1978.

[CAB74]Chamberlain,D.D. and R.F.Boyce, '"SEQUEL: A Structured English
Query Language", Proceedings, 1974 ACM SIGFIDET Workshop, Ann
Arbor, Michigan, May 1974.

[DEW79]DeWitt,D.J., "DIRECT - A Multiprocessor Organization for support-
ing Relational Data Bases Management Systems", IEEE Trans. on Com-
puters, Vol. C-28, No. 6, June 1979.

[(DEW81]DeWitt ,D.J. and Madison,WI., "A Performance Evaluation of Data-
base Machine Architectures'", 7-th International Conference on VLDB,
Cannes, France, Sept. 9-11,1981.

59

(EAH80]Epstein,R. and Hawthorn,P., '"Design Decisions for the Intelligent
Database Machine'", NCC, 1980.

[EPS80)Epstein,R. and Hawthorn,P., "Aid in the “80s", Datamation, 1980.

[GRA78]1Gray,J., '"Notes on Data Base Operating Systems'", IBM Research
Report RJ2198, Feb. 1978, San Jose, California 95193.

[KUN80)Kung,H.T., and Lehman,P.L., "Systolic (VLSI) Arrays for Rela-
‘tional Database Operations'", ACM SIGMOD, 1980.

[LSZ78]Leilish,H.0., Stiege,G., Zeidler,H.Ch., "A Search Processor for
Database Management Systems', IEEE, 1978.

[(MAL79]V.A.J.Maller, "The Content Addressable File Store -~ CAFS", ICL
Tech J. Nov. 1979, 265-279.

[MEN81]M.J. Menon, and David K. Hsiao, "Design and Analysis of a Rela-
tional Join Operation for VLSI," Report, Dept. of Computer and
Information Science, The Ohio State University, February, 1981.

(PAD79]Piavsic,V.M. and Danielsson,P.E., "Sequential Evaluation of
Boolean Functions", IEEE Trans. on Computers, Vol. C-28, No. 12,
Dec. 1979.

[PAT80]Patterson, David A., and Sequin, Carlo H., “"Design Considerations
for Single-Chip Computers of the future", IEEE Trans. on Computers,
Vol. C-29, NO. 2, Feb. 1980.

(sTY811Sheng,Y.Z., Tong,F., Yao,S.B., '"Data Filter -- A Relational
Selection Processor", Tech. Report, Database Research Laboratory,
University of Maryland, College Park, MD 20742, October 1981.

[SWK76]M. Stonebaker, E. Wang, and P. Kreps, "The Design and Implementa-
tion of INGRES", ACM Trans. on Database Sys., Vol. 1, No. 3, Sep-
tember 1976.

[TAY81A]Tong,F. and Yao,S.B., "Design of a Two-Dimensional Join Proces-
sor Array", 6-th Workshop on Computer Architecture for Non-
Numerical Processing, Hyeres, France, June 1981.

[TAY81B]Tong, F., and Yao, S.B., '"Logical Organization of Two-
Dimensional Join Processor Matrix", Technical report, Database
Research Laboratory, Univ. of Maryland, College Park, MD 20742,
1981.

(WAY80)Wah,B.W. and Yao,S.B., "DIALOG---A Distributed Processor Organi-
zation for Database Machines'", AFIPS Press, Vol. 49, 1980.

(YAO79]Ya0,S.B. '"Optimization of Query Evaluation Algorithms", ACM
TODS, 4, 2 (June 1979).

60

19

USERS USERS USERS
ROOT
T T T T T T / \
l DOMAIN /\
ws ws WS ’////,// \\\\\\ ””/’,, \\\\\\
NETWORK DOMA\IN\ salary >\ /::\

. ” 1) name salary AVG dept CS

salary

DB DBM

Figure 1 DBM as a Node in a

Figure 3 Tree Representation of Query

Local Network
AND/OR ["
) s
oo | ——
e Pll-_» Plz—h' ————— —)-Pln
UNIBUS 0§
AND/OR AND
PR | T
' i —
i P) = m——— e—p
M cp DMA DF Jp 21 22 2n
AND/OR
DC
Lnput - ' Data oytput
Data SEream Pml#PmZ‘ - - gl Pmﬁw Buéfir & [——
ate
DB D Projection J

Flgure 2 The System Architecture of DBM

Specification

Tigure 4 The Selection Processor Array

29

|
= i e T
1 Dy 1) ! Fio/ ™™ -—— -~ Frw |
I 1y | 8,
1 | I Il Comy Cron :
H I IR I d ! :
single bit processof i | 1. : . |
Do sl . AN
Dy —— I 1:%:’\:’]:.__ SpTIIz #’: : v
i ¥ Lo i AT B | |
o l| Crar[] crte Cras-té 1
e _J { T |
(a) =z | R V1o :
Timing aud
Dy : c‘un’/L._,;: St .. Sk :
) T ___ 4
e
Figure 7 System Organization of the
Join Trocessor Array
D, _>
(b)
Figure 5 Serial and Paraliel Query
Value Loading
__—_:—_T_.'::—-’:::—_:T'___:.‘_‘::‘—‘——'j
LIy Parg - e e e e e . P T T . —1
" | |]‘W | o Fi |- Fy Fiy : 8 |L>
[} . s o0 .
Pard » : | : Cu F Cl_} C.} d ¢ |
2 291 P]
N B 1 o [e = s o S = T
‘ o SR S =
l e | P
| Ws |-]s| "|sh |
[l]
|] ' ']
e — __.[__—.‘:_: et e Ll <l R o S |
B 2 r;"_ $- VALUES
L 1 S Il
" h . Figure 8 One Row of the Join
’ Processor

Figure 6 The Join Processor Array

Well-Connected Relation Computer

Sudhir K. Aroraw
Surya R. Dumpala¥#*

Abstract

Well Connected Relation Computer (WCRC) is a data base machine architecture
which is intended to support different data models simultaneously on the same
physical data. The computer stores data as binary partitions (PCP's), supports a
conceptual level in the Entity-Relationship model and provides the user the
flexibility of operating in the relational, the network or the hierarchical mod-
el. This is one approach to implementing the ANSI SPARC proposals for a data
base system.

I Introduction

Several data base machine architectures have been studied in the literature -
CASSM [COPE 73], RAP [OZKA 75], DIRECT [DEWI 78], RARES [LIN 76], DBC [BANE 79],
RELACS [OLIV 79], SEARCH PROCESSOR [LEIL 78], XDMS [CANA 74], IFAM [DEFI 73]
etc.. Some of these machines address only specific operations on a data base;
some implement only one of the three major data models - Relational, Network or
Hierarchical; some implement all three data models but not simultaneously on the
same physical data.

There is a need for a data base machine architecture which can support different
data models simultaneously on the same physical data. In such a machine users
should be able to view the data according to the relational, network or hierar-
chical data model. This is called "logical data independence". Further, changes
to the physical data should have minimal effect on the user's view of the system
- "physical data independence". Such an architecture would conform to the
ANSI/X3/SPARC [ANSI 75] proposals or the coexistence model [NIJS 76] which
envisage three levels for a data base system - external, conceptual and
internal. At the external level the system should support different data models
depending on user needs. At the conceptual level a stable common view of data
and its semantics must reside. The physical data is stored at the internal level
and may be altered to take advantage of evolving technologies.

To the best of our knowledge there are only two projects addressing this problem
-- GDBMS and WCRC [DOGA 80, AROR 81]. In this paper we present an overview of
WCRC.

Note: This research was supported by a Science and Engineering Research Board
grant number 214-7248.
* Department of Computer Science, Wayne State University, Detroit, Michigan.

Department of Electrical and Computer Engineering, McMaster University,
Hamilton L8S 4L7, Canada

alaate
ity

63

IT Background

The theory of Well Connected Relations (WCR's) has been presented in [AROR 79].

For this paper, it is sufficient for the reader to know only a few definitions
given below.

A well connected relation (WCR) is a binary relation W on two sets A and B such
that

(Va) (a £ A) (Vb) (b £ B) (aWb)
The sets A and B are called the first and the second constituents of the WCR.
An elementary well connected relation (EWCR) is a WCR in which the first con-

stituent has a single element. The second constituent is then called the
image set of the first constituent.

A relation R[A,B] can be expressed as

n
R{A,B] = £ R [A;,B.]

i=1

=R [A,B,1UR,[A,,B,]U... UR [A ,B]

=1(R) =a partition of R

where Ri[Ai,Bi] N Rj[Aj’Bj] = ¢

n n
fori#j,1<i, j<nandA={) A andB=|) B,
i=1 i=1
A partition, wi, of a binary relation R[A,B] is a canonical partition
if
n
R{A,B] = I wi[Ai;Bi]
i=1

where, 1) Wi[Ai;Bi] is a WCR for 1 < i < n,
ii) Ai is a set with a single element for 1 < i < n, and

iii) A, # Aj for i # j and 1 < i, j < n.

64

A partition of a binary relation R[A,B] is a pseudo canonical partition (PCP)
if

n
R[A,B] = I W [A B]

i=1

where, 1) Wi[Ai;Bi] is a WCR for 1 £ i < n, and
ii) Ai is a set with a single element for 1 £ i < n.

Later in this paper we use PCP's for storing data in WCRC. In [AROR 80] we have
proposed a language based on WCR's for data base systems. The language is data
model independent and can apply equally well to the network, relational and
hierarchical data models. The need for data model independent languages has
become apparent in recent years. They can be used for the conceptual level of an
ANSI SPARC architecture, for communication in a distributed data base system,
for data base restructuring and so on. Data model independent languages reported
in the literature include FQL [BUNE 79], QUEST [HOUS 79], LSL [TSIC 76] and WCRL
[AROR 80].

IIT Basic Organization

WCRC (Well Connected Relational Computer) is a data base computer intended for
non-numeric processing. As shown in Fig. 1, the system consists of three major
components corresponding to the three levels: the External Processor, the Con-
ceptual Processor and the Internal Processor.

The External Processor performs the following main functions:

i) Queueing of jobs (or queries)

ii) Priority encoding of queries

iii) Translating queries from a user language into a conceptual
level language (WCRL)

iv) Security checking to protect the data base from unauthorized
operations.

It has three memory areas: The User Work Space (UWS), the Interface Buffer Area
(IBA) and The Processor Memory Area (PMA). A portion of UWS is allotted to each
user as his work space. In this area, the user can define his own view, a part of
the data base as seen by him and specify the constraints on it such as granting
other users to use this view or some additional integrity constraints.

The IBA is organized as a first-in first-out (FIFO) memory where the queries are
stored after they are translated from user languages into the conceptual level
language. The translation is handled by three translators, corresponding to the
three data models, which are stored as software modules in the processor memory.
The jobs may also be ranked on a preassigned job priority encoding scheme.

The external level may be implemented on a host computer by software. This would
involve developing program packages in the host language such as COBOL or PASCAL

65

to handle the translation as well as other housekeeping activities.

The conceptual level supports the conceptual model and the user subschemas in
the three major data models. The conceptual level model is based on the
Entity-Relationship model [CHEN 76]. The language at the conceptual schema is
the WCRL [AROR 80]. The conceptual level has the facilities for query optimiza-
tion and translation from WCRL into the machine language (WCRML) and a data
dictionary. In addition, it also provides facilities for Data Base Administrator
(DBA) to act directly on the conceptual model of the data base. A special high
level language (DBAL) is provided to handle the DBA requirements.

The conceptual level consists of eight functional blocks (Fig. 1): The Control-
ler, The Query Analyser (QA), The Query Translator (QT), Three User Schema
Descriptors (USD's), Conceptual Schema Descriptor (CSD) and the Buffer Memory
(BM). The Conceptual Processor maintains the information about the storage
structure at the internal level as well as about the conceptual model. The Query
Analyser breaks up the queries into subqueries on the storage structure at the
internal level. The CSD contains the information about the schema definition
operations on the schema, the constraints and the data dictionary. It describes
the logical units of data in the data base and specifies the integrity con-
straints and security measures such as access restrictions to tertain units of
data. The description of a view by an application is called a subschema. It is a
logical subset of a schema. The USD's at the conceptual level contain the
subschema definition, operations and constraints corresponding to views in
three models. The information in CSD and USD's is used by the QA during query
analysis. The QT performs the task of tramslating analysed queries in WCRL into
machine level primitives (WCRML) that can be directly executed by the Internal
Processor and stores them in the Buffer Memory.

The internal level consists of a number of Query Processors (QP's) and an array
of Cell Processors (CP's). Each QP is a master processor which is responsible
for executing one query in WCRML using the cells. The cells are logic-per-track
devices. The data is stored on the cell tracks as binary partitions, known as
pseudo-canonical partitions (PCP's). The PCP's are partitioned binary
relations. All the cells are independent of each other, i.e., there is no direct
communication among them. They can only communicate through the query processor
which controls them. The data on the cells can be read by any number of QP's but
only one QP can write onto the track at a time. The QP selects the cells required
by the query it is handling and makes them slaves. They are released once the
query is processed. The QP co-ordinates its slaves and also computes the overall
set results. Several queries can be handled at the same time, since the QP's can
work in parallel. This is a multiple-instruction/multiple-data stream organiza-
tion (MIMD).

IV Query Processing

In this section, an overview of how a query is processed at three levels is dis-
cussed. These various stages of query processing are illustrated in Fig. 2. The
queries originate at the user end in three languages corresponding to three dif-
ferent models. These are translated into WCRL, priority encoded and put in a
queue in the IBA by External Processor. The system also supports the DBA who
works on the conceptual level directly but reaches it through the external level
like any other user. Therefore, some queries may be originated by the DBA.

66

Once a query is received by the External Processor, it is checked for syntax ana
violation of any security or integrity constraints. After it successfully goes
through these stages, it is translated and put on the job queue. Then the Con-
ceptual Processor is activated. It takes one query at a time from the IBA and
performs query analysis on it. It breaks up the query on logical well-connected
relations (WCR's) into subqueries on the stored PCP's. It checks whether logical
WCR's can be constructed from the stored ones and also subjects them to the
security and intergrity constraints. Any violation of these constraints would
terminate the query at this stage and an error message would be channeled to the
user through the external level. Successful queries would now be translated by
the Query Translator into WCRML and submitted to the internal level through the
Buffer Memory. The query translator also provides the information about the
required cells along with the machine primitives. This minimizes the search time
required to select the cells. The QP's take the queries from the Buffer Memory
and select the required tracks by a polling scheme. The machine language primi-
tives are executed on the slave processors. For the retrieval queries, the data
is sent to the external level directly through an I/0 read mechanism. For the
update queries, the success/failure is communicated to the user.

V The Strorage Structures

The data is stored on the cell tracks as PCP's. Since in a canonical partition
the WCR's may be of arbitrarily large size (number of tuples), it cannot be
implemented directly as a storage structure. Instead, two types of physical
storage structures are proposed in this section for the storage of data on cell
tracks: PCP-Option I, and PCP-Option II.

PCP - Option I

A partition of a binary relation R[A,B,] is a pseudo canonical partition -
Option I, if

n
R[A,B] = £ W [A;B,]
i=1

where

i) W.[A, B,] is a WCR for 1 < i < n,
itipi -7 -

ii) Ai is a set with a single element for 1 < i < n, and
iii) Ai or Bi values are ordered.

It may be noted that, elements of Ai may be repeated in several WCR's, unlike the

CP's. In such a PCP all WCR's can be made equal in size by breaking the larger
WCR's into several smaller ones. The size of each of these PCP's can be stand-
ardized at the system level or cell level. With the WCR size fixed, each of them
can be assigned a "fixed" position on the track. This reduces movement of data
and eliminates the need for garbage collection. The track format for this data
structure is shown in Fig. 3. The track is divided into two halves. Each half

67

contains one constituent of a PCP. Logically, any one of the two constituents of
a PCP may be made the first constituent. This gives rise to two possible PCP's
for the same binary data, one forward PCP and one reverse PCP. A header is pro-
vided at the beginning of each half for this purpose. The header contains the
number of WCR's in that half, the attribute name(s) of that constituent and some
flags, common to all the WCR's in that half. Each standard sized WCR consists of
a set of mark bits, an address field containing a value of the first constituent
and a fixed number of pointers. The pointers contain addresses of the values in
the second constituent of the WCR in the other half of the track. Thus, all
pointers in one half of the track point to addresses in the other half of the
same track and excessive pointer chasing is avoided. An example of a binary
relation stored as a PCP on a track is shown in Fig. 4.

This storage structure has the following advantages. The pointers in each half
of a track are always forward pointing. Therefore, there is no backward refer-
encing and the hardware implementation would be simpler. The data is organized
in such a way that queries based on both the forward and the reverse PCP's can be
answered with equal ease. It also avoids duplication of data values. However, if
a PCP overflows one track, it may give rise to duplication of some values on
these cell boundaries. If the WCR size on a track is chosen in such a way that
the "average' WCR size in the PCP is an integral multiple of this, the extra
storage for the duplicate values and the pointers may be minimized. Also, if we
use a counter to locate the WCR's (standard sized) on the track, there is no need
to store the WCR address with each WCR.

PCP - Option II

Though use of pointers in the PCP - option I provides an efficient utilization
of memory space, the pointer chasing would increase either the complexity of
hardware or computation time to perform operations like join which require data
contiguity. In view of this, another storage structure is presented here, which
involves no pointers.

This second type of storage sturcture exploits an inherent characteristic of
the E-R model. In all the CP's corresponding to entities and relationships, the
first constituent is always a key or a system-defined key. Therefore, a CP would
always be a set of EWCR's, where each non key value may be connected to several
key values, but not the other way around. Such a CP may be viewed as a set of
disjoint EWCR's. It is formally defined as follows. It is different from a PCP -
Option I in that the elements of the constituents are not ordered.

A partition of a binary relation R[A,B] is a pseudo canonical partition - Option
II if

n
R[A,B] = I W_[A;B,]
i=1

where

i) W.[A,;B.] is a WCR for 1 £ i £ n,
ititd
ii) Ai is a set with a single element for 1 < i <n

68

iii) The elements of A and B are unordered.

In option II, the EWCR's may be of arbitrarily large size by breaking the larger
EWCR's into several smaller ones. Now, the hardware size of each EWCR can be
standardized in a manner similar to the PCP's of Option I. The track format of
this storage structure is shown in Fig. 5. The track is continuous and undi-
vided, unlike the Option I format. The header of the track contains the informa-
tion about the track address, size of the EWCR's in the track and some flags
common to the whole track. It also contains the attribute names of the first and
second constituents. Each EWCR consists of several mark bits, a first constitu-
ent value field and certain number of second constituent value fields. The num-
ber of second constituent value fields (key values) per EWCR is standardized at
the system level or track level. This makes the size of the EWCR fixed and it is
specified in the track hLeader. A limit is placed on this size to facilitate
hardware implementation. Thus the EWCR size may be variable within this hardware
limit. An example of a binary canonical partition stored as PCP's of Option II
on a track is shown in Fig. 6.

This storage structure offers the following advantages. There is no duplication
of value fields as long as the EWCR size is not greater than the hardware limit.
There are no pointers and hence storage requirements for pointers and pointer
chasing are avoided. Also it is possible to view the PCP's as both forward and
reverse PCP's for the same stored binary data because the second constituent
values are key values and are never duplicated.

VI Concluding Remarks

In this paper we have described the Well Connected Relation Computer (WCRC)
[AROR 81]. WCRC implements the ANSI/X3/SPARC proposals or the coexistence model
of data. The architecture of WCRC is based on a simple data structure, WCR which
has been studied in detail elsewhere [AROR 79]. The architecture has 3 levels -
external, conceptual and internal. It can simultaneously support the 3 major
data models - network, relational and hierarchical at the external level. At the
conceptual level a stable view of the data base can be implemented in the Entity
Relationship model. A data model independent language based on WCR's (WCRL [AROR
80]) is used at the conceptual level. At the internal level the physical data is
stored in logic-per-track pseudo associative memory. The approach taken by other
researchers in this area has been to store related data contiguously as n-ary
relations (for example). We depart from this approach radically. We store data

as partitions of binary relations - Pseudo Canonical Partitions (PCP's). Two
possible storage structures for PCP's - Option I and Option II - have been
described.

69

REFERENCES

[ANSI 75]

ANSI/X3/SPARC study Group on Data Base Management Systems, Interim Report, FDT,
ACM-SIGMOD, Vol. 7, No. 2, 1975.

[AROR 79]

Arora, S.K., Smith, K.C., "A Theory of Well-Connected Relations", J. of Informa-
tion Sciences, 19, 1979, pp. 97-134.

[AROR 80]
Arora, S.K., Smith, K.C., "WRCL: A Data Model Independent Language for Data Base
Systems", To appera, Int. J. of Comp. and Inf. Sciences, 1980.

[AROR §1] o

Arora, S.K., Dumpala, S.R., Smith, K.C., "WCRC: An ANSI SPARC Machine Architec-
ture for Data Base Management", To appear, Proc. Eighth International Symp.
on Comp. Arch., Minneapolis, May 1981.

[BANE 79]
Banerjee, J., Hsiao, D.K., Kannan, K., "DBC - A Database Computér for Very Large

Databases', IEEE Trans. on Computers, Vol. C-28, No. 6, June 1979, pp.
414-429,

[BUNE 79]
Buneman, P., Frankel, R.E., "FQL - A Functional Query Language'", ACM-SIGMOD,
Boston, 1979, pp. 52-58.

[CANA 74

Canaday, R.H. et al., "A Back-End Computer for Data Base Management', CACM 17,
10, Oct. 1974, pp. 575-582.

[CHEN 76]
Chen, P.P.S., "Entity Relationship Model - Towards a Unified View of Data:, ACM
Trans. on Database Systems, March, 1976, Vol. 1, No. 1, pp. 9-36.

[COPE 73]

Copeland, G.P., Lipovski, G.J., Su, S.Y.W., "The Architecture of CASSM: A Cellu-
lar System for Non-numeric Processing', First Annual Symposium on Computer
Architecture, 1973.

[DEFI 73]

DeFiore, C.R., Berra, P.B., "A Data Management System Utilizing an Associative
Memory", Proc. ACM National Computer Conf., 1973, pp. 181-185.

[DEWI 78] _
DeWitt, D.F., "DIRECT - A Multiprocessor Organization for Supporting Relational

Data Base Management Systems", Proc. Fifth Annual Symp. on Comp. Architec-
ture, 1978, pp. 182-189.

[DOGA 80]
Dogac, A., Ozkarahan, E.A., "A Generalized DBMS Implementation on a Database
Machine", ACM SIGMOD, Santa Monica, California, May 1980, pp. 133-143.

70

[HOUS 79]

Housel, B.C., "QUEST: A High Level Data Manipulation Language for Network,
Hierarchical and Relational Databases', IBM Res. Rep., RJ2588(33488)
7/25/79, 1979.

[LEIL 78] :

Leilich, H.0., Stiege, G., Zeidler, H. Ch., "A Search Processor for Data Base
Management Systems', Proc. Fourth VLDB, West Berlin, Sept. 1978, pp.
280-287.

[LIN 76]

Lin, C.S., Smith D.C.P., Smith, J.M.. "The Design of a Rotating Associative Mem-
ory for Relational Data Base Applications', ACM TODS, Vol. 1, Mar. 76, pp.
53-65.

[NIJS 76]

Nijssen, G.M., "A Gross Architecture for the Next Generation Database Management
Systems', Modelling in Data Base Management Systems, North-Holland, 1976,
pp. 1-24.

[OLIV 79]

Oliver, E.J., "RELACS, An Associative Computer Architecture to Support a Rela-
tional Data Model", Ph.D. Thesis, Syracuse University, 1979.

[OZKA 75]
Ozkarahan, E.A., Schuster, S.A., Smith, K.C., "RAP - An Associative Processor
for Data Base Management", National Computer Conf., 1975, pp. 379-387.

[TSIC 76]

Tsichritzis, D., "LSL: A Link and Selector Language", ACM-SIGMOD, Washington,
D.C., June 1976, pp. 123-134.

71

@
@
~®

we—aiser SOrk area

EXTERANAL Processor Usmory
_ e Trooslators
LEVEL dres (PMA)
¥
1BaA

DBA facility
CONCEPTUAL oL
Te— operatinas oa C.S.
LEVEL coastraiate
user facilaity
DL
(Sub Scoema
Defiattion),
Operations &
Coastraiots
INTERNAL !
LEVEL Py __JI- Query rocessor
| = r“"—1’ _"'Lun NMemory
i I
SiAd wl cell Processor
.....
34 1 SvERALL ARCHITECTURE OF WC°C
Standard sized WCR's
for Raverse PCP
Header HBeader
Standord sized WCR's (a) TRACK
for forward PCP
L [[J Jow=
Tracx Flags First Constituent
Address Attribute Names

L 1T T [JTT Tlom

WYCR Mark Yalua " Fixeq Nunber of Poioters
address Bits Fleld
FIg., 3 TRACK FORMAT

72

r Query in
At
External Syutax checking
Level
Securi:y checking
L Translation inco WCRL
{- Security checking
Integricy checking
At
Conceptual
Lavel
Query Analysis, optimizacion
Concurrency Resclviag
L raaslacion imto WCRMIL
r Execurion
At
Incernal
Level Retriaval/Reporting
Fig. 2 The Stages of Query Procassing
% by
3 by
2 b3
) b,
2z 5
23 by
ay b2
(2) Binary Relation
e A SO N T - 0
B L) (a2, 08)
3 L) @y a2, e
{(b) One half of track
(1) (.,) By, 2, 3)
(2 ., s) (by) (i, 2, 3
() (L) by ,8,8)
(c) Other half of track
FIG. 4 PCP's on a Track - Cption

rig. 5 Track Format of PCP - Opriom II

Non xnz Field laz Fileld
N b,
Ead of ‘l bz
Track
Symbol 2 b
2 b,
Track a,
Headar 2 bg
a, by
‘IIIII|||| ay b,

(a) A Binary Relation

DG wp b,

L “ ﬂ ” ” —] Do) @ G, by by

Track Size of Flags Pirsc Secznd
Address EWCR Cousticuear Conscituent
Attribute Attribuce N L) (ap by, b,)
Nanmas Names
Mark bits
(&) Hesdac (b} The PCP’s on Track’

Fig. & PCP's on a Track - Option II

L] L1 T

Mark Nonkey Key Value
Bits Value Fleld <y
Fields
(First (Second
Conscituenc) Constizuent)
(e TUER

(a) A Typical Segment in the Daca Base

&y A,,[] Xy 8y 3 Ca: ¢ g
(b) The 2cp's

rFig. 7 An Example Showing PCP's Corresponding to an E-a
Schena

Recent & Upcoming ‘
Selections from the \X-

COMPUTER SOCIETY PRESS

1109 SPRING STREET. suite 201/ PO.BOX 639 / SILVER SPRING, MARYLAND 20901 (301)589-3386

Alphabetical by Title/Subject Areas October 1981

R
ORDER PRICES AVAIL TITLES YEAR CODE PAGES 1IEEE NO
NO NM/M PUBL
301 10.00/ 7.50 OK PROC., APPLICATION OF PERSONAL COMPUTING TO AID THE HANDICAPPED WKSHP. 1980 P 88 80CH1596-6
393 11/81 PROC., ARTS; SYMPOSIUM ON USING SMALL COMPUTERS IN THE 1981 p 81CH1721-0
165 25.00/18.75 OK PROC., CIRCUITS, SYSTEMS, & COMPUTERS (11TH ASILOMAR CONF.) 1977 P 492 77CH1315-1
197 25.00/18.75 OK PROC., CIRCUITS, SYSTEMS, & COMPUTERS (12TH ASILOMAR CONF.) 1978 P 764 78CH1369-8
227 25.00/18.75 OK PROC., CIRCUITS, SYSTEMS, & COMPUTERS (13TH ASILOMAR CONF.) 1979 P 615 79CH1468-8
328 30.00/22.50 OK PROC., CIRCUITS, SYSTEMS, & COMPUTERS (14TH ASILOMAR CONF.) 1980 P 520 80CH1625-3
383 02/82 PROC., CIRCUITS, SYSTEMS, & COMPUTERS (15TH ASILOMAR CONF,) 1981 P
077 7000071300 Ok Bhoc.. compeon 174 (earn)". 1974 B 275 74cHo8Ee-d
. . .r -
ggg gg.gg;ig.gg OK PROC., COMPCON '74 (SPRING) 1974 P 310 74%30822—0
. . OK PROC., COMPCON '75 (FALL) 1975 P 341 75CH0988-6
oo Boroonsin S RS GG 1T N e § IR s
. . .t 76 P 50 76CH1115-5
125 20.00/15:00 Ok ° Bhoc.. GoMbon 17 \omea)") 1977 5 474 TycEisse-
. . .r F. 1977 P 474 -
133 20.00/15.00 OK PROC., COMPCON '77 (SPRING) 1977 p 372 ;;ggifgg—g
169 25.00/18.75 M/F O PROC., COMPCON '78 (FALL) 1978 P 433 78CH1388-8
%;f %g.gg;ig.gg gg PROC., COMPCON '78 (SPRING) 1978 P 384 78CH1328-4
. . PROC., COMPCON '79 (FALL) 1979 P 492 79CH1465-1
303 30.00/32.30 OK bhoc.. coMBooN 'a0 \eatny) 1980 b 750 B0CHI393-2
. . .r 1980 P 750 80CH1598-2
372 23.00/10075 ok BRoc.. ombcon 'oy \eai)"! 1961 b 358 8lCH1703-0
. . .r F 1981 P 358 81CH1702-0
341 30.00/22.50 OK PROC., COMPCON '81 (SPRING) 1981 P 482 B81CH1626-1
123 25,00/18.75 OK PROC., COMPSAC '77 (1ST CONF. ON SOFTWARE APPLICATIONS) 1977 P 834 77CB1291-4
196 30.00/22.50 OK PROC., COMPSAC '78 (2ND CONF. ON SOFTWARE APPLICATIONS) 1978 P 832 78CH1338-3
236 36.00/27.00 OK PROC., COMPSAC '79 (3RD CONF. ON SOFTWARE APPLICATIONS) 1979 P 912 79CH1515-6
315 36.00/27.00 OK PROC., COMPSAC '80 (4TH CONF. ON SOFTWARE APPLICATIONS) 1980 P 900 BOCH1607-1
379 36.00/27.00 12/81 PROC., COMPSAC '81 (5TH CONF. ON SOFTWARE APPLICATIONS) 1981 P 446 81CH1698-0
128 25.00/18.75 OK PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (1ST CONF.) 1977 P 373 77CH1270-8
198 25.00/18.75 OK PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (2ND CONF.) 1978 P 667 78CH1413-4
223 36.00/27.00 OK PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (3RD CONF.) 1979 P 900 79CH1480-3
326 68.00/51.00 M/F O PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (4TH CONF.) 1980 P 2080 B80CH1570-1
377 60.00/45.00 11/81 PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (STH CONF.) 1981 P 1164 B81CH1696-4
271 28.00/21.00 OK PROC., COMPUTER APPLICATIONS IN RADIOLOGY (6TH CONF.) 1979 P 432 79CH1404-3
096 20.00/15.00 OK PROC., COMPUTER ARCHITECTURE (2ND CONF.) 1975 P 231 75CH0916-7
099 20.00/15.00 OK PROC., COMPUTER ARCHITECTURE (3RD CONF.) 1976 P 202 76CH1043-5
146 20.00/15.00 OK PROC., COMPUTER ARCHITECTURE (4TH CONF.) 1977 P 210 77CH1182-5
174 20.00/15.00 OK PROC., COMPUTER ARCHITECTURE (5TH CONF.) 1978 P 256 78CH1284-9
237 22.00/16.50 OK PROC., COMPUTER ARCHITECTURE (6TH SYMPOSIUM) 1979 P 243 79CH1394-6
291 25,00/18.75 OK PROC., COMPUTER ARCHITECTURE (7TH SYMPOSIUM) 1980 P 315 80CH1494-4
346 28.00/21.00 OK PROC., COMPUTER ARCHITECTURE (8TH SYMP.) 1981 P 518 81CH1593-3
218 10.50/ 8.50 OK PROC., COMPUTER ARCHITECTURE FOR NON-NUMERIC PROCESSING (4TH CONF.) 1978 P 133
378 25.00/18.75 11/81 PROC., COMPUTER ARCHITECTURE FOR PATTERN ANALYSIS WORKSHOP 1981 P 348 B81CH1697-2
017 20.00/15.00 OK PROC.,, COMPUTER ARITHMETIC (3RD SYMP.) 1975 P 256 75CH1017-3
176 22.00/16.50 OK PROC., COMPUTER ARITHMETIC (4TH SYMP.) 1978 P 274 78CH1412-6
347 22,00/16.50 OK PROC., COMPUTER ARITHMETIC (STH SYMP.) 1981 P 278 81CH1630-3
364 30.00/22.50 OK PROC., COMPUTER GRAPHICS ASSN; INAUGURAL CONFERENCE 1980 P 324
387 36.00/25.00 OK PROC., COMPUTER GRAPHICS ASSOCIATION (2ND CONF.) 1981 P
005 16.00/12.00 M/F O PROC,, COMPUTER HARDWARE DESCRIPTION LANGUAGES 1975 P 191 75CH1010-8
274 20,00/15.00 OK PROC., COMPUTER HARDWARE DESCRIPTION LANGUAGES (4TH SYMP.) 1979 P 200 79CH1436-5
038 12,00/ 9.00 OK PROC., COMPUTER NETWORKING SYMPOSIUM (1977 CONF.) 1977 P 130 77CH1252-6
216 14.00/10,50 OK PROC., COMPUTER NETWORKING SYMPOSIUM (1978 CONF,) 1978 P 137 78CH1400-1
278 16.00/12.00 OK PROC., COMPUTER NETWORKING SYMPOSIUM (1979 CONF.) 1979 P 180 79CH1467-0
330 16.00/12.00 OK PROC., COMPUTER NETWORKING SYMPOSIUM (1980 CONF.) 1980 P 192 80CH1586-7
380 12/81 PROC,, COMPUTER NETWORKING SYMPOSIUM (1981 CONF,) 1981 P 81CH1699-8
137 16.00/12.00 OK PROC., COMPUTER SCIENCE & ENGINEERING CURRICULA WORKSHOP 1977 P 149 EBO126-3
145 32.00/25.60 OK PROC., COMPUTER SOFTWARE ENGINEERING: RELIABILITY, MGT. & DESIGN SYMP. 1976 P 583 76CH1071-0
113 12.00/ 9.00 M/F O PROC., COMPUTER SOPTWARE RELIABILITY SYMPOSIUM 1973 P 167 73CH0741-9
082 12.00/ 9.00 OK PROC., COMPUTER-AIDED DIAGNOSIS OF MEDICAL IMAGES (1976 SYMP,) 1976 P 100 76CB1170-0
155 12.00/ 9.00 OK PROC., COMPUTER-AIDED SEISMIC ANALYSIS AND DISCRIMINATION (1977 CONF.) 1977 P 122 77CH1224-3
014 20.00/15.00 M/F O PROC., COMPUTERS IN CARDIOLOGY (1974 CONF.) 1974 P 235 74CH0879-7
015 20.00/15.00 M/F O PROC., COMPUTERS IN CARDIOLOGY (1975 CONF.) 1975 P 286 75CH1018-1
016 20.00/15.00 OK PROC., COMPUTERS IN CARDIOLOGY (1976 CONF.) 1976 P 458 76CH1160-1
193 25.00/18.75 OK PROC., COMPUTERS IN CARDIOLOGY (1977 CONF.) 1977 P 650 77CH1254-2
224 25,00/18.75 OK PROC., COMPUTERS IN CARDIOLOGY (1978 CONF.) 1978 P 436 78CH1391-2
235 30.00/22.50 OK PROC., COMPUTERS IN CARDIOLOGY (1979 CONF.) 1979 P 488 79CH1462-1
324 30.00/22.50 OK PROC., COMPUTERS IN CARDIOLOGY (1980 CONF.) 1980 P 450 B80CH1606-3
384 02/82 PROC., COMPUTERS IN CARDIOLOGY (1981 CONF.) 1981 P
285 20.00/15.00 OK PROC., COMPUTERS IN OPHTHALMOLOGY (1979 CONF.) 1979 P 272 79CH1517-2
203 20,00/15.00 M/F O PROC., CONFERENCE ON COMPUTING IN THE 1980'S (OREGON REPORT) 1978 P 266

74

ORDER

NO

049
027
031
230
374
034
024
025
154
178
240
302
361
136
270
344
329
040
042
156
180
239
336
350
011
132
205
251
323
376
200
091
081
083
183
247
179
292
160
214
276
320
382
093
094
095
122
256
306
359
290
192
246
296
343
061
280
162
298
360
106
110
111
053
204
248
327
373
279
135
182
115
153
177
238
295
348
163
088
084
100
185
319
107
116
108
175
234
317
354
079
120
184
232
352
085

124

PRICES
NM/M
20.00/15.00
20.00/15.00
20.00/15.00
20.00/15.00
25.00/18.75
12.50/10.00
20.00/15.00
20.00/15.00
25.00/18.75
25.00/18.75
25.00/18.75
44.00/33.00
44.00/33.00
12.00/ 9.00
25.00/18.75
36.00/27.00
20.00/15.00
20.00/15.00
20.00/15.00
20.00/15.00
25.00/18.75
22.00/16.50
25.00/18.75
25.00/18.75
20.00/15.00
20.00/15.00
22.00/16.50
22.00/16.50
30.00/22.50
30.00/22.50
25.00/18.75
25.00/18.75
25.00/18.75
25.00/18.75
40.00/30.00
48.00/36.00
25.00/18.75
16.00/12.00
16.00/12.00
16.00/12.00
16.00/12.00
20.00/15.00
16.00/12.00
25.00/18.75
25.00/18.75
25.00/18.75
25.00/18.75
25.00/18.75
30.00/22.50
12.00/ 9.00
16.,00/12.00
12.00/ 9.00
14.00/10.50
16.00/12.00
16.00/12.00
20.00/15.00
16.00/12.00
13.00/ 9.75
16.00/12.00
16.00/12.00
7.50/ 5.00
12.00/ 9.00
8.00/ 6.00
12.00/ 9.00
14.00/10.50
16.00/12.00
16.00/12.00
20.00/15.00
22.00/16.50
20.00/15.00
20.00/15.00
5.00/ 5.00
20.00/15.00
20.00/15.00
22.00/16.50
25.00/18.75
25.00/18.75
16.00/12.00
16.00/12.00
16.00/12.00
16.00/12.00
20.00/15.00
30.00/22.50
20.00/15.00
20.00/15.00
20.00/15.00
22.00/16.50
22.00/16.50
25.00/18.75
25.00/18.75
25.00/18.75
20,00/15.00
25.00/18.75
25.00/18.75
40.00/30.00
12,00/ 9.00
12.00/ 9.00

AVAIL

OK PROC. ,
M/F O PROC.,
OK PROC. ,
M/F O PROC.,
11/81 PROC.,
OK PROC. ,
OK PROC. ,
OK PROC.,
OK PROC.,
OK PROC.,
M/F O PROC.,
OK PROC. ,
OK PROC.,
OK PROC.,
M/F O PROC.,
OK PROC.,
OK PROC. ,
OK PROC.,
M/F O PROC.,
OK PROC. ,
OK PROC.,
OK PROC.,
OK PROC.,
OK PROC.,
OK PROC. ,
OK PROC.,
OK PROC. ,
OK PROC. ,
OK PROC. ,
11/81 PROC.,
OK PROC. ,
OK PROC. ,
OK PROC. ,
M/F O PROC.,
OK PROC.,
OK PROC. ,
OK PROC. ,
OK PROC. ,
OK PROC. ,
OK PROC. ,
M/F O PROC.,
OK PROC.,
11/81 PROC.,
OK PROC. ,
OK PROC.,
OK PROC.,
OK PROC.,
OK PROC. ,
OK PROC. ,
OK PROC. ,
OK PROC.,
OK PROC.,
OK PROC. ,
OK PROC.,
OK PROC.,
OK PROC.,
OK PROC. ,
OK PROC. ,
OK PROC.,
OK PROC.,
OK PROC.,
OK PROC. ,
OK PROC. ,
OK PROC.,
OK PROC. ,
OK PROC. ,
OK PROC.,
OK PROC. ,
OK PROC.,
OK PROC. ,
OK PROC.,
OK PROC. ,
OK PROC. ,
OK PROC. ,
OK PROC.,
OK PROC.,
OK PROC. ,
OK PROC.,
OK PROC.,
OK PROC.,
OK PROC.,
OK PROC.,
OK PROC.,
OK PROC. ,
OK PROC.,
OK PROC. ,
OK PROC. ,
OK PROC. ,
OK PROC.,
OK PROC.,
OK PROC. ,
OK PROC. ,
OK PROC. ,
M/F O PROC.,
OK PROC. ,
M/F O PROC.,
OK PROC.,

TITLES

DATA
DATA
DATA

COMMUNICATIONS
COMMUNICATIONS
COMMUNICATIONS
DATA COMMUNICATIONS
DATA COMMUNICATIONS
DESIGN AUTOMATION (
DESIGN AUTOMATION
DESIGN AUTOMATION
DESIGN AUTOMATION
DESIGN AUTOMATION
DESIGN AUTOMATION
DESIGN AUTOMATION
DESIGN AUTOMATION
DESIGN AUTOMATION
DISTRIBUTED COMPUTING (1ST CONF
DISTRIBUTED COMPUTING SYSTEMS (

SYMPOSIUM (
SYMPOSIUM (
SYMPOSIUM (
SYMPOSIUM (
SYMPOSIUM (
9TH CONF.)
(11TH CONF.)
(13TH CONF.)
(14TH CONF.)
(15TH CONF.)
(16TH CONF.)
(17TH CONF.)
(18TH CONF.)

3RD
4TH
5TH
6TH
7TH

CONF.)
CONF.)
CONF.)
CONF.)
CONF.)

.}
2ND CONF.)

AND MICROPROCESSOR SYMPOSIUM

DISTRIBUTED DATA ACQUISITION AND CONTROL (1ST CONF.}

FAULT-TOLERANT
FAULT-TOLERANT
FAULT-TOLERANT
FAULT-TOLERANT
FAULT-TOLERANT
FAULT-TOLERANT
FAULT-TOLERANT
FOUNDATIONS OF
FOUNDATIONS OF
FOUNDATIONS OF
FOUNDATIONS OF
FOUNDATIONS OF
FOUNDATIONS OF
IECI

COMPUTING
COMPUTING
COMPUTING
COMPUTING
COMPUTING
COMPUTING
COMPUTING
COMPUTER
COMPUTER
COMPUTER
COMPUTER
COMPUTER
COMPUTER

(FTCS-
(FTCS-
(FTCS~
(FTCS-
(FTCS=~
(FTCS~
(FTCS-
SCIENCE
SCIENCE
SCIENCE
SCIENCE
SCIENCE
SCIENCE

-5)
-6)
-7)
-8)
_9)
10)
11)
(16 TH
(18TH
(19TH
(20TH
(21ST
(22ND

SYMP.)
SYMP,)
SYMP.)
SYMP.)
SYMP.)
SYMP.)

INT'L CONF.
INT'L CONF.
INT'L CONF.
INT'L CONF.
INT'L CONF.

ON PATTERN
ON PATTERN
ON PATTERN
ON PATTERN
ON PATTERN

ICPR)
ICPR)
ICPR)
ICPR)
ICPR)

INTERACTIVE TECHNIQUES
INTERCONNECTION NETWORKS WORKSH

JOINT COLLEGE CURRICULA WKSHP ON COMP.

JOINT ENGINEERING MANAGEMENT (2
LOCAL COMPUTER NETWORKS (4TH CO
LOCAL COMPUTER NETWORKS (STH CO!
LOCAL COMPUTER NETWORKS (6TH CO
MACHINE PROCESSING OF REMOTELY

MACHINE PROCESSING OF REMOTELY

MACHINE PROCESSING OF REMOTELY

MACHINE PROCESSING OF REMOTELY

MACHINE PROCESSING OF REMOTELY

MACHINE PROCESSING OF REMOTELY

MASS STORAGE SYSTEMS SYMPOSIUM

MICRO APPLICATIONS IN THE '80S

MICRO-DELCON '78

MICRO-DELCON '79

MICRO-DELCON '80

MICRO-DELCON '81

MICROCOMPUTER '77 CONFERENCE

OP

6TH CONF.)
NF.)

NF.)

NF.)

SENSED
SENSED
SENSED
SENSED
SENSED DATA
SENSED DATA
(4TH SYMP.)

DATA
DATA
DATA
DATA

(ARIZONA TECHNICAL SYMP.)

SCIENCE,

(1973
(1975
(1976
(1977
(1979
(1980

MICROCOMPUTER FIRMWARE AND I/0 WORKSHOP (1979)

MICROCOMPUTER-BASED INSTRUMENTA

TION

MICROPROCESSOR APPLICATIONS IN MILITARY & INDUSTRIAL SYSTEMS

MICROPROCESSORS AND EDUCATION WORKSHOP (1980)

MICROPROGRAM
MICROPROGRAM!
MICROPROGRAM,
MICROPROGRAM|
MICROPROGRAM
MICROPROGRAM,|

MICROPROGRAMMING
MICROPROGRAMMING

MING
MING
MING
MING
MING
MING

WORKSHOP
WORKSHOP
WORKSHOP
WORKSHOP
WORKSHOP
WORKSHOP
WORKSHOP
WORKSHOP

(MICRO--5)
(MICRO—-8)
(MICRO--9)}
{MICRO-10)
{MICRO~11)
{MICRO-12)
(MICRO-13)
(MICRO-14)

MICROS AND MINICOMPUTERS (1979 CONF.)
MINI AND MICROCOMPUTERS SYMPOSIUM (MIMI '76)
MINI AND MICROCOMPUTERS SYMPOSIUM (MIMI

MODELING & ANALYSIS OF DATA
MULTIPLE~VALUED LOGIC (7TH
MULTIPLE~-VALUED LOGIC (8TH
MULTIPLE-VALUED LOGIC (9TH
MULTIPLE-VALUED LOGIC (10TH
MULTIPLE-VALUED LOGIC (11TH

OCEANIC
OPTICAL
OPTICAL
OPTICAL
OPTICAL
OPTICAL
PARALLE
PARALLE

PARALLEL
PARALLEL
PARALLEL
PARALLEL

PARALLE
PATTERN
PATTERN
PATTERN
PATTERN
PATTERN
PATTERN
PATTERN

DATA BASE
COMPUTING
COMPUTING
COMPUTING
COMPUTING
COMPUTING
L PROCESSING
L PROCESSING
PROCESSING
PROCESSING
PROCESSING
PROCESSING
L PROCESSING
RECOGNITION
RECOGNITION
RECOGNITION
RECOGNITION
RECOGNITION
RECOGNITION
RECOGNITION

(1975
(1976
(1977
(1978
(1979
(1980
(1981

& IMAGE
& IMAGE
& IMAGE
& IMAGE
& IMAGE
AND ARTIFICIAL INTELLIGENCE WORKSHOP
APPLIED TO OIL IDENTIFICATION WEKSHP

CONF.)
CONF.)
CONF.)
CONF.)
CONF.)

CONF.)
CONF.)
CONF.)
CONF.)
CONF.)
CONF.)
CONF.)
PROCESSING
PROCESSING
PROCESSING
PROCESS ING
PROCESSING

'77)

(PRIP
(PRIP
(PRIP
(PRIP
(PRIP

NETWORKS SYMPOSIUM

INFORMATION EXCHANGE WORKSHOP
CONFERENCE (1974 CONF.)
CONFERENCE (1975 CONF.)
CONFERENCE (1976 CONF.)
CONFERENCE (1978 CONF,)
CONFERENCE (1980 CONF.)

'75)
'
'78)
'79)
'81)

'78 (INDUSTRIAL APPLICATIONS OF MICROPROCESSORS)
RECOGNITION (1ST
RECOGNITION (2ND
RECOGNITION (3RD
RECOGNITION (4TH
RECOGNITION (5TH
IN COMPUTER-AIDED DESIGN SYMPOSIUM

ENGRING (4TH)

CONF.)
CONF.)
CONF.)
CONF.)
CONF.)
CONF.)

YEAR CODE PAGES

PUBL

1973
1975
1977
1979
1981
1972
1974
1976
1977

1978
1979
1980
1981
1977
1979
1981
1980
1975
1976
1977
1978
1979
1980
1981
1975
1977
1978
1979
1980
1981
1978
1973
1974
1976
1978
1980
1978
1980
1978
1978
1979
1980
1981
1973
1975
1976
1977
1979
1980
1980
1980
1978
1979
1980
1981
1977
1979
1978
1980
1980
1972
1975
1576
1977
1978
1979
1980
1981
1979
1976
1977
1976
1977
1978
1979
1980
1981
1977
1974
1975
1976
1978
1980
1975
1976
1977
1978
1979
1980
1981
1975
1977
1978
1979
1981
1976
1976

WYYy YYY YooYt u Y iuuy i duyiud s ot i i wioitd o Wiy vyt ot div i oo gy wiyiguio ol wigiomgto g 'O o g

160
180

210
260
375
379
501
507

493
567
642
900
110
796
524
212
275
206
217
226
236
400
290
200
269
290
440
422
430
233
600
550
884
1170
1425
479
124
138
173
148
130
114
422
315

155
298
304
277
294
147
104
169
150
224
232
255
328
256
269
279
386
360
440
297
516
664

- 626

182
173

IEEE NO

73CH0828-4
75CH1001-7
77CH1260-9
79CB1405-0
81CH1694-9
72CH0706-2
74CH0865-6
76CH1098-3
77CH1216-1
78CH1363~1
79CH1427-~4
80CH1550~3
81CH1643-6
77CH1189
79CH1408--4
81CH1591-7
80CH1571-9
75CH0974-6
76CH1094-2
77CH1223-7
78CH1286-4
79CH1396-1
B80CH1604-8
B81CH1600-6
75CH1003-3
77CH1278-1
78CH1397~9
79CH1471-1
B0CH1498~-5
81CH1695-6
78CH1312-8
73CH0821-9
74CH0885-4
76CH1140-3
78CH1331-8
80CH1499-3
78CH1289-8
80CH1560-2
78CH1311-0
78CH1359-9
79CH1446-4
80CH1542-0
81CH1690-7
73CH0834-2
75CH1009-0
76CH1103-1
77CH1218-7
79CH1430-8
80CH1533-9
80CH1581-8
80CH1525-5
78CH1330-0
79CH1426-6
80CH1528-9
81CH1628-7
77CH1185-8
THO065~3
78CH1303-7
80CH1579-2
THO083-6

75CH1053-8
76CH1148-6
77CH1266-6
78CH1411-8
79CH1516-4
B0CH1599-0
81CH1691-5
79CH1474-6
76CH1180-9
T7CH1347-4

77CH1222-9
78CH1366-4
79CH1408-4
80CH1577-6
80CH1611-3

EHO134-7
74CH0862-3
75CH0941~5
76CH1100-7
78CH1305-2
80CH1548-7

76CH1127-0
77CH1253-4
78CH1321-9
79CH1433-0
80CH1569-3
B1CH1634-5
75CH0981-1
77CH1208-9
78CH1318-5
79CH1428-2
81CH1595~8
76CH1169-2
76CH1247-6

75

ORDER PRICES AVAIL TITLES YEAR CODE PAGES IEEE NO
NO NM/M PUBL
392 22.00/16.50 11/81 PROC., PERS. COMPUTERS TO AID HANDICAPPED; JOHNS HOPKINS 1ST SEARCH FO 1981 P 322 THO092-7
121 16.00/12.00 OK PROC., PICTURE DATA DESCRIPTION & MANAGEMENT WORKSHOP 1977 P 196 77CH1187-4
316 25.00/18.75 OK PROC., PICTURE DATA DESCRIPTION AND MGT (1980 WKSHP) 1980 P 304 80CH1530-5
284 20.00/15.00 OK PROC., QUANTITATIVE SOFTWARE MODELS WORKSHOP 1979 P 237 THO067-9
381 12/81 PROC., REAL TIME SYSTEMS SYMPOSIUM 1981 P 81CH1700-4
351 20.00/15.00 OK PROC., RELIABILITY IN DISTRIBUTED SOFTWARE & DATABASE SYSTEMS SYMP. 1981 P 225 81CH1632-9
052 12,00/ 9.00 OK PROC., ROCKY MOUNTAIN SYMPOSIUM (1ST CONF.) 1977 P 310
181 16.00/12.00 OK PROC., ROCKY MOUNTAIN SYMPOSIUM (2ND CONF.) 1978 P 404 78CH1387-0
307 16.00/12.00 OK PROC., ROCKY MOUNTAIN SYMPOSIUM (3RD CONF.) 1979 P 155 79CH1463-9
335 14.00/10.50 OK PROC., SECURITY AND PRIVACY (1980 SYMP.) 1980 P 175 80CH1522-2
345 16.00/12.00 OK PROC., SECURITY AND PRIVACY (1981 SYMP.) 1981 P 180 81CH1629-5
007 20.00/15.00 M/F O PROC., SIMULATION SYMPOSIUM (8TH CONF.) 1975 P 324 75CH0984-5
008 20.00/15.00 M/F O PROC., SIMULATION SYMPOSIUM (9TH CONF.) 1976 P 375 76CH1055-3
140 20.00/15.00 OK PROC., SIMULATION SYMPOSIUM (10TH CONF.) 1977 P 413 77CH1177-5
164 20.00/15.00 OK PROC., SIMULATION SYMPOSIUM (11TH CONF.) 1978 P 368 78CH1327-6
222 22.00/16.50 OK PROC., SIMULATION SYMPOSIUM (12TH CONF.) 1979 P 350 79CH1376-3
289 22.00/16.50 OK PROC., SIMULATION SYMPOSIUM (13TH CONF.) 1980 P 338 80CH1492-8
333 22.00/16.50 OK PROC., SIMULATION SYMPOSIUM (14TH CONF.) 1981 P 297 81CH1590-9
103 8.00/ 6.00 OK PROC., SOFTWARE ENGINEERING (1ST INT'L CONF.) 1975 P 100 75CH0992-8
104 20,00/15.00 OK PROC.,, SOFTWARE ENGINEERING (2ND INT'L CONF.) 1976 P 700 76CH1125-4
187 20.00/15.00 M/F O PROC., SOFTWARE ENGINEERING (3RD INT'L CONF.) 1978 P 341 78CH1317-7
249 22.00/16.50 OK PROC., SOFTWARE ENGINEERING (4TH INT'L CONF.) 1979 P 464 79CH1479-5
332 30.00/22,.50 OK PROC., SOFTWARE ENGINEERING (5TH INT'L CONF.) 1981 P 472 BlCH1627-9
353 16.00/12.00 OK PROC., SOFTWARE ENGINEERING STANDARDS APPLICATIONS WORKSHOP 1981 P 152 81CH1633-7
208 16.00/12.00 OK PROC., SOFTWARE LIFE-CYCLE MANAGEMENT WORKSHOP (2ND CONF.) 1978 P 220 78CH1390-4
001 20.00/15.00 OK PROC., SOUTHEASTERN SYMPOSIUM ON SYSTEMS THEORY (7TH CONF.) 1975 P 342 75CH0968-8
002 20.00/15.00 M/F O PROC., SOUTHEASTERN SYMPOSIUM ON SYSTEMS THEORY (8TH CONF.) 1976 P 340 76CH1093-4
229 22.00/16.50 OK PROC., SOUTHEASTERN SYMPOSIUM ON SYSTEMS THEORY (11TH CONF.) 1979 P 249 THO061-2
294 25.00/18.75 OK PROC., SOUTHEASTERN SYMPOSIUM ON SYSTEMS THEORY (12TH CONF.) 1980 P 395 B80CH1576-8
221 20.00/15.00 OK PROC., SPECIFICATIONS OF RELIABLE SOFTWARE CONFERENCE 1979 P 237 79CH1401-9
142 12,00/ 9.00 OK PROC., TEST CONFERENCE (1973 CHERRY HILL TEST SYMP.) 1973 P 125 73CH0B27-6
054 16.00/12.00 OK PROC., TEST CONFERENCE (1974 CHERRY HILL TEST SYMP.) 1974 P 261 74CH0909-2
060 16.00/12.00 OK PROC., TEST CONFERENCE (1975 CHERRY HILL TEST SYMP.) 1975 P 110 75CH1041-3
141 16.00/12.00 OK PROC., TEST CONFERENCE (1976 CHERRY HILL TEST SYMP.) 1976 P 105 76CH1179-1
147 16.00/12.00 OK PROC., TEST CONFERENCE (1977 CHERRY HILL TEST SYMP.) 1977 P 198 77CH1261-7
210 20.00/15.00 OK PROC., TEST CONFERENCE (1978 CHERRY HILL TEST SYMP.) 1978 P 301 78CH1409-2
257 16.00/12.00 OK TUTORIAL: AUTOMATED TOOLS FOR SOFTWARE ENGINEERING 1979 T 270 EHO150-3
261 25.00/18.75 OK TUTORIAL: CENTRALIZED & DISTRIBUTED DATA BASE SYSTEMS 1979 T 262 EHO154-5
201 16.00/12.00 OK TUTORIAL: COMPUTER COMMUNICATION PROTOCOLS; A PRACTICAL VIEW OF 1978 T 264 EHO137-0
233 28.00/21.00 OK TUTORIAL: COMPUTER GRAPHICS 1979 T 433 EHO147-9
297 20.00/15.00 OK TUTORIAL: COMPUTER NETWORKS {2ND ED.) 1980 T 520 EHO162-8
139 12.95/ 9.95 OK TUTORIAL: COMPUTER SECURITY AND INTEGRITY 1977 T 448 EHO124-8
313 20.00/15.00 OK TUTORIAL: COMPUTER SYSTEM REQUIREMENTS 1980 T 364 EHO168-5
325 25.00/18.75 OK TUTORIAL: COMPUTER SYSTEMS FOR PROCES., DIAGNOSTIC ELECTROCARDIOGRAMS 1980 T 228 EHO170~1
242 12.00/ 9.00 OK TUTORIAL: COMPUTER-AIDED DESIGN TOOLS FOR DIGITAL SYSTEMS 1979 T 174 EHOl132-1
334 25.00/18.75 OK TUTORIAL: COMPUTERS & BUSINESS 1981 T 472 EHO177-6
369 25.00/18.75 OK TUTORIAL: DATA BASE MANAGEMENT IN THE '80S 1981 T 472 EHO181-8
260 16.00/12.00 OK TUTORIAL: DESIGN OF MICROPROCESSOR SYSTEMS 1978 T 262 EHO155-2
199 25.,00/18.75 M/F O TUTORIAL: DIGITAL IMAGE PROCESSING AND SELECTED PAPERS 1979 T 732 EHO133-9
269 20.00/15.00 OK TUTORIAL: DISTRIBUTED CONTROL 1979 T 382 EHO153-7
212 14.00/10.50 OK TUTORIAL: DISTRIBUTED DATA BASE MANAGEMENT 1978 T 206 EHO141-2
209 16.00/12.00 M/F O TUTORIAL: DISTRIBUTED PROCESSING (2ND ED.)--SEE #363 1978 T 450 EHO127-1
363 25.00/18.75 OK TUTORIAL: DISTRIBUTED PROCESSING (3RD ED.) 1981 T 640 EHO176-8
299 28.00/21.00 OK TUTORIAL: DISTRIBUTED PROCESSING SYSTEMS; A PRAGMATIC VIEW OF 1980 T 616 EHO160-2
258 20.00/15.00 OK TUTORIAL: DISTRIBUTED PROCESSOR COMMUNICATION ARCHITECTURE 1979 T 526 EHO152-9
267 20.00/15.00 OK TUTCRIAL: DISTRIBUTED SYSTEM DESIGN 1979 T 414 EHO151-1
390 30.00/22,50 11/81 TUTORIAL: HUMAN FACTORS IN SOFTWARE DEVELOPMENT 1981 T 700 EHO185-9
266 25.00/18.75 OK TUTORIAL: INTERACTIVE COMPUTER GRAPHICS 1979 T 422 EHO156-0
338 28.00/21.00 OK TUTORIAL: INTRO TO AUTOMATED ARRHYTHMIA DETECTION 1980 T 332 EHO171-9
368 20.00/15.00 OK TUTORIAL: LOCAL COMPUTER NETWORKS (2ND ED) 1981 T 372 EHO179-2
304 20.00/15.00 OK TUTORIAL: LOCAL COMPUTER NETWORKS--SEE #368 1980 T 345 EHOl63-6
215 12.00/ 9.00 OK TUTORIAL: LSI TESTING (2ND ED.) 1978 T 190 EHO122-2
213 12.00/ 9.00 OK TUTORIAL: MICROCOMPUTER PROGRAMMING AND SOFTWARE SUPPORT 1978 T 200 EHO140-4
259 16.00/12.00 OK TUTORIAL: MICROCOMPUTER SYSTEM DESIGN AND TECHNIQUES 1979 T 432 EH0159-4
340 14.00/10.50 OK TUTORIAL: MICROCOMPUTER SYSTEM SOFTWARE AND LANGUAGES 1980 T 232 EHO174-3
109 12.00/ 9.00 OK TUTORIAL: MICROPROGRAMMING 1975 T 318 75CH1033-0
310 20.00/15.00 OK TUTORIAL: MODELS & METRICS FOR SOFTWARE MGT AND ENGINEERING 1980 T 352 EHO167-7
339 14.00/10.50 OK TUTORIAL: OFFICE AUTOMATION SYSTEMS 1980 T 201 EHO172-7
367 25.00/18.75 OK TUTORIAL: PARALLEL PROCESSING 1981 T 498 EHO182-6
312 20.00/15.00 OK TUTORIAL: PROGRAMMING LANGUAGE DESIGN 1980 T 536 EHO164-4
391 28.00/21.00 11/81 TUTORIAL: PROGRAMMING PRODUCTIVITY--ISSUES FOR THE EIGHTIES 1981 T 520 EHO186-7
130 13.50/10.00 M/F O TUTORIAL: QUANTITATIVE MANAGEMENT--SOFTWARE COST ESTIMATING 1977 T 330 EHO129-7
366 20.00/15.,00 OK TUTORIAL: SECURITY OF DATA IN NETWORKS 1981 T 250 EHO183-4
309 20.00/15.00 OK TUTORIAL: SOFTWARE CONFIGURATION MANAGEMENT 1980 T 452 EHO169-3
314 20.00/15.00 OK TUTORIAL: SOFTWARE COST ESTIMATING AND LIFE-CYCLE CONTROL (GETTING THE 1980 T 356 EHO165-1
385 25.00/18.75 11/81 TUTORIAL: SOFTWARE DESIGN ENVIRONMENTS 1981 T
268 16.00/12.00 OK TUTORIAL: SOFTWARE DESIGN STRATEGIES 1979 T 426 EHO149-5
389 25.00/18.75 11/81 . TUTORIAL: SOFTWARE DESIGN STRATEGIES (2ND ED.) 1981 T 530 EHO184~2 .
300 20.00/15.00 OK TUTORIAL: SOFTWARE DESIGN TECHNIQUES (3RD ED.) 1980 T 425 EHO161-0
219 16.00/12.00 OK TUTORIAL: SOFTWARE MANAGEMENT 1979 T 390 EHO146-1
211 16.00/12.00 OK TUTORIAL: SOFTWARE METHODOLOGY 1978 T 464 EHO142-0
311 20.00/15.00 OK TUTORIAL: SOFTWARE SYSTEM DESIGN--DESCRIPTION AND ANALYSIS 1980 T 258 EHO166-9
207 16.00/12.00 OK TUTORIAL: SOFTWARE TESTING & VALIDATION TECHNIQUES (2ND ED.) 1978 T 430 EHO138-8
365 25.00/18.75 11/81 TUTORIAL: SOFTWARE TESTING & VALIDATION TECHNIQUES (3RD ED.) 1981 T 464 EHO180-0
362 20.00/15.00 OK TUTORIAL: STRUCTURED PROGRAMMING: INTEGRATED PRACTICES 1981 T 290 EHO178-4
386 03/82 TUTORIAL: VLSI DESIGN & USE; TECHNOLOGY YOU NEED FOR 1982 T
288 22.00/16.50 OK TUTORIAL: VLSI--THE COMING REVOLUTION IN APPLICATIONS & DESIGN 1979 T 316 EHO158-7
NOTES: ALL BOOKS ARE AVAILABLE IN MICROFICHE OR IN SOFTCOVER AT PRESS TIME OR BY DATE SPECIFIED

76

BOOKS DESIGNATED "M/F" ARE

NM =

NON~-MEMBER PRICE; M

OUT OF PRINT AND AVAILABLE ONLY IN MICROFICHE

MEMBER PRICE; N/A = NOTAVAILABLE AT PRESS TIME

ALL BOOKS ARE SUBJECT TO AVAILABILITY AND PRICES SUBJECT TO CHANGE WITHOUT NOTICE

IMPORTANT INFORMATION ON DISCOUNTS AND SHIPPING METHODS

PUBLICATIONS e Rush nandling $10 00 PER ORDER

ORDER FORM ® All unit pnces include postage for 4th class book rate Overseas mail is shipped sea mail
{10-12 weeks delvery) For priority shipping to U S or Canada. add $500 per book For

armail service (2 week delivery) 1o Mexico and all other foreign countries. please add

$15 00 per book

e Remember. member rates apply on the first copy for personal use only. Additional coptes
of the same title are sold at full hst price.

e Overseas orders must be prepaid. Payments must be made in US tunds drawn on US

IEEE Computer Society
P.O. Box 80452
Worldway Postal Center
Los Angeles, CA 90080

banks
e No refunds or returns accepted after 60 days of shipment (30 days overseas)
Catalog No. To assure prompt process- e Occasionally. books are no longer available. In such cases. will you accept rmicrofiche at
ing of your order, be sure to enter the 3- same price? No. Yes
digit number that appears ahead of each
publication description. * Prices subject to change without notice. Books subject to avaiability
® Minimum telephone order — $50 00
Unit Price
Order Quantity Title/Description Amount
Number Member Non-Member
Charge Card Number Expiration Date Signature Subtotal
Name (piease print) Member No. Calitornia residents add 6% tax
Address Overseas purchasers: Remit US dollars on US. Bank. TOTAL $
O Check Enclosed Optional Shipping Charge

City/State/Zip/ Country
Phone No.

O B8 visa/BankAmencard
O Bill Master Charge Total§

Purchase Order No.

	40979_DataEngineering_Dec_1981_ Vol 4_ No 2.pdf

