DECEMBER 1982 VOL.5

NO. 4

a quarterly bulletin
of the IEEE computer society
technical committee

on

Database
Engineern

Contents

Distributed Data Base Research at
Grenoble University
M. Adiba

Distributed Database Research at

the Politecnico of Milano
S. Ceri, G. Paolini, G. Pelagatti, and

F.A. Schreiber

Distributed Database Management

Research At Computer Corporation

of America i i
A. Chan and D.R. Ries

Survey of Current Research at

Prime Computer, Inc. in Distributed

Database Management Systems
D. DuBourdieu

Distributed Data User’'s Needs:

Experience from Some SIRIUS

Project Prototypes
A.M. Glorieux and W. Litwin

R*: A Research Project on

Distributed Relational DBMS
L.M. Haas, P.G. Selinger, E. Berton,

D. Daniels, B. Lindsay, G. Lohman,

Y. Masunaga, C. Mohan, P. Ng,

P. Wilms, and R. Yost

The Distributed Database

System VDN il
R. Munz

14

20

23

28

ENCOMPASS: Evolution of a
Distributed Database/Transaction

System ... e 37
J. Nauman

The DDBS POREL: Current

Research Issues and Activities 42

E.J. Neuhold and B. Walter

A Structural View of Honeywell’s

Distributed Database Testbed

System:DDTS e 47
S.K. Rahimi, M.D. Spinrad, and

J.A. Larson

SCOOP: A System for COOPeration

Between Existing Heterogeneous

Distributed Data Bases and

Programs i i, 52
S. Spaccapietra, B. Demo, A. DiLeva,

and C. Parent

Performance Analysis of Distributed

DataBase Systems 58
M. Stonebraker, J. Woodfill,

J. Ranstrom, M. Murphy, J. Kalash,

M. Carey, and K. Arnold

Chairperson, Technical Committee
on Database Engineering

Prof. Jane Liu

Digital Computer Laboratory
University of lllinois

Urbana, iil. 61801

Editor-in-Chief,
Database Engineering

Dr. Won Kim

IBM Research
K55-282

5600 Cottle Road

San Jose, Calif. 95193

(408) 256-1507

Database Engineering Bulletin is a quarterly publication
of the IEEE Computer Society Technical Committee on
Database Engineering. Its scope of interest includes: data
structures and models, access strategies, access control
technigues, database architecture, database machines,
intelligent front ends, mass storage for very large data-
bases, distributed database systems and techniques,
database software design and implementation, database
utilities, database security and related areas.

Contribution to the Bulletin is hereby solicited. News
items, letters, technical papers, book reviews, meeting
previews, summaries, case studies, etc., should be sent
to the Editor. All letters to the Editor will be considered for
publication uniess accompanied by a request to the con-
trary. Technical papers are unrefereed.

Opinions expressed in contributions are those of the indi-
vidual author rather than the official position of the TC on
Database Engineering, the IEEE Computer Society, or
organizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Prof. Don Batory

Dept. of Computer and
Information Sciences
University of Florida
Gainesville, Florida 32611
(904) 392-5241

Prof. Alan Hevner

College of Business and Management
University of Maryland

College Park, Maryland 20742

(301) 454-6258

Dr. David Reiner

Sperry Research Center
100 North Road
Sudbury, Mass. 01776

(617) 369-4000 x353

Prof. Randy Katz

Dept. of Computer Science
University of Wisconsin
Madison, Wisconsin 53706
(608) 262-0664

Dr. Dan Ries

Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02139
(617) 491-3670

Membership in the Database Engineering Technical
Committee is open to individuals who demonstrate willing-
ness to actively participate in the various activities of the
TC. A member of the IEEE Computer Society may join the
TC as a full member. A non-member of the Computer
Society may join as a participating member, with approval
from at least one officer of the TC. Both a full member and
a participating member of the TC is entitled to receive the
quarterly bulletin of the TC free of charge, until further
notice.

Membership applications and requests for back issues
should be sent to IEEE Computer Society, P.O. Box 639,
Silver Spring, MD 20901. Papers and comments on the
technical contents of Database Engineering should be
directed to any of the editors.

Letter from the Editor

This issue of Database Engineering presents the current state of
"Research on Distributed Database Systems.” Twelve of the leading
university and industrial research groups in distributed database sys-
tems have contributed short papers that describe their current and
future research efforts. The compilation of these papers provides a
comprehensive survey of this important research area.

Research in distributed database systems has enjoyed a short but
very active history. In the past seven years the research emphasis has
been on establishing a theoretical basis for the important problems of
distributed concurrency control, distributed query optimization, dis-
tributed system reliability, and design questions such as resource
allocation on distributed systems. Numerous algorithms to solve these
problems have been developed. As a result of this past work research
on distributed database systems has attained a level of maturity in
which many of the important problems are now well understood. The
challenge of current research becomes one of applying this knowledge
to the design of experimental research activities.

The research activities reported here demonstrate quite clearly
this evolution from a theoretical emphasis to an experimental
emphasis. Nearly all of the research groups represented in this spe—
cial 1issue have constructed, or are constructing, a distributed data-
base system upon which experiments can be performed. Performance
analysis will become an increasingly important consideration in future
distributed database research.

I would like to thank the contributors to this issue for their
interest, enthusiasm, and willingness to meet the stringent deadlines
required to produce a state-of—the—art research bulletin. My thanks
also extends to my fellow editors who provided advice and assistance.

oo

Alan R. HeQner

DISTRIBUTED DATA BASE RESEARCH
AT GRENOBLE UNIVERSITY

Michel ADIBA
Laboratoire IMAG - FRANCE
BP 53X - 38041 Grenoble Cédex
Ph. (76) 54 81 45

1 - INTRODUCTION

Database research and development started at the IMAG Laboratory
at the end of the sixties with Abrial's pioneer work on the
network DBMS SOCRATE. Developed as a prototype this system is now
commercially avaible in a great variety of computers : IBM,
CII-HB, etc.

At the begining of the seventies, research activities were mainly
focused on the relational model of data (11).

Data model, database design and relational database system
developments were some of the first topics studied. From 76 to 79
distributed database problems were addressed mostly thru the
POLYPHEME project which was part of the nation wide SIRIUS
project. Several other ©projects started after POLYPHEME to
investigate other aspects of distributed databases systems.
Recent work 1is centered around generalized databases systems
(i.e. database managing texts, images and voice) with a new
project called TIGER launched in 1982. In the following we
describe distributed databases activities and future research.

2 - RELATIONAL DATABASE DEVELOPMENTS (73 to 75)

This research started by analyzing database design using
hierarchical and network models compared to the relational
approach. A schema translator from network ¢to relational was
designed in 1974 and algorithms ¢to obtain third normal form
relational schemas were also. investigated. In 1977, an
experimental relational DBMS, called URANUS was implemented (12).
It provided an algebraic-like language to dynamically create and
manipulate a set of relations. Originally planned to provide a
relational interface for the SOCRATE DBMS, it has been used as a
stand-alone relational system in other projects (e.g. .POLYPHEME).

3 - DISTRIBUTED DATABASE ACTIVITIES (76 to 81)

In 1976, POLYPHEME, a joint project with the CII-HB Scientific
Center addressed the distributed database problem. More precisely
the goal of POLYPHEME was to study how to make existing and
heterogeneous databases <co-operate over a general computer
network (ARPA-like). In POLYPHEME we addressed the following
topics :

- distributed database models : homogeneity of distributed
data thru a dynamic relational model, data distribution,
local and global views,

- distributed database design using a bottom-up approach,

2

~ distributed database system architecture,
- request decomposition and optimization,

- distributed and parallel execution of decomposed queries
and updates.

The work on POLYPHEME was published in several articles and
theses (1,2). A distributed database system prototype was also
implemented in 1979 on the french CYCLADES network.

This POLYPHEME prototype is now used by several other research

groups in France to experiment on distributed database
approaches.

Cooperation between distributed and heterogeneous databases im a
problem which is still to be solved in its overall generality.
However, we have proposed in POLYPHEME several solutionf. For
instance, we described in (1,6) a general relational model able
to take into account the semantic aspects of existing databases.
This model allows for the creation of a "global" relational view
making further cooperation possible.

In order to cooperate, an existing database, which has been
implemented under a network or hierarchical DBMS, must present
itself as a relational automaton. This can be achieved in two
different ways. First, several local application programs can be
added to an existing database in order to build a relational
interface. Each "relation" seen from outside the database can be
manipulated through these local programs which can take advantage
of local data organization and access paths. Each relational
operation, i.e. get, insert, delete, update tuples, corresponds
to a specific program which is activated on demand. Note that all
these local programs need not be written but can be automatically
generated. A second possibility has been choosen for the
POLYPHEME prototype. using mechanisms developped for the URANUS
project, each cooperating database is translated from its network
DBMS to a relational form and only this relational copy 1is
manipulated. Once each local database has been transformed into a
relational automaton, cooperation can take place.

The definition of distributed data has been treated in POLYPHEME
in the following way. The first approach to relational
distributed database was to suppose that a relation was the unit
of data distribution. A second step was to consider that wuser
relations can be spread over several sites. For 1instance, a
relation can be horizontally partitioned into several fragments
stored at different sites. In POLYPHEME, we have investigated
horizontal and vertical partitioning together with total and
partial replications. These issues are discussed elsewhere (4)
but they require a complete view mechanism which has not been
implemented so far. The POLYPHEME prototype supports only the
first level of distributed data and the description of the
database is done by specifying for each relation the site where
it is stored.

The global view is merely the union of all the 1local relations
managed by all the sites. Note however that once the distributed
database has been described the user is no longer concerned with
data location, i.e. the POLYPHEME prototype provides location
transparency. -

On-line data definition, retrieval and modification are allowed
in POLYPHEME through a simple relational language based on the
one developped for URANUS. This interface is available to each
POLYPHEME user when interacting with a "Global machine". Queries
are expressed by combining operands, i.e. relation names and
operators (JOIN, SELECT, PROJECT, ...) in a non-procedural way.
Updates are expressed on individual relations.

Interpretation of a given query is done by first transforming the
query into a binary tree structure (15) and then pipe-lining
tuple results during tree evaluation. This tree interpretation
technique has been adapted to a distributed environment taking
advantage of possible parallelims between the different sites and
reducing the volume of intermediate results which have to be
moved from one site to another. This is done by characterizing
independent sub-trees which can be evaluated locally. Several
studies on these problems have been made so far. Our approach
however does not require maintenance of attributes selectivity
nor estimation of partial results cardinalities.

The POLYPHEME prototype 1is designed as a network of Abstract
relational Machines. Local Machines (LM) are built around each
cooperating local database 1in order to make their behaviour
homogeneous. Global Machines (GM) allow users to interact with
the distributed database, providing them with location
transparency. Note that GM can store and retrieve data '"locally",
i.e. at the site where they are implemented. Each POLYPHEME user
issues a global request (query or wupdate) or sequences of
requests considered as transactions. Global machines decompose
each request into sub-requests and send them to the corresponding
local machines for evaluation as described later.

Figure 1 shows the architecture of the POLYPHEME prototype as
composed of a Global machine located at site A and two Local
machines located at sites B and C. This 1is a logical
architecture, physically, all combinations are possible to
implement LM and GMs on real computers in a network. The
prototype can easily be reconfigured to match several
possibilities. In particular, we experimented POLYPHEME on the
CYCLADES network with a GM located in Paris and two independent
LM on the same computer in Grenoble (9). Each machine (local or
global) is implemented with three basic components

1) A relational data manager to store, retrieve-local data
and decompose user requests (URANUS)

2) A distributed execution monitor which provides basic
communications between remote machines, remote program
activation and synchronization (7,8).

3) A global (or 1local) execution controller reponsible for
sending (or receiving) sub-trees to (from) other machines,
to trigger and synchronize their parallel (or local)
executions.

LOCAL MACHINE

GLOBAL MACHINE
Local
controler
Global controler D.E.M. ——| DBase
URANUS
Distributed
execution monitor .
NETWORK Site B
URANUS
0 Local
controler
Pata D.E.M Data
Base
Base
URANUS
Site A Site C
Figure 1

Following POLYPHEME, two other projects on distributed databases
have been launched in 1979 and are now at an ending phase.

- MICROBE is dedicated to the design and the implementation
of a relational DBMS distributed over a local network of
micro-computers (12). Using Plessey micro-computers MICRO 1
and MICRO Il (LSI-II) MICROBE can be used as a stand-alone
relational DBMS which provides a MIQUEL a (micro-SQL) high
level language. Several experiences have been -initialized
around the MICROBE system : query optimization, graphic
interface (QBE-like), database integrity, etc.

- The SCOTT project done at the CII-HB Scientific Center 1is
more concerned by the cooperation of transactions over a
distributed system. Using a vreal banking application
(electronic funds transfer) SCOTT investigates both
distributed transaction design and distributed system
implementation. The prototype which is currently
implemented provides a distributed transaction manager with
a two-phase commit protocol (17).

4 -~ CURRENT RESEARCH IN GENERALIZED DATABASE (> 81)

Traditionally, database systems have been used in environments
where data is rather static and highly structured, namely for
business applications. However, there 1is a growing need for
systems which can manage less structured and dynamic data.
Examples of such applications are computer aided design, (CAD)
office automation and graphics.,

Office automation and text processing are new applications which
can take advantages of wusing database technology. Currently,
capabilities of text processing machines are very limited. For
instance, they do not offer very sophisticated classifications
for documents or they <cannot be linked easily to general
databases. On the other hand, DBMS offer very poor tools for
managing textual data.

Research on textual database have been made in Grenoble since
1979. For instance (19) reports on an experimental textual
database system which have been built extending the network DBMS
SOCRATE. One of the main result of this experimental work was to
point out the inadequation of classical DBMS and to prepare a
more general research on generalized database systems. After
investigating several areas where databases can be used, we
laynched this year a new project called TIGER. In TIGER we are
doing research on generalized databases in three main directions
(1) Data models, (2) Systems Architecture and (3) Applications
and user interface.

1) Our goal is to define a generalized data model. We are
currently studing several solutions considering extensions
to the relational model (e.g. ER model or RM/T), semantics
networks and abstract data types.

2) We beleive that a typical generalized database system will
not ‘'be an individual <computer neither a centralized
database. The type of systems we are looking at will be
dedicated to a group from 10 to 100 people who work on
alive data. Our system will include one or several
database servers linked by a local network to several
sophisticated working stations.

3) We are investigating several solutions to implement high
level generalized interfaces which can take advantage of
all the capabilities of ¢the working station. Although
graphic or form oriented interfaces will be more suitable
for end-users, our system should provide a high 1level
programming language (e.g. relational PASCAL) in order to
build more general application programs.

5.~ RELATIONAL MODEL THEORY

Headed by Claude DELOBEL, research in this area is essentially
oriented towards the study of relational schema dependencies and
their properties. It has been established the equivalence between
the properties of FD and MVD with a class of Bolean expressions.
(21). Recent work 1is studying the join~project operator and
associated full join or embedded join dependencies. More
precisely, the goal of this work is to find a complete set of
derivation rules for these kinds of dependencies (22).

6 - DATABASE GROUP

In september 1982, people who are working in the database area
are M. ADIBA, A. CHAPEL, C. DELOBEL., L. FERRAT, LEE, NGUYEN GIA
TOAN, J. PALAZZO, D. RTALHE and F. VELEZ. We are also
co-operating with the CII-HB scientific <center, particularly
J.C. CHUPIN, G. BOGO, P. DECITRE, M. LOPEZ and V. JOLOBOFF.

REFERENCES
(1) M. ADIBA
“Un mod2le relationnel et une architecture pour les
systédmes de bases de données répartis. Application au

projet POLYPHEME"
Thase de Doctorat d'Etat, Grenoble, September 1978.

(2) M. ADIBA et al.
"POLYPHEME : an experience in distributed database system
and implementation”.
Distributed database. North-Holland., 1980, Proceeding of
the International Symposium on Distributed Database,
Paris, March 1980.

(3) M. ADIBA et al.
"A distributed database system using logical relational
machines'.
VLDR. Conf., Berlin, Sept. 1978,

(&) M. ADIBA, J. ANDRADE
"Expressing update consistency in a distributed database"
International Conference on Distributed Systems, Paris,
April 1981.

(5) M. ADIBA et al.
"The cooperation problem between differen: database

management systems'
1IFIP TC2 Work. Conf{., Nice., January 1977,

(6) M. ADIBA
"Modelling approach for distribuzed databases"
EC1 1978, Venice, October 1978.

(7) E. ANDRE, P. DECITRE
"On providing distributed applications programmers with
consrol over synchronization"

Comp. Network Protocol Symp., Liege, February 1978.

(8) P. DECITRE. E. ANDRE
"POLYPHEME 9project : the DNDEM distributed execution
monitor"

Int. Symp. on Distr. Database, Paris, March 1980,

(9) P. DECITRE, J. ANDRADE
“Technical outline of the POLYPHEME demonstration
prototype"
Int. Symp. on Distr. Datahases, Paris. March 1980.

7

(10;

(11)

(12)

(13)

(14)

(1%)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

C. DELOBEL
"An overview of the relational data theory"
Invited paper, IFIP 80, Tokyo-Melbourne, October 1980.

C. DELOBEL, M. ADIBA
“Databases and relational systems"
(In french) DUNOD Paris., (to appear. in 1982).

NGUYEN GIA TOAN

"Distributed Query management for a local network database
system'

2nd International Conference on Distributed Computing
Systems, Paris April 1981,

NGUYEN GIA TOAN

"URANUS : Une approche relationnelle 2 la cooperation de
bases de données"

These de 3lme Cycle, Grenoble, December 1977,

NGUYEN GIA TOAN

“"L'adapatiblité des bases de données par les moyens
relationnels”

Congres AFCET Informatique 78, Gif/yvette, November 1978.

NGUEYN GIA TOAN

"A unified method for query decomposition and shared
information updating in distributed systems"

First 1Int. Conf. on Distr. Comp. Syst.. Hunstville,
October 1979,

J. LE BIHAN et al.

"SIRIUS : a french nation wide project on distributed
database"

VLDB, Mountréal. October 1980.

SCOT, Présentation générale, Centre de Recherche CITI-HBR,
Rapport n®° 8, Grenoble. 1980,

SIRIUS
"Actes des Journées de présentation des résultats"
Paris. Novemhre 198].

I. KOWARSKI, M. LOPFEZ
"The documen? concept in a database"
SIGMOD 82.

V. QUINT, H. RICHY, X. ROUSSET, S. SASYAN, G. SERGEANT,

1. VATTON

"Basic service for a local network"”

International Conference on local networks and distributed
office systems, London, May 1981.

Y. SAGIV, C. DELOBEL, D. PARKER, R. FAGIN,

"An equivalence between relational database dependencies
and a fragment of propositional logic"

To appear in JACM

J. ZIDANT,
“Théorie des décompositions Généralisbdes”
Thdse d'Erat 3 soutenir (PhD. Thesis to be defended)

Distributed Database Research
at the Politecnico of Milano

S. Ceri, G.Pao_lini,' G. Pelagatti and F. A. Schreiber

Dipartimento di Elettronica, Politecnico di Milano,
P. za L. Da Vinci 32, 20133 Milano, Italy

Abstract: We briefly describe some of the on-going research in distributed databases at the
Politecnico di Milano. This research is sponsored by the National Research Council of ltaly,
PFl, as part of the nation-wide DATANET and DATAID projects.

1. Introduction

Recent years have shown a growing interest in distributed databases, as a natural
confluence of database systems and of computer networks. The development of the first
prototypes has shown the practicability of the distributed database approach as well as the
extreme complexity of such an approach. Many research ‘efforts are needed both in.
theoretical and in practical issues in order to establish distributed databases and to provide .
the first commercial applications. The research project at the Politecnico of Milano does not
aim to cover all the aspects of a distributed database system (like SDD-1, R* and others),
but rather to give specific contributions in several areas. However, all such contributions fit-
within the same framework,

2. Project Framework

The Relational Model is used as a standard interface for describing the data at all the sites
of the database. A Global Schema describes all the relations of the distributed database, and
several Local Schemas describe the relations and fragments of relations which are stored at
each site. Global relations can be horizontally partitioned into fragments according to disjoint .
partitioning predicates, or verticaliy partitioned by subdividing non-key attributes into disjoint
sets, and then projecting each of them into a separate fragment; each fragment algso.
contains the primary key. Partitioning is a major concern of the project; we assume that
relations in a distributed database will be partitioned to take advantage of the possibility of
locating each fragment local to the database site which mostly uses the fragment tuples (that.
site realistically will own access rigths and perform most of the updates on those tuples),
Application programs accessing the distributed database are specified in terms of the
relations of the global schema, and they don't require the notion of fragments.

3. User Lanquage: Extended Relational Algebra

Queries against the global schema are expressed using an Extended Relational Algebra
(ERA) [CePe 80b). The major extensions provided by ERA are:

(a) the capability of partitioning a relation into haorizontal fragments by means of disjoint
fragmentation predicates. This feature provides the same effect produced by the GROUP BY:
clause of SQL, as well as more complicated horizontal fragmentations.

(b) the possibility of evaluating aggregate functions, either over the whole relation or over
each fragment. :

ERA is also used for the description of the mapping between relations of the Global Schema
and fragments of each Local Schema (vertical fragmentation is provided by the standard-
projection operation). The mapping is bijective, i.e. it is possible to describe using ERA how

fragments should be aggregated in order to return the global relations. Typically, global
relations are given by the union of horizontal fragments and the equijoin on the key
attributes of vertical fragments. Using the inverse mapping, the user query can be
transformed, in a standard way, into a "canonical" query that operates over physical
fragments, and thus describes a query execution strategy. By applying algebric
transformations, the canonical query can be transformed into equivalent expressions, i.e.
other query execution strategies which produce the same result as the user query (see
[CePe 80bL]).

4. Optimization'of Distributed Database Access

Optimization of query processing strategies is investigated in [PeSc 79], [CePe 82]. Query
execution costs are evaluated as the cost of the required file transfers between sites.
Because of the horizontal partitioning of relations, the typical operations of relational algebra
now span over different fragments. The simplest way of executing them consists in collecting
the fragments into global relations and to apply the operations to them, but this strategy is
not the most beneficial; the alternative way consists in distributing the operations over the
fragments.

The join of two or more relations which are horizontally partitioned is the most critical
operation, since it requires that each horizontal fragment of any relation involved in the join
be compared with all the horizontal fragments of the other one. In [CePe 80a] it is shown
that the number of database sites on which the distributed join can be conveniently executed
has an upper limit, which depends on the size of the involved relations. In [CePe 82] the
isomorphism is shown between the problem of allocating partial join operations to database -
sites and the warehouse location problem. This permits the development of a linear integer
program for the selection of optimal execution sites for distributed joins. .

5. Flexibility of the Access Strategy

In our project, queries are compiled and distributed to all the sites participating in the
execution of a multi-site query. However, the need for a certain degree of flexibility at run-
time is recognized. We distinguish between:

(a) data-dependent flexibility, - the capability of modifying the query execution strategy by
taking into account the value of parameters supplied by the users. We assume that the query
predicates incorporate in their definitions parameters which are given a value by users at
run-time (as in cursors of System R). Query execution strategies at run-time should take
advantage of this additional information, that is not known at compile-time. A typical
example is the simplification of a query over an horizontally partitioned relation when the
query predicate implies the partitioning predicate of one of its fragments.

(b) failure-dependent flexibility, "~ the capability of modifying the query execution strategy
because of the failure of sites at run-time. A typical example is the use of a different copy of
data when the site storing the copy involved in the strategy is down.

Data-dependent flexibility is obtained using two ERA operations, called "fragment-select"
and “"fragment-compare”. They are applied to catalogs in the Global Schema, which also
have a relational description, and produce the identifiers of fragments which are actually
involved in the operations. At run-time, pre-compiled database programs are activated only
on the selected fragments. Failure-dependent flexibility is provided by pre-compiling
alternative access programs. These features are described in [CNOPP 82].

6. Run-time System

The run-time system is designed . to provide the above two types of flexibility. A
master process on the activation site of the transaction coordinates the actions of slave
processes at the sites participating in the execution of the transaction. The synchronization
and parallelism required by the execution of the transaction is described in terms of a
Control Graph (CG), executed by the master process.

10

The CG is similar to a Petri-net, i.e. a network of places and transitions. The local database
programs which access the database at each site, the other application programs and the
trasmissions of data between sites are modeled in the Petri-net as transitions. A transition
can be fired by the master process when all of its input places have a token; at its’
completion, tokens are produced in its output places. The main differences with a Petri-net
are in the following facts:

(a) transitions are not instantaneous, as they correspond to programs which require an
effective execution time

(b) some special transitions can produce only a subset of the tokens in their output places.
This second feature provides the intended flexibility, because by producing tokens
selectively in the output places it is possible to exclude or to substitute some of the pre-
compiled programs. In fact, the same effect is produced of a "cut" of part of the graph, that
will not be executed. These features are described in [CNOPP 82]. ’

7. Low Level Language: Dataflow Language

At the run-time system level, the distributed database transaction appears as a set of local
programs which are executed locally to each site and of transmission programs between
sites, controlled by a CG. These programs exchange data, in the form of parameters and
relations storing intermediate results. Thus, it is possible to give a low-level description of a
transaction using a dataflow language, which describes the interconnections between the
programs. The language does not deal with the semantics of programs, but it permits the
specification of the import and export session of the programs, i.e. parameters and relations
exchanged. In order to provide flexibility and dynamic reconfiguration, some of the data in
output from programs might be "missing"; this might produce the same effect as the "cut"
in the Petri-net described above. The compilation of this low level language produces as a
result the CG and the activation records for the local programs. These features are
described in [COPP 82].

8. Transaction Management

Two-phase commitment is assumed as a standard technique for providing transaction
atomicity. Our major concern in transaction management is to allow updates to replicated
objects to proceed even in the case of failure of some of the sites. In [CNOP 82] we describe
a technique, called Majority 2 Phase Locking (M-2PL), that provides this feature. According
to this technique, transactions are allowed to commit if a majority of the copies in the write
set is available, while updates to the other copies are propagated later by an alignment
process. Thus, update transactions can proceed also in the case of single site failures or
network partitioning (M-2PL assures that only one transaction at a time has the write locks
on a majority of copies and can perform the update). Necessary and sufficient conditions for
this approach and algorithms which satisfy such conditions are described in [CNOP 82].

9. Reliability Analysis

The need of giving figures for parameters such as system’s MTBF and MTBR is strongly felt
in many distributed database applications. Models and techniques for quantitatively
evaluating the reliability of a distributed database system are investigated in [Schr 81],
[MaRS 81], [MaPS 82]. Markov models have been used to describe each component's
behaviour, and tailures both dependent and independent from the state of the system have
been considered. '

10. Implementation

Very little effort has been devoted to the implementation of a prototype system up to now.
This is partly due to the fact that we are still in the initial phase of the project, and partly to
our convinction that it is better to have a good understanding of several different aspects of
a system before starting its implementation. We use a network of PDP-11/34 which are in
different buildings on the campus, with a star network configuration. Communication
software is standard Dec-Net. We are currently implementing the system bottom-up, starting

11

from the run-time part; this involves the implementation of the Control Machine, to execute
the CG. Our next goal is to complete the design and implementation of the low level
language, That will enable us to develop simple distributed applications.

11. Distributed Database Design

An important issue is the extension of database design techniques in order to apply them to
the design of distributed databases. In [CeMP 80], [CePe 80a], [CeNP 82}, {CeNW 82] and
[NCWD82], the problem of distributing a database schema over the sites of a distributed
databases has been considered under different assumptions and stressing different aspects.

Also in the design, partitioning is a major concern of the project. [CeNP 82] deals with the
specification of requirements about the horizontal partitioning of logical database objects
(relations, record sets, files). The problem in the requirement specification is to determine a
set of predicates which are adequate to represent all the design alternatives for horizontal
partitioning; the paper introduces the notion of completeness and minimality of a set of
predicates. In [CeNW 82] the result is reported of research conducted at Stanford University
on the distribution of a database schema. Several candidate horizontal pamtlomngs are
considered for each database object in the schema; a mathematical model is developed for
optimizing the choice of horizontal partitions, minimizing the overall transaction execution
costs. The model determines the optimal solution with non-replicated fragments; replication
is then introduced using an heuristic approach.

The vertical partitioning of database objects has been considered in [NCWD 82], which also
reports the results of research conducted at Stanford University. Several algorithms are
proposed for the vertical partition and allocatlon of database objects, either with or wnthout

replication. '

Previous papers have dealt with distributed database design without considering partitioning.
[CePe 80a) describes how to evaluate the non-additive benefits that can be obtained by
replication of resources; [CeMP 80] gives a simple model for file allocation that applies to
networks of minicomputers.

Our concern will be to integrate all these approaches into a single, parametric design tool
that will have very general capabilities.

References

[PeSc 79] G. Pelagatti, F. A. Schreiber: Evaluation of Transmission Requirements in
Distributed Database Access, Proc. ACM - SIGMOD Int. Conference, Boston, Ma., 1979.

[CeMP 80] S. Ceri, G. Martella, G. Pelagatti: Optimal File Allocation of a Distributed Database
on a Network of Minicomputers, Proc. int. Conf. on Databases, Heyden P. Co., Aberdeen,
July 1980. .

[CePe 80a) S. Ceri, G. Pelagatti: A Non-additive Resource Allocation Model in Distributed
System Design, IEEPM Report n. 15-80, to appear on Information Processing Letters.

[CePé 80b] S. Ceri, G. Pelagatti: Correctness of Read-Only Transactions in Distributed
Databases, IEEPM Report n. 16-80. '

[CePe 81] S. Ceri, G. Pelagatti: An Upper Bound on the Number of Execution Nodes for A
Distributed Join, Information Processing Letters, vol.12 n.1, 1980.

[MaRS 81] G. Martella, B. Ronchetti, F.A. Schreiber: Availability Evaluation in Distributed
Database Systems Performance Evaluation, vol. 1, no. 3, 1981.

[Schr 81] F. A. Schreiber: State Dependency Issues in Evaluating Dustnbuted Database
Avan]abmty, |IEEPM Report n. 10-81.

12

[CePe 82] S. Ceri, G. Pelagatti: Allocation of Operations in Distributed Database Access,
IEEE-Transactions on Computers, vol. C-32, n. 2, 1982. '

[CeNP 82] S. Ceri, M. Negri, G. Pelagatti: Horizontal Data Partitioning in Data Base Design,
Proc. ACM - SIGMOD Int. Conference, Orlando, Fl., 1982.

[CNOP 82] S. Ceri, M. Negri, G. Oldano, G. Pelagatti: Majority Locking in Distributed
Databases, IEEPM Report n. 20-82.

[CNOPP 82] S. Ceri, M. Negri, G. Oldano, G. Paolini, G. Pelagatti: The Run-Time System of
HERMES-1, IEEPM Report n. 14-82.

[COPP 82] S. Ceri, M. Negri, G. Oldano, G. Paolini, G. Pelagatti: A Dataflow Language for
Distributed Database Applications, IEEPM Report n. 19-82

[CeNW 82] S. Ceri, S. Navathe , G. Wiederhold: Distribution Design of Logical Database
Schemas, revised version, IEEPM Report n. 14-81, Stanford University Report n. STAN-CS-
81-884.

[NCWD 82} S. Navathe, S. Ceri, G. Wiederhold, J. Dou: Vertical Partitioning in Physical and
Distribution Design of Databases, working paper, Stanford University, Stanford,.CA 94305,

'[MaPS 82] G. Martella, B. Pernici, F.A. Schreiber: Distributed Database Reliability Analysis
and Evaluation, Proc. Second Symp. on Reliability in Distributed Software and Database
Systems, Pittsburgh, July 1982.

13

Distributed Database Management Research

at
Computer Corporation of America

Arvola Chan
Daniel R. Ries

Computer Corporation of America

1. Introduction’

Computer Corporation of America is strongly committed to research
that advances distributed database management technology. In this paper,
ve summarize the major distributed system development projects -in which
we have. recently been engaged. We also outline on—§01ng fundamental
research efforts that will enhance the capabilities of these systems.

2. SDD-1

. SDD-1, originally developed at CCA, has the distinction of being the
first general-purpose distributed DBMS ever developed [Rothnie80,
Bernstein80a, Bernstein80b, Hammer80, Bernstein8l]. SDD-1 is a distri-
buted, relational DBMS _that presents a logically centralized view of a
database to its users while supporting the underlying distributiom of
data and processing. SDD-1 1s _composed of functionally identical data
modules that are interconmnected via a_ computer network and that cooperate
in the processing of database queries and updates. The system permits
data to be stored redundantly at many modules 1n order to enhance the
overall reliability of the system, to improve responsiveness of the sys-—
tem to dgta access requests, to reauce communication costs 1n processing
transactions, and to fac;iitate modular and homogeneous upwards scaling
of database size. The Reliable Network subsystem of SDD-1 provides the
system with the_ capability of functioning correctly despite processor
and/or communications failures. A hlﬁh evel of survivability and
robustness 1is achieved through redundancy of computers, communication
lines, and data.

. A fundamental precept of SDD-1 is that users be able to interact
with the distributed system as easily as with a conventional, centralized
one. Thus, the complexities associated with accessing data stored at
remote sites are handled automatically by the system. Techniques have
been developed for optimizing distributed queries that reduce the commun-
ication cost in processing the queries. Techniques also have been
developed for updating data stored at multiple data modules in order to
permit efficient execution of wupdate transactions while ensuring that
updates cannot cause database inconsistencies. Other SDD-1 pioneerin
innovations include the notions of transaction classes and conflict grap
analysis. These notions can improve concurrency achievable in the system
based on knowledge of application characteristics,

The implementation of SDD-1 was completed in 1979.

3. Multibase

Multibase is a retrieval facility for interfacing local databases
that reside on different DBMSs at different nodes of a geographically
distributed computer network [Smith8l, Katz8l1, Dayal82a, Dayal82b,
Dayal82c, Landers82]. The Multibase facility will:

1. Provide high-level data definition and manipulation languages for
uniformly querying all data in the multiple databases.

2. Retain local autonomy for organizing and updating databases.

14

3. Ensure the continued validity of all existing application programs.

Multibase includes a powerful, high-level data manipulation language
for expressing global retrieval requests. Requests in this language are
automatically mapped to agpgoprlate queries over local databases. uch a
mapping must be expressed in a mapping language that is sensitive to the
subtle semantic qualities of the various databases and DBMSs. Because
more than one local database may store information about the same real
world object, the method by which "a global database is derived must
incorporate = techniques or resolving incompatibilities among these
representations. A key feature of the Multibase approach is ' that the
same language, called DAPLEX [$h15m3g81], is used for both manipulation
and mapglng. the global schema is defined as a view over DAPLEX versions
of the local databases.(l) In addition, a special integration database
contributes to the definition of the global schema. This is used to
record additional information (e.g. scale conversion formulas) needed to
resolve differences among individual local database descriptioms of the
same global objects. The issue of incompatible data handling and that of
"'homogenization" of the heterogeneous local databases are thus treated
separate1¥. The use of DAPLEX for both view integration and view manipu-
lation offers potential gains in the areas of data modeling and end-user
query capability.

Global retrieval requests are exgressed in DAPLEX without knowledge
of how data is distributed among databases or which fast access paths are
available for locating data in each database. A powerful optimization
strategy 1s therefore essential for mapping global requests into effi-
cient sequences of local operations. Multibase's global query optimiza-
tion strategy is based in part on the data reduction and data movement
techniques used in SDD-1 [Rothnie80, Bernstein8l]. That strategy _has
been augmented with additional techniques designed to handle generalized
objects and partially overlapping data. At the same _time, the hetero-
geneity of database systems introduces three additional factors that
affect query optimization. The different systems may vary widely in:

1. Local processing capability -- Even if the data were local, the
gper?§1ons required to achieve data reduction might not be supported
- locally.

2. Ability to operate on a block of data moved from another site —- This
affects the ability to do semi-joins.

3. Speed of performing local queries —- This affects the cost estimates.

An important technique in the Multibase approach is to parameterize
the different aspects of given database systems, so that they may be used
as input to the optimization strateﬁy. is avoids the expense of writ-
ing a separate optimizer for every database and / or DBMS.

. Local databases may contain overlapping and sometimes inconsistent
information. For example, one database may only batch update employee
addresses once a month, as opposed to another database that is updated
on-line. Similarly, separate local databases could contain separate,
duplicate portions of a person's salary. A Multibase database adminis-
trator can specify the conditions under which overlapping information ma
exist, and how that data is to be handled. The DBA may specify whic
ggtagase to wuse and how data from the different databases is to be com-
ined.

A "breadboard" implementation of Multibase was completed in _early
1982. A prototype system is beln§ 1m¥1emepted using Ada(2) as the imple-
mentation language, and is scheduled for completion in 1984.

(1) The DAPLEX versions of the local datgbases are straight forward
representation of the relations, hierarchies, or networks that exist in
the local databases.

(2) Aga is a trademark of the Department of Defense (Ada Joint Program
Office).

15

4. DDM

The DDM is a Distributed Database Manager that is designed to be
compatible with the Yrogrammlng language Ada [Chan8l, Chan82a, Chan82b,
Chan82c, Chan82d, Dayal82d, Ries82]. It is a_general-purpose distributed
DBMS that supports the composite lagﬁuage ADAPLEX, which results from the
integration of DAPLEX with_ Ada, e DDM provides transparency with
respect to location, replication, concurrency, and site failure. While
its functionalities are mostlx atterned after those of earlier research
prototypes 1like SDD-1 and R fW1lllam381], it goes beyond these earlier
systems in a number of respects. The novel features of the DDM include:

1. Support of DAPLEX. The DDM supports a core language for database
definition and manipulation called DAPLEX. DAPLEX supports the
notions of entities, functions and generalization hierarchies.
These high level concepts greatiy reduce the complexity of handlin
highly structured data. At the same time, DAPLEX uses a high~leve
predicate syntax that makes database selection expressions easy and
natural to write. The incorporation of fundamental constraints like
referential integrity and subtype ovetlag in DAPLEX provides new
challenges to efficient storaﬁe structure design .and access path
optimization. The use of DAFLEX also leads to the support of a ver
flexible scheme for data fragmentation and distribution. The DD

ermits clustering" of pairs of entities of two different types,
ased on the existence of a one-to-many relationship between the
entities in question. The 'clustered" entities are stored at the
same site to ensure locality of reference. Such "clustering" often
leads to "local sufficiency” [Wong8l] which can greatly improve query
processing efficiency.

2, Unique treatment of replicated data. The DDM distinguishes two kinds
of copies of a data object: regular and backup. Only regular copies
are synchronously uEdated° backups are updated in a batched mode 1in
the background. ach backup serves as a "warm" standby that can
readily be promoted to regular status when another regular copy fails
(to retain the desired level of resiliency). Response to update
transactions is improved since they can commit as soon as all _the
regular copies have been updated. Response to retrieval operations
is also improved in the DDM due to its use of a dynamic selection
strateg or the materialization of relicated data. This optimiza-
tion takes into consideration the requirements of individual transac-
tions and site availability.

3. Optimization for read-only tramnsactions. The DDM implements a
multi-version mechanism to eliminate conflicts between read-only
transactions and update transactions. Read-only transactions are
igaragteed to complete and are never blocked by update transactions.

ikewvise, no delays are ever caused by read-only transactions on
update transactions.

4. More robust and efficient recovery algorithms. The DDM design solves
a number of reliability problems not addressed in Erev1ous prototypes
like R* and SDD-1. R¥ uses a two—phase commit protocol [Gray78] that
is liable to block should the site that is coordinating the commit-
ment fail. SDD-1 makes use of backup coordinators to improve resi-
liency. No provision, however, 1s made in SDD-1 to allow for
gecoveri from the situation wherein the grlmary coordinator and all
its backups fail simultaneously. The DDM uses an improved version of
SDD-1's commit algorithm to permit automatic recovery from such "com—
mit catastrophes”. Whereas R* handles no replication, SDD-1 makes
use of a spooler mechanism to collect update messages destined to a
nonoperational site in order to facilitate the site's recovery. When
all the sEoolers for a given site fail at the same time, a spooler
catastrophe" 1is said to occur, and human intervention becomes neces-
sary for recovery. The DDM makes use of the audit trails at replica-
tion sites in order to recover a failed site. It is designed to
automatically recover from a '"total failure" situation wherein all of
the replication sites of a given data object have failed simultane-
ously. The DDM also employs an lncrementai site recovery strateg¥_to
sgeed ug the accessibility of data om a regoveglpg site.” The portion
of the data base that is stored at a site is divided into groups of
logically related fragments. Each fragment groug is then used as the
unit for recovery. As soon as the locally stored copy of a fragment
group has been’ rolled forward, that copy can be made accessible to
new transactions immediately.

16

... The DDM is being implemented in Ada for the K;rpose. of tramsporta-
bility, The initial system is targeted for the VAX machine under the VMS
operating system. It 1is scheduled for completion in 1984.

5. Further Research on Network Partition

General Eurpose distributed database systems usually restrict _the
operations that can take place during a network partition situation.
hese restrictions prevent different users from simultaneously updating
different copies of replicated data., Several types of database restric-
tions have been proposed. One type of restriction would be to prevent
all updates during communication failures. Another type of restriction
would be to allow updates only in a partition that contains a ''primary”
copy of the data. Yet another type of restriction is to permit a tran-
saction to perform the update only 1f a majority of the copies are acces-
sible 1in 1its partition. None of the progosed or existing distributed
database management systems is prepared to allow updates to copies of the
same data located 1n different partitions of the network. Thus, to
effectively use distributed databases in certain types of applications,
we must either assume that communications are completely reliable, or
extend the database recovery mechanisms to_ correctly restore mutual con-
slstenc{ to the copies when the partitions are reconnected. We are
currently investigating two approaches that would allow updates to con-
tinue during a network partition situation, and that would restore both
logical and mutual consistency after communications have been repaired.

Both approaches require the recording of auxiliary information dur-
1n§ the lifetime of a partition situation. When communications are rees-—
tablished, the partitions exchange their rgsgectlve ,auxiliary informa-
tion, = The aux1llarz information, along with predefined and applicatiomn
specific rules, are then used to restore consistency. The approaches
differ in terms of the auxiliary information that is recorded and in the
ways database consistency is restored.

The first approach, called log transformations, records a history of
the transactions that have been run during communication failures. After
communications have been restored, histories in the differemt partitions
are merged. Special predefined rules are used to determine the set of
transactions that have to be rerun or to be run differently. These rules
specify which types of transactions are commutative, which types of tran-
sactions overwrite other-tzpes of tramsactions, and any special type of
transaction that needs to be rua.

——

values when a network partition situations 1s detected. It also records
which values have been chan§gd during the life time of a partition. When
communications are reestablished, sites in different partitions exchange
their current values for data items that have been updated. These
current values and their corresponding values at the instigation of the
¥§rt1ton are then used to update the database according to the prespeci-
fied rules. This apgroach would call for rules for each tyge of data
item that can be updated. The rules specify whether to use the latest
data value, apply an arithmetic function to the data values from the dif-
ferent partitions, or run a specific application program in order to
restore mutual consistency.

The second approach, called data patch, records initial database

The use of either of these approaches requires several additional
research steps. _ Database administration tools are needed to specify
application specific rules for each approach. Guidelines are needed to
design_the databases and applications that make these approaches feasi- -
ble.” Furthermore, performance studies are required to determine the lim-
its of the frequencies and the durations of partition situations under
which these approaches are practical.

In addition to the log transformation and data patch approaches, we

are also investigating a hybrid approach that combines the two. We
gﬁﬁect to apply the result of this research to future development of the

17

6. Acknowledgements

. The SDD-1 project was supported by the Defense Advanced Research
Proaects AgencZ of the Department of Defense (DARPA) under contract
NOO039-77-C-007%4. The Multibase and DDM projects are jointly supported
by the Defense Advanced Research Pro%ects Agency of the Department of
Defense and by the Naval Electronics System Command” (NAVELEX) under con-—
tract N00039-82-C-0226. The study on network partition is supported b
the Defense Advanced Research Projects Agency of the Department o
Defense and is monitored by the Air Force Systems Command at Rome Air
Development Center under contract F30602-82-C-0037. The views and con-
clusions contained in this paper are those of the authors and should not
be interpreted as necessarily representing the official policies, either
expressed or implied, of DARPA, NAVELEX, or the U.S. Government,

7. References

[Bernstein80a] .

Bernstein, P. A., D. W. Shipman, J. B. Rothnje, Jr., "Concurrency Con-
trol in a System for Distributed Databases %SﬁD—l), ACM Transactions on
Database Systems, Vol. 5, No. 1, March, 1980.

[Bernstein80b]

Bernstein, P. A., D. W. Shipman, "The Correctness of Concurrency Control
Mechanisms 1in a System for Distributed Databases (SDD-1), ACM Transac-
tions on Database Systems, Vol. 5, No. 1, March, 1980.

[Bernstein8l]

Bernstein, P. A., N. Goodman, E. Wong, C. L. Reeve, J. B. Rothnie Jr.,
"Query Processing in a System for Distributed Databases (SDD~1J", ACM
Transactions on Database Systems, Vol. 6, No. 4, December, 1981.

[Chan81]
Chan, A., S. Fox, W. K. Lin, D. Ries, "The Design of an Ada Compatible
Local Database Manager (LDM)" Technical Report CCA-81-09, Computer Cor-

poration of America, November, 198l.

[Chan82a] . .
Chan, A., S. Fox, W. K. Lin, A. Nori, D. Ries, "The Implementation of an

Integrated Concurrency Control and ﬁecovery $cheme, ACM SIGMOD Confer-
ence Proceedings, 1982°

[Chan82b] . .
Chan, A., S. Danberg, S. Fox, W. K. Lin, D. Ries "Storage and Access

Structures to Support a Semantic Data Model!, YLDB Conference Proceed-
ings, 1982,

[Chan82¢]

Chan, A., R. Grag,_”lmplementing Distributed Read-only Transactions",
submitted for publication.

[Chan82d]
Chan, A., U. Dayal, S. Fox, D. R
Database Manager", to appear in

(Dayal82a]) L L
Dayal, U., H. Y. Hwang, "View Definition and Generalization for Database
Integration in Multibase —— A System for Heterogeneocus Distributed Data-

bases!, Proceedings of the Berkeley Workshop on Distributed Data Manage-~
d Computer N 1987,

ies, "DDM: An Ada Compatible Distributed
oMPCON Digest of Papers, 1983.

ment an etworks,
[Dayal82b]

Dayal, U., N. Goodman, "Query Optimization for CODASYL Database Sys-
tems", ACM SIGMOD Conterence Proceedin s, 1982, -

[Dayal82c] .] .) . .
Dayal, U., "Global Optimization Techniques in Multibase", Technical
Report, Computer Corporation of America, in preparation.

[Dayal82d] .
Dagal, U., N. Goodman, R. H, Katz, "An Extended Relational Algebra with
Control over Duplicate Elimination". Proceedings of the ACM Symposium
on Principles of Database Systems, 1982,

18

[Gray78]

Gray, J. N,, "Notes on Database Operating Systems", Operating Systems:
An Aavanced’Course, Spring-Verlag, 1978. ’

[Hammer80]

Hammers %., D. Shipman, '"Reliability Mechanisms for SDD-1: A System for
u

Distributed Databases”, ACM Transactions on Database Systems, Vol. 5
No. 4, December, 1980.

[Katz81]

Katz, R. H., N. Goodman, T. A, Landers, J. M, Smith, L. Yedwab, "Data-
base Integration and Incompatible Data Handllng in Multibase -- A system
for Integrat1ng Heterogeneous Distributed Databases'", Technical Report
CCA-81-06, Computer Corporation of America, May, 1981,

[Landers82]

Landers, T. A., R. L. Rosenberg, "An Overview of Multibase", Distributed
Data Bases, H. J. Schneider (editor), North-Holland Publlsﬁlng Company,

[Ries82]

Ries, D., A. Chan, U. Dayal, S. Fox, K. Lin, "Decompilation, Optimiza-
tion, and Pipelining for ADAPLEX: A Procedural Database Language",
Technical Report, Computer Corporation of America, in preparation.

[Rothnie80])
Rothnie, J. B., Jr., P. A. Bernstein, S. Fox, N, Goodman, M. Hammer, T.
A. Landers, C. Reeve, D. W. Shipman . Wong, "Introduction to a System

for Distributed Databases (SDD-1)", AcM Transactions on Database " Sys—
tems, Vol. 5, No. 1, March, 1980.

[Shipman8l]

Shipman, D., "The Functional Data Model and the Data Lanﬁuafe DAPLEX",
ACM Transactions on Database Systems, Vol. 6, No. 1, March, I98l.

[Smith81]
Smith, et. al., "Multibase -- Integratin Heterogeneous Distributed
?sgfbase Systems", Proceedings of the ational Computer Conference,

[Williams81]) i

Williams, R., D. Daniels, L. Haas, G. Lapis, B. LlndsaK P. Ng, R. Ober-
marck, P. Selinger, A. Walker, P, Wilms, R. Yost, " *. An Overview of
fhe Architecture'", RJ3325, IBM Research Laﬂoratory, San Jose, December,

[Wong8l] . . . o :
Wong, E., '"Dynamic Re-materialization: Processing Distributed Queries

Using Redundant Data", Proceedings of the Berke%e Workshop on Distri-
dp 2d Computer N “To8T,

bute ata Management and Computer Networks,

19

SURVEY OF CURRENT RESEARCH AT PRIME COMPUTER, INC,
IN DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

Deborah DuBourdieu

Prime Computer, Inc.
500 01d Connecticut Path
Framingham, Mass. 01701
(617) 879-2960 ext. 4015

The major focus ot research into distributed database systems at
Prime is an on-going investigation of support ror aistributed
transactions [DUB0O82]. The current areas of concentration are
improved algorithms for multi-~version distributed retraieval
transactions and performance tuning.

Prime has a solid foundation for the support of distributed
systems in its network, Primenet (TM), which provides complete
local and remote network communication services for all Prime
systems [GORD79]. Our database management system 1s
CODASYL-compliant and provides full recovery, interactive
database administration, and an interactive query language/report
writer, 1In developing a distributed DBMS we have concentrated
first upon distributed transactions.

The synchronization technique we use 1is two-phase locking
[ESWA76] but it need be obeyed only by update transactions. For
transactions which are read-only, we employ an optimization of
this technique which uses multiple versions of data items, An
early developer of this technology was Christopher Earnest,
currently of Prime Research, Multiple versions in the context of -
timestamp~-ordering is discussed in [BERN81], and a system whose
multi-version technique is based on ours is found in [CHANS82],

The multiple version technique <capitalizes on the ract that
read-only transactions require simply that reads be repeatable
(computationally equivalent), seeing the output of the same write
operation each time the same read is performed, Each data item
can be thought of as having its complete update history available
(though in actuality this history is maintained only as far back
as is necessary to satisfy possible requests). These previous
versions are actually the same versions generated by update
transactions in order to permit dynamic transaction abort after a
concurrency conflict, so no extra work is done except to preserve
the old 1images as long as there is a read-only transaction which
might make use of them, rransactions receive unique
monotonically increasing transaction numbers which are
interpreted as version or generation numbers. When an update is
performed, the new value of the data item is stamped with the
transaction number of the transaction which wrote it.

When a read-only transaction begins it is given a heavily encoded

20

list of all transactions whose output is legal for it to read.
When it performs a read, the transaction number in the data block
is checked to see whether it is on the reader's list. If it is
not, a chain of pointers to previous versions which begins at the
data block is followed backwards in time until a version is found
whose transaction number does appear on the reader's list.

A distributed transaction is implemented as a group of 1local
transactions, one at each site the distributed transaction
visits, including the originating site. The Transaction Manager
at the originating site has extra responsibilities in that it
must send requests against remote data files to the correct site
and must coordinate events at start and end of transaction.

Locks are distributed, residing at the site with the data (we
have not yet investigated management of redundant data files).
This has the advantage of incurring the minimum overhead
associated with acquiring locks, since it does not have the
bottleneck problem and communication cost of a central lock
manager site, The problem of distributed deadlock prevention is
dealt with via the hybrid WOUND-WAIT algorithm |ROSE78].

This design works very efficiently for global updaters, who
simply acquire a transaction number at any given local site when
they first access a data file at that site, Global readers, who
still use the optimization of previous images, face a new
problem, They must acquire not Jjust one 1list of completed
transactions, but a list at every site where they access data,
and all of these must be consistent. A simple but relatively
inefficient method for synchronizing this activity is via a 1lock
which must be obtained by global readers when starting and by
global updaters when ending., We are investigating several more
efficient alternatives, including a variation on timestamp
~ ordering. -

Synchronization of the distributed transaction when it ends is
handled by a wvariation of the Two-Phase Commit protocol,
developed by Lampson and Sturgis in [LAMP76] and by Gray in
[GRAY78] . In the original statement of this protocol, an
important implication is that if the coorainator fails, then the
participants must wait for the coordinator's site to restart and
direct the participants to the conclusion of the transaction,
Using our variation, this wait is not necessary in the event that
all the other participants have survived and can communicate with
each other. In this case they can each exchange all the
information they have about the interrupted transaction. If any
of the participants received a commit, they will all decide to
commit, If none heard a commit, they will all decide to abort,
If not all participants survived, then the survivors will have to
wait as in the original protocol. This wvariation 1improves
geliability but at the expense of increased complexity in tne
esign, .

We have implemented almost the entire system, but have no

21

perrormance statistics yet. We have learned a great deal about
the network support needed by distributed transactions. We used
the network primitive of remote procedure call, with the
Transaction Manager at the originating site taking the role of
master, and each remote site taking the role of slave. We would
now prefer to use high-level network primitives composing a
complete interprocess communication service, This would
facilitate the peer-to-peer communication that takes place in the
(admittedly exceptional) case of coordinator failure discussed
above, as well as in other error conditions.

Areas for future 1investigation will include management of
redundant data files in the distributed environment, distributed
schema management, and distributed query optimization,

REFERENCES

[BERN81] Bernstein, P. A,, and Goodman, N., "Concurrency Control

in Distributed Database Systems," ACM Couputing.SULYEYS,
June 1981.

|CHAN82] Chan, A., Fox, S., Lin, W. K,, Nori, A., and Ries, D,
R., "The Implementation of An Integrated Concurrency
Control and Recovery Scheme," Proceedings, Int'l, Conf,
on Management of Data, June, 1982,

[DUBO82] DuBourdieu, D. J., "Implementation of Distributed
Transactions," Proceedings, 6th Berkeley Workshop on
Distributed Data Mgt. and Computer Networks, Feb.
1982,

|ESWA76] Eswaran, K, P., Gray, J. N., Lorie, R, A., and
Traiger, I. L., "The notions of consistency and
predicate locks in a database system,” Cououpnicatiops
ACWe, Nov, 1976.

[GORD79] Gordon, R, L,, Farr, W. W., and Levine, P., "Ringnet:
A Packet Switched Local Network with Decentralized

Control," Coupuker..letuerks, Vol. 3, No. 6, Dec.
1979.

| GRAY78] Gray, J. N., "Notes on database operating systems," in

QpeLating.. SystePsiw..BD..B0¥aDEed..COULSE, VOl, 60,

Lectuce.Netes.inwConputer.Science, Springer-vVerlag, New
York, 1978.

|LAMP76] Lampson, B., and Sturgis, H., "Crash recovery 1in a
distributed data storage system,"” Tech. Rep., Computer
Science Lab., Xerox Palo Alto Research Center, Palo
Alto, Calif, 1976.

[ROSE7¢6] Rosenkrantz, D, J., Stearns, R. E., and Lewis, P. M.,

"System level concurrency control ror aistributed
gatab§§$SSYStems’“ bCM.Ilrepnsacticns.en.Database.Systeus,
une .

22

DISTRIBUTED DATA USER'S NEEDS :

EXPERIENCE FROM SOME SIRIUS PROJECT PROTOTYPES

A.M. GLORIEUX, W. LITWIN
SIRIUS Project, INRIA, BP.105, 78153 Le Chesnay-Cédex, France
ABSTRACT
Two different approaches are presented and discussed. First the "Distribu-
ted Database Management System” approach where distributed data constitute
a single logical unit for the user (prototype SIRIUS-DELTA). Then the

"Multidatabase Management System” approach where distributed data consti-
tute a collection of databases (prototypes MRDSM and MESSIDOR).

1. INTRODUCTION

SIRIUS project was set up in 1977. The goal of the project was the design
of systems to manage distributed databases. SIRIUS was a, socalled, pilot
project. This meant that the resources and the objectives of the project
were larger than the ones of a typical research project. In particular, it
was required from the project to set up research on distributed data mana-
gement 1n French universities, to spread the knowledge of the domain within
the computer industry and potential users, and to design prototype(s) of
DDBMS(s) that would be sufficiently operational to be qualified for indus-
trial use. -

In order to respond to the objectives, several research studies have been
set up through contracts. These studies gave rise to many theoretical
results. The results have been published in virtually all important confe-
rence on databases and/or distributed systems (see the references in
[LEBI80], [LITW82]).

The analysis of user's needs showed the necessity of two types of systems.

On the one hand, users need systems to manage distributed data that consti-~
tute a logically single database. This will typically be the case when data
of a centralized database are distributed in order to improve performance
or to provide local data processing autonomy. It would also be the case
when it is desired to build the enterprise database as a database which is
the integration of pre-existing databases, managed by individual data pro-
cessing units that may be locally or geographically distributed. Changes to
data locations obviously should not imply changes to the existing applica-
tion programs.

On the other hand, users need systems to manage distributed data that cons-
titute a collection of databases. Typically, these databases will be inde-
pendently created. A collection may involve hundreds of databases that may

23

use different data models. Users of EURONET that interconnects more than
300 heterogeneous bibliographic databases need such a system. It is also
the case of users of hundreds of databases offered by videotex systems like
TELETEL (France), PRESTEL (UK) or many others under comnstruction.

In SIRIUS, a system of the first type has been called distributed database
management system (DDBMS). A system of the second type has been called
multidatabase management system (MDBMS). We will present the possibilities
that, in our opinion, such systems should offer to users. We will also
shortly present the techniques that we implement in order to provide these
possibilities. These techniques characterize SIRIUS-DELTA prototype that
is a DDBMS, or MRDSM and MESSIDOR prototypes that are MDBMSs for, respec—
tively, relational and bibliographic databases. SIRIUS-DELTA and MESSIDOR
give now rise to the corresponding commercial systems. MESSIDOR is, in
particular, in experimental use at INRIA library.

2. DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

The main new possibilities that a DDBMS should provide to users are, in
our opinion, the following ones

2.1.1. The user is not aware of data distribution

The DDBMS is responsible for the identification of all data objects invol-
ved in the user's request, their localization and selection of the proper
copy(ies), 1f any. In addition, the DDBMS should be able to handle requests
from pre-existing query languages on the submitting sites.

In SIRIUS-DELTA this is achieved using first schemas assoclated to the DDB
and related local DB's, next a common Internal data manipulation language :
the “"pivot-language”.

The "pivot-language"” is a relational algebra like language that includes
data selection operators (projection, restriction, join, union) and update
operators (create, delete, update).

A global conceptual schema presents to users the Distributed Database as a
logical single database. The Global Internal Schema contains the physical
characteristics of the DDB, mainly distribution rules and mapping rules
between global and local data on each local site. A local external schema
is associated to the DDBMS that provides the global level with an homoge-
neous presentation of local data, since local DBs may be heterogeneous.

2.1.2. Various types of data distribution should be available

In order to fit the application needs, various types of data distribution
and duplication must be provided and processed by the DDBMS. This is neces-
sary if one wants to provide some DDB design facilities and processing fa-
cilities (e.g.local and parallel processing optimization, usage of
preexisting local data).

A data distribution description language has been developped to describe
the necessary mappings between DDB data objects and local data objects and
the localization rules for these local data objects (data objects can be
distributed up to an attribute value).

24

2.1.3. Distributed data must remain consistent

When concurrent update requests are submitted on the same or on different
sites, the DDBMS must be able to keep consistent the related distributed
data.

A transaction is defined in SIRIUS-DELTA as a sequence of one or several
inquiries/updates enclosed by a BEG-TRANS and an END-TRANS. Distributed
data consistency is achieved thanks to a distributed concurrency system
that provides a unique naming of the transaction, maintains transaction
atomicity and controls local accesses to data objects using locks. A
2-phase locking protocol is implemented and resources are dynamically
requested in the transaction.

In case of failures, the transaction 1s completed or rolled-back according
to its current status of completion. Strong consistency 1is achieved, i.e.
all copies are updated or none.

2.1.4. System reliability must be achileved

In a distributed system the number of components (computers, links, etc.)
increases, thus increasing the global fault tolerance.

In SIRIUS-DELTA, system availability is achieved through a dynamic recon-
figuration procedure and local log files that hold distributed checkpoints.
This permits hot and cold restart procedures.

In addition, failure protection is achieved during transaction commitment.

2.1.5. Heterogeneity

Heterogenelty requirements result either from a wish to offer to users
flexibility on its configuration components and extensions, or from a wish
to make use, as much as possible, of pre-existing components :

- data processing units that can be interconnected

- local DBMSs or data managers (DM)

- local DBs or data files. __

Heterogeneity 1is allowed in SIRIUS-DELTA at hardware and software level.
At software level, heterogeneity at DBMS/DM level 1is taken into account
using the pivot-language. Heterogeneity at local DB or data files level
is taken into account using the local external views associated to the DDB.

2.2. System architecture

In SIRIUS-DELTA DDBMS we rely on an underlying transport layer. It provides
link control between two processes (message and flow control sequencing,
mesgage error-free delivery, signal message of site inaccessibility), and
an adaptative routing to network topological changes.

Four basic functional layers are defined above the tramsport layer, that
provides '

. database classical data management function ("DBMS" layer)

. distributed data handling functions (SILOE layer)

+ distributed concurrency control functions (SCORE layer)

. distributed execution functions (SER layer).

25

Each layer involves two components :

- a global component, that provides the unified view of a distributed
system

- a local component, that interacts with the global levels and the local
operating systenm.

Cooperation between the layers SILOE, SCORE and SER is codified via the

Distributed Execution Plan (DEP). A DEP is associated with each query.

All SIRIUS-DELTA layers must not necessarily be implemented upon all sites.
Different configurations may exist in order to fit with specialized data
processing needs and to distribute functionalities (global or local site
only, consumer site, etc).

SIRIUS-DELTA is implemented upon three INTERTECHNIQUE IN2000. Its con-
nection, through the local area network DANUBE, to HB68 with MRDS is under
testing, as well as the connection to connect PHLOX, a micro-computer the
DBMS of which relies upon a network data model and navigational language.

3. MULTIDATABASE MANAGEMENT SYSTEMS

The new possibilities that an MDBMS should offer to users are the follo-
wing ones :

Users should be able to formulate queries that address simultaneously data
from different databases. For instance, a query to two relational data-
bases, let 1t be RESTAURANTS and CINEMAS, asking for all the restaurants
and cinemas on the same street. Or a query to two bibliographic databases,
let it be INSPEC and PASCAL of EURONET, asking for all the documents
indexed with the key word SIRIUS. All the queries should be formulated
using a single language. If some databases are managed by systems using
different languages, translators to the common one should be designed.

The prototype MDBMS, that we called MRDSM, allows users to formulate multi-
database queries to a collection of preexisting relational databases,
managed by CII-HB commercial DBMS, called MRDS. The query language of MRDS
is an extension of the MRDS language that 1s very close to SQL. MRDSM
language allows, in particular, the users to employ database names in a
query. A query may produce a relation or a set of relations. Presently, the
multidatabase queries may only retrieve data, multidatabase updates are un-
der implementation.

The prototype system MESSIDOR allows one to formulate multidatabase queries
to bibliographic databases. The databases may be on different sites, or
they may be all on one site (ESA, QUESTEL). They may use heterogeneous data
manipulation languages (QUEST, MISTRAL). MESSIDOR provides however a sin-
gle language that 1s very close to COMMON COMMAND SET language. The latter
is recommended by European Community as the standard language for biblio-
graphic databases. It is more than likely that COMMAND SET will become the
world standard.

Presently, the difficulties related to different access procedures, langua-
ge heterogeneity and the work with several databases on one-by-one basis
discourage most of potential users of EURONET. Systems like MESSIDOR res-
pond to a strong demand and should overcome the present annoying state-of-
the-art. 26

3.1.2. Interdatabase‘dependencies

Users should be able to define dependencies between data that are within
different databases. These dependencies may, on the one hand, relate
meanings of the names, correspondance between units of measure, etc.

They may, on the other hand, correspond to the interdatabase consistency
constraints. In particular, they may relate replicated data.

We currently are investigating the corresponding implementation techniques,
using MRDSM system.

3.1.3. Multidatabase views

Users may need a view that presents jointly data that are within different
databases. In an enterprise, a multidatabase view may, for instance,
present selected vital data that are gathered from the major databases of
the enterprise. An MDBMS should also allow one to create a view of views or
of views and databases. Finally, it should allow multiview queries.

In order to create multidatabase views, we plan to use stored collections
of multidatabase queries. The corresponding investigations have just
started. We plan to implement the corresponding techniques on the MRDSM
system.

3.2. System architecture

MRDSM is implemented on a HB-68 computer. For MRDS, it behaves as a user,
i.e. no change to MRDS software 1s required. For MRDSM, the MRDS system

is the exclusive server of relational data and operations. If a join has

to involve data from different databases, then, in order to allow MRDS to
perform it, a working (temporary) database i1s created and filled up with

the necessary data. Typically, MRDSM destroys the working databases when

the multidatabase query is completed.

MESSIDOR is implemented on a MICRAL microcomputer. It is intented to be

a personal front—end MDBMS. A site considers the system as a usual termi-
nal, i.e. no site software modification 1s required. MESSIDOR may thus
potentially be used with any database server site.

4. CONCLUSION

We have presented the possibilities that systems managing distributed da-
ta should offer to users. The basic techniques that we have developed may
now be considered as validated and will satify many users. However, we
continue research effort, since the gap between what we may presently of-
fer to users and their needs still remains large.

NOTE
SIRIUS projet 1s supported by Agence de 1'Informatique (ADI)
REFERENCES

[LEBI8CG] J. LE BIHAN & al. : "A french nationwide project on distributed
data bases™, Proc. 6th VLDB, Montreal, October 1980, 75-85

[LITW82] W. LITWIN & al. : "SIRIUS systems for distributed data
management”, Proc. of 2nd Int. Symp. on Distributed Data Bases,
Berlin, september 1982, 27

R*: A RESEARCH PROJECT ON DISTRIBUTED RELATIONAL DBMS

L. M. Haas, P. G. Selinger, E. Bertino, D. Daniels, B. Lindsay,
G. Lohman, Y. Masunaga, C. Mohan, P. Ng, P. Wilms, R. Yost

IBM Research Lab
San Jose, CA 95193

Abstract

The three main goals of the R* distributed database system--ease of use,
site autonomy and performance--are described. Our progress in meeting
these goals, the current status of our project, and future directions of
our research are also discussed.

1.0 INTRODUCTION

The experimental R* project at the IBM Research Laboratory has as its goal
the development of a distributed database management system (DDBMS)
meeting three key objectives: ease of use, individual site autonomy, and
reasonable performance. These three objectives have different
implications for a system architecture.

Local autonomy 1is essential in an environment where sites and
communication lines may fail. To achieve resilience to failures of sites
and communication lines, there can be no reliance on centralized functions
or services, such as a global dictionary, or a centralized deadlock
detector. Site autonomy is also essential to preserve organizational
domains of responsibility in the DDBMS network. This implies that sites
should perform all operations on their own data: their own binding of
print names to internal names, their own decomposition of compound objects
(such as relational views), and their own authorization checking, and of
course, their own database accesses and updates. Site autonomy is most
easily achieved in a system where databases are loosely coupled and
separately managed.

As opposed to autonomy, ease of use and reasonable performance are both
most easily obtained when the databases of a system are tightly coupled
and centrally managed. That architecture would make it relatively simple
to present the user with a single system image, making the distributed
DBMS as easy to use as a single site DBMS. Better performance is also
easier to achieve in a tightly coupled system where global optimization
can be more easily applied. Most prototype distributed systems have a
reputation for being slow. If distributed database technology is to be
viable, the distributed database management system must be built with
careful attention to reasonable performance for typical user operations.

How can a single DDBMS reconcile the conflicting architectural demands
made on it by- these three objectives? Can ease of use, autonomy and
reasonable performance all be achieved by the same DDBMS? These are the
questions which R* attempts to answer. The remainder of this paper gives

a brief summary of the current status of R¥, the progress that it has made

28

in answering these questions, and the directions that additional research
may take in the future.

2.0 R* OVERVIEW

R* is an experimental distributed database management system being
designed and implemented at IBM Research to explore issues involving
relational data in a distributed environment. R* consists of a
confederation of voluntarily cooperating sites, each supporting a
full-function database system and communicating via messages.

R* consists of four primary subsystems. The storage ‘subsystem is
concerned with the actual storage and retrieval of data, which are
represented as relatively low level objects at a single site. The data

communications component provides message passing services. The
transaction manager coordinates the implementation of multi-site
transactions. A database language processor translates programs

expressed in the SQL data definition and manipulation language [CHAM76]
to operations provided by the communication and storage systems. More
details can be found in [WILL82], [DANI82], [NG82].

The R* prototype is currently running on a single CPU, with several R¥
databases communicating within and between address spaces. Next month, R*
will be installed on several machines in our laboratory. Several R¥*
systems will run on each machine, communicating with other systems on the
same and on different machines using IBM's System Network Architecture.

3.0 R* EASE OF USE

R* is an extension of the relational capabilities provided by System R to
a distributed environment. Users make requests to System R in the
non-procedural language SQL. As user comments indicate [CHAM80], System R
was considered easy to use; hence it was logical for R* to continue using
the SQL language as a user interface. This provides the user with the
basis for a single site image, as the same commands are used to perform
actions on both remote and local tables. Database administrators could
use synonym files for table names to protect the user from any knowledge
of the distributed nature of the system.

4.0 R* AUTONOMY

The next issue to be addressed is that of site autonomy. The principal
technique that R* uses to achieve autonomy is decentralization. Deadlock
detection, recovery, locking, catalog management, and compilation are all
performed either locally or in a decentralized manner. No service is
centralized. In this way, users at each site are never prevented by any
other site from performing any data definition changes they wish to their
own local data: revoking authorization, creating indexes, etc.

This decentralization also leads to a certain degree of resilience. For
example, the high level query execution strategies produced by the query
optimizer at the user's site are sent to the other sites which will do
work to answer the query. At these sites, another compilation takes place

29

to compile that site's code for its portion of the query, consistent with
the external constraints of the global plan. If some change later occurs
at these subsidiary sites, they merely mark their local piece of work
invalid, without disturbing any other site. When the query is next
executed, that portion of the query will automatically be recompiled.

5.0 R* PERFORMANCE

We can now address the final issue in our triumvirate: performance.
Compilation is a key to the performance of the System R single site
relational database management system [CHAM81]}. R* has also adopted
compilation techmiques to improve performance. In R*, query compilation
is a distributed operation which involves all of the sites participating
in the execution of a multi-site query. The principal issues arise in the
area of catalog management, global vs. local query optimization, the level
of communication between sites at both compilation and execution time, and
recompilation after changes. R¥* has local catalogs for local objects,
does remote catalog lookup as necessary, and caches the catalog
information it acquires, thereby avoiding another remote lookup for
subsequent queries on the same remote object.

Query optimization is performed globally by exhaustive search, using
careful pruning techniques to keep the search tree from becoming too wide.
Because we are convinced that simple queries can be optimized trivially,
and that complex queries have a substantial local processing component in
their cost, the R¥* query optimizer minimizes a cost which is a weighted
sum of both messages and local processing [SELI80]. Once an access plan
is chosen, the site which performed the query optimization (the one where
the user is located) then sends out a very high level representation of
the work to be done to the sites which will participate in the query
execution.

Two factors affect the goal of performance at execution. The first is
that most of the work to set up the query at each site--to check
authorization, check semantics, choose an access path, and produce
code--was done at compile time. Consequently, the only setup needed at
execution time is retrieval of the compiled program at each site and
verification of the user’'s authorization to run it. Since code was
generated at compile time, each site already knows what it should do.
Consequently the control messages flowing at execution time are very
short: 'startup", "stop', "commit', etc. The data that flows between
sites to participate in the query result is blocked into large messages.

The second factor which enhances performance at execution time is
parallelism. Most of the R* query processing methods, particularly the
join methods, call for parallel execution at the sending and receiving
sites. This means that while the sender is sending the second
message-full of query (or intermediate query) answers, the receiving site
is processing the first message-full. In this way, a sequence of sites
can operate an "'assembly line" to produce answers for a join, for example.

Any change to an object on which a query execution strategy is based
(relations, access paths, authorizations) invalidates that portion of the
strategy which is executed at the object's site. Some changes, such as
migration of a relation, require distributed recompilation and

30

reoptimization of the entire query. Others, such as dropping an access
path, can always be rectified by a local recompilation of the invalidated
portion of the query strategy. While local recompilation is less
expensive than distributed, global recompilation, it may on some
occasions lead to substantial degradations in query performance. By
examining the original strategy and using heuristics, R* can identify
these occasions and do a distributed re-optimization of the entire query.

6.0 ONGOING RESEARCH IN R¥*

Having demonstrated to ourselves that R* can achieve performance, ease of
use, and autonomy within the same system, our future research will
concentrate in two areas: adding more function, and evaluating the
technology we have invented.

We already have much of the SQL language working in a distributed
environment. All the data definition statements are running, as well as
insert, update, delete, and select on single tables and joins, including
the use of aggregate functions. More complicated queries (such as
subqueries and table migration) are expected to follow shortly.

Some relational ideas, however, have new interpretations in a distributed
environment. For example, we perceive the need for opaque views that can
only be decomposed by the sites which define them, rather than by any
query optimizer. A new kind of object which we believe should be
incorporated into R* is called a snapshot [ADIB80]. Snapshots contain a
recent copy of some other object(s) which is refreshed periodically by the
DDBMS. R* will also include replicated data and partitioned data. These
new data types can lead to interesting conflicts between the need for site
autonomy and the desire for good performance. A major objective of the R¥*
implementation of these objects will be to reconcile these goals.

A number of commit protocols are being developed for our very general
model of distributed transaction execution. These protocols are intended
to minimize the number of log records written and the number of times the
records are written synchronously to stable storage. Optimizations are
also being introduced for read only transactions.

One of the major problems faced by the implementors of any distributed
system is debugging. Test buckets which can effectively test distributed
function must be developed. In addition, some tool is needed for
pinpointing bugs when a test bucket fails. For the R* project, this has
meant a tool which allows a user sitting at one terminal to interact with
normal debugging facilities to look at any R* process running on any
machine in the R* network.

Another area that is receiving considerable attention at IBM Research is
high availability. A research project has been formed to study
availability issues as they relate to database systems and to build a
prototype of a loosely coupled local network of medium to high-end
processors. A collection of R%'s running on these processors, each
managing a partition of the database, will provide a single database image
to the user. If a DB system fails, it may be restarted in the same or in a
different processor. In the latter case, provisions exist for directly
- accessing the physical media from the new processor.

31

Now that considerable function is running in R*, we intend to explore the
properties of the algorithms we have chosen to implement. For example, we
will install R* on several machines in our laboratory and evaluate its
performance there. The performance properties of join algorithms will
also be investigated, and we may, as a result of our observations, choose
to implement more join methods and discard others.

In conclusion, we are beginning a new phase of design on the R* project
while continuing to evaluate the prototype we have already built.

Bibliography

Adiba, M. E. and B. G. Lindsay. 'Database Snapshots", Proceedings Sixth
International Conference on Very Large Databases, Montreal, Canada,
October 1980, pp. 86-91 (also available as IBM Research Laboratory RJ2772,
San Jose, Calif., July 1980).

Chamberlin, D. et al. "Support for Repetitive Transactions and Ad-hoc
Queries in System R". ACM Transactions on Database Systems Vol. 6, No. 1,
March 1981.

Chamberlin, D. "A Summary of User Experience with the SQL Data
Sublanguage'. IBM Research Report RJ2767, San Jose, California, March
1980.

Chamberlin, D., et al. "SEQUEL 2: A Unified Approach to Data Definition,
Manipulation, and Control", IBM Journal of Research and Development. Vol.
20, No. 6, Nov. 1976, pp. 560-575.

Daniels, D. "Query Compilation in a Distributed Database System', IBM
Research Laboratory RJ3423, San Jose, Calif., March 1982.

Ng, P. '"Distributed Compilation and Recompilation of Database Queries"
IBM Research Laboratory RJ3375 San Jose, Calif., January 1982.

Selinger, P. G. and M. Adiba, '"Access Path Selection in Distributed
Database Management Systems', Proceedings International Conference on
Data Bases, ed. Deen and Hammersly, University of Aberdeen, July 1980, pp.
204-215 (also available as IBM Research Laboratory RJ2883, San Jose,
Calif., August 1980).

Williams, R. et al., "R¥*: An Overview of the Architecture", Proceedings of
the International Conference on Database Systems, Jerusalem, Israel, June
1982. Published in Improving Database Usability and Responsiveness, P.
Scheuermann, ed. Academic Press, NY, pp.1-27.

32

-
-

THE DISTRIBUTED DATABASE SYSTEM VDN

Rudol1f Munz
NIXDORF COMPUTER AG

Berlin, West-Germany

1. Introduction

The distributed database system VDN (a german acronym for distributed
database system Nixdorf) is currently under development within Nixdorf.
Its main goals are to provide an easy to use, comfortable relational
database system which is able to administer data stored on different
nodes of a computer network. As a distributed database system it will
provide all features stated in /TRAI 82/, namely

- Location transparency: although data are geographically distribu-
ted and may move from place to place, the programmer can act as if
all data were in one node.

- Replication transparency: although the data may be replicated at
several nodes of the network, the programmer may treat the item
as if it were stored as a single item at a single node.

- Concurrency transparency: although the system runs many transac-
tions concurrently, to each transaction it appears as if it were
the only activity in the system.

- Failure transparency: either all the actions of a transaction occur
or none of them occur. Once a transaction occurs, its effects sur-
vive hardware and software failures.

VDN is not restricted to a certain type of network, that is geographi-
cally distributed or local area network. It assumes that virtual commu-
nication links exist between any pair of nodes in the network and uses
a simple transport protocol. VDN does not assume a reliable network
(see /HAMM 80/) but copes with all aspects of an unreliable delivery
of messages.

VDN is written in ISO-Pascal. The current implementation is based on
Intel 8086 microprocessors. Because of the portability of the system
it can easily be moved to other processors and operating system en-
vironments.

33

2. VDN Objects

VDN distinguishes between five types of data objects:
records, fields, groups, subsets and 1links. 5

Records consist of a linear sequence of fields. A record type is de-
fined by specifying a list of all fieldnames and their datatypes. For
each record type there exists a primary key, consisting out of one or
more record fields. Record fields can be mandatory or optional. VDN uses
only two datatypes, namely NUMBER and CHAR with length attributes. For
each field, value restrictions can be formulated using an interval or
enumerating all legal field values. :

Groups form a one level aggregation of field names and serve mainly as
a shorthand for a list of record fields. Different group definitions
are allowed to contain the same record field.

Subsets are specified by a query-like qualification of a subset of a
record type. If a file is considered as a relational table, subset de-
finitions allow for a horizontal partitioning of that table. Subset de-
finitions may overlap.

Links are a shorthand for join expressions in the relational sense. That
is, those joins which are know at database design point or which become
important during the use of the system can be specified and named. In
addition to this, it is possible to construct and maintain access paths
for these static joins.

As can be seen, VDN is not a purist's implementation of the relational

model. We felt free to incorporate useful features of other data models
without sacrificing the advantages of the relational approach.

3. VDN Functions

The administration of the VDN system is completely freed of the physical
aspects of secondary storage organization. Secondary storage 1is seen

as a "black box". The only decisions concerning the physical database
design are the construction of secondary indexes and the support of
links. A1l other physical design decisions are handled by the system.
That is, the database administration has to specify only the logical
aspects of its database.

The application programmer gets the usual insert, delete and replace
functions together with commands to control the begin, end or abort
of a transaction. Locking (shared or exclusive) has to be stated ex-
plicitly by the application programmer. It is possible to specify that

an application program does not want to wait for al lock release in !
case of a lock collision. 8
The retrieval functions are distinguished between single record access Y

and record set access functions. Single record access is provided by
a set of ISAM-like commands based on key ordered records. For record
set accesses a SQL-1ike SELECT command is provided which creates a
temporary result set. This result set can consist of fields out of
different records (glued together by either static or dynamic joins)
and is ordered according to the specified order criteria.

34

o

Distributed Queries, are split into subqueries using the definitions
of data distribution provided by the database administration. The
node where the query in entered controls the processing. Semi-joins
initiated by this node are used to implement a join between different
nodes.

The reason for separating single record access and record set access
is that this separation is more convenient in an application program.
Accessing all members of a result set is particularly clumsy if this
set consists of only one member. In addition to this in many applica-
tions accesses via the primary key are dominating.

VDN users are separated into different user classes with associated

privilege definitions. These privileges allow the control of all VDN
commands down to the record field level.

4. Data Distribution

Subsets (horizontally partitioned relations) are the units of data
distribution in VDN. Note that subset definitions are a shorthand for

a qualification. The placement of a subset is a subsequent action.

The subset definitions can exist without the subset being placed.

This is necessary as subset definitions are allowed to overlap and need
not to cover a record type. These rules are more comfortable than the
fragment concept used in /ROTH 80/. The two level existence of subset
definitions allow an application to use its knwoledge about data distri-
bution without becomming dependent on it.

Redundancy can be created by overlapping subset definitions or by assig-
ning the same subset to different nodes. The placement of subsets can

be changed without affecting application programs. A subset can even

be displaced without deleting the records it contains. In this case,

all records of the subset are moved to the "rest" subset which exists
for each record type. The "rest" subset contains all those records for
which no subset placement definition applies.

Copies of data are updated simultaneously. At the end of a transaction
all redundant data in the system are in the same state. There is however
a mechanism to postpone the updating of copies by "disconnecting" a
node from the network. In the disconnected mode, a node can read all
locally available data but update only those of which no copies exist
at other nodes. These redundant data will remain unaltered until
"reconnect" is given which brings the local copies to the network-wide
newest state. This disconnect-reconnect mechanism is useful for appli-
cations where data can be actualized on a day to day basis and an imme-
diate actualization is not necessary. This provides some sort of site
autonomy, however in another sense than used in /DANI 82/.

35

5. Application Philosophy

In geographically distributed networks a distributed database system
supports tasks with a decentralized nature and thus a strong locality
behaviour of data accesses. We assume in such an environment that 80 %
of all accesses or updates concern only the local node and that the
remaining 20 % involve other nodes. In VDN the price for maintaining
copies increments by the same amount for each copy. In commercial en-
vironments we assume that if any copies are maintained one additional
copy will be the normal case.

Distributed databases will play an interesting role in local area net-
works consisting of workstations and servers. The concept of a distri-
buted database allows an easy and transparent replication of a database
server for performance and reliability reasons. The actual data distri-
bution and the locality behaviour of data accesses are of minor impor-
tance in local area networks. Distributed database systems can also
provide the coupling of different local area networks via a common data-
base. In this case, the database server implicitly acts as a gateway to
another network.

Future research is concentrating on a database design aid, and user in-

terfaces based on natural language and the integration of office infor-
mation system requirements into VDN.

6. References

/DANI 82/ D. Daniels et al.:
An Introduction to Distributed Query Compilation in R*,
Distributed Data Bases (ed. H.-J. Schneider), North-Holland
1982

/HAMM 80/ M. Hammer, D. Shipman:
Reliability Mechanismus for SDD-1: A System For Distributed
Databases, TODS, Vol. 5, No. 4, December 1980

/ROTH 80/ J.B. Rothnie et al.:
Introduction to a system for Distributed Databases (SDD-1),
TODS, Vol. 5, No. 1, March 1980

/TRAI 82/ I.L. Traiger et al.:

Transactions and Consistency in Distributed Database Systems
TODS, Vol. 7, No. 3, September 1982

36

ENCOMPASS

Evolution of a Distributed Database/Transaction System

John Nauman - Tandem Computers Incorporated
19333 vallco Parkway
Cupertino, Ca. 95014
(408) 725-6000

ABSTRACT

ENCOMPASS is a database and transaction management system that
provides Tandem customers high-level software to develop and install
on-line transaction processing applications in a distributed
environment. This paper outlines the existing parts of the ENCOMPASS
product set and then discusses some of the work currently underway in
each of the areas to provide further capabilities in the distributed
database and transaction environments.

An Outline of ENCOMPASS

Tandem Computers developed the industry”s first commercially available
fault-tolerant computer system designed for on-line transaction
processing [BART78]. The term "transaction", as it is used here,
indicates a business action requiring interaction between an end user
(bank teller or customer) and the data stored in the computer system
[GRAY81]. An example of a transaction would be a bank customer”s
interaction with an automated teller machine. Typical applications
for Tandem customers are characterized by the need 'to support such
transactions in real time and the need to have the system tolerate
faults in both the hardware and the software. Many Tandem customers
make use of the system”s inherent capabilities for modular expansion
and distributed processing. These include two to sixteen processors
connected (via a 13 million bit per second inter-processor bus) to
form a node and up to 254 of these nodes connected in a 1long-haul
network. A Tandem network features automatic route-through, reroute
in case of a 1link failure, and best path selection. The network
topology and line type/speed can be chosen by the installation to best
match its requirements. The distributed aspects of the system, in
both the database and transaction processing areas, are the topics of
this paper.

Current Products

ENCOMPASS, the database portion of the Tandem NonStop (TM) computer

The following are trademarks of Tandem Computers Incorporated: Tandem,
NonStop, ENCOMPASS, ENSCRIBE, ENFORM, PATHWAY, ENABLE, and TRANSFER.,

37

system software, is composed of the following individual products:

ENSCRIBE (file system)

TMF (transaction monitoring)
DDL (Data Definition Language)
ENFORM (query/report processing)
PATHWAY (application environment)
ENABLE (application generation)
TRANSFER (delivery system)

ENSCRIBE provides access to the data stored in the database. Data can
be stored in any of several storage organizations. The data and
associated indexes can be physically distributed across any of the
processors within a single node or across geographically distributed
nodes. Application programs can access the data without regard for
its geographical location. ENSCRIBE performs all processing necessary

to locate the data within the Tandem network, however, since only one
copy of the data actually exists, some network delay may be

experienced if data 1is located at other nodes of the network. The
data model supported by ENSCRIBE is the relational data model. The
lack of embedded structure in the relational model is critical to the
system”“s distributed capabilities, allowing the data to be accessed
and moved within the network with relative ease.

The Transaction Processing Facility (TMF) supports the database
aspects of the system by providing reliable transaction processing for
applications running within the system [BORR81]. This processing can
include access to one or more databases on a single node or
distributed throughout a network. For transactions processing both
local and distributed data, TMF guarantees the database modifications
of an application program will occur consistently -- that 1is,
modifications will either occur in all databases and nodes affected or
none of them. This is done with a two-phase commit protocol for
transactions. The installation may choose this transaction
consistency by specifying that TMF 1is to control access to the
database files. TMF is integrated with Tandem”s languages and
utilities to allow the installation to easily make use of the
capabilities.

Data Definition Language (DDL) is a passive data dictionary that
allows the installation to describe its databases, whether 1local or
distributed. The dictionary which describes the databases may reside
at a single node or may be replicated at multiple nodes of network.
DDL also aids in the generation of the underlying ENSCRIBE files, and
produces record declarations, that Tandem”s programming languages can
use. In addition, Tandem”“s high 1level database products access the
data dictionary directly.

ENFORM is a query and report product that offers a relational
interface for specifying queries about data stored in one or more
databases. Since ENFORM access to files is via the ENSCRIBE
interfaces and, since the descriptions of the records come from the
data dictionary, ENFORM can support gqueries or reports -about data
physically distributed across the network. The typical ENFORM query

38

might involve joining of files from different nodes of the network,
and then selecting and projecting the desired information £rom the
relation thus formed. The binding of the query to the data itself is
done during the processing of the query by utilizing information in
the data dictionary. Because of this binding method, data may be
moved about in the system with minimal impact to existing installation
queries or reports. ENFORM consists of two distinct processes -~ a
front end compiler and report writer and the back end query processor.
The front end contains the logic to compile the queries and to form
the requested reports. The back end contains the heuristic techniques
that perform strategy selection, optimization, and access the
pertinent relations. Because these processes can run separately,
query processing itself can be distributed to different network nodes.

PATHWAY provides the system”s environment for distributing
transactions. PATHWAY separates the application into requestors
(which handle terminals and are coded in a language <called Screen
COBOL) and servers (which provide the database capabilities). Servers
can be written in any of the TANDEM supplied languages, but are most
typically written in COBOL. The requestors and servers, once written,
can run in different CPUs and even in different nodes of the network
with no change required to the application itsel€f. The ability to
geographically distribute the application processing in conjunction
with the reliable transaction and database aspects of TMF, gives the
installation an additional level of flexibility when deciding how best
to distribute the work.

ENABLE is an application generator driven almost entirely from the DDL
description of the database (local or distributed). ENABLE generates,
from this DDL description, a PATHWAY application to allow simple
processing of the database. ENABLE thus shields the installation from
almost all aspects of application programming, save the description of
the database itself, while still providing the benefit of applications
operating on distributed databases in a TMF and PATHWAY environment.
While most of the application work on Tandem systems is done by the
programmers writing in the PATHWAY and TMF environments, ENABLE is
being used to generate an increasing number of applications, either as
models or as finished applications.

TRANSFER provides reliable, time-staged delivery of information.
TRANSFER applications can send information anywhere within a Tandem
network and be guaranteed that the information will be delivered
whether the addressee is currently active on the system or not.
TRANSFER offers a generalized capability to send radically different
kinds of data. For example, a single TRANSFER application can send
ASCII data, database records and dot matrix representations in the
same package, thus more effectively providing the information required
for a business transaction. TRANSFER uses the facilities of TMF to
ensure delivery of information it handles and PATHWAY to provide an
easy-to-use interface.

39

Future Directions

From the above, it can be seen that ENCOMPASS addresses many of the
classical problems in distributed database processing. Even so, many
interesting problems remain to be addressed. Tandem 1is identifying
those features absent from the existing system which would further
satisfy the goals of fault tolerance, online transaction processing,
modular expansion, and distributed database and transaction
processing. The remainder of this paper discusses some of the aspects
of ENCOMPASS that are under investigation.

Distributed databases in Tandem systems today use network connections
which typically operate at 56KB, TMF processing differs between the
"long haul" networks connected in this way and the very fast local
links between processors within a node. 1In the initial TMF design,
the number of transactions operating in a distributed environment was
assumed to be self-limited by the network capabilities. Now, however,
Tandem has announced hardware and software support for the connection
of up to 14 systems (up to 224 processors) in a very fast local
network. This necessitates a change in the original TMF assumptions.
Because of the local network speed, transactions are more likely to be
distributed. Even so, the number of processors actually involved in
the transaction will probably not approach the total number in the
system, We see the need for a more sophisticated mechanism for
tracking which processors have done work on behalf of a transaction.
In this way, we can ensure processors in the local network aren”t
required to deal with "uninteresting" transaction activity [BORRS81].

A second area which we are beginning to investigate is replicated data
in a distributed database environment. Currently, ENSCRIBE and TMF do
not directly support the replication of data at different nodes of the
network. Some internal Tandem applications have implemented database
replication by making use of ENSCRIBE and TMF. Current requirements
seem to be that data is locally consistent and updated periodically
(rather than instantly) as a result of activity at other nodes. The
internal applications solve the problem of data contention for the
replicated databases by assigning records within the database a "home
node" and allowing wupdate only by that node. Changes are then
periodically propagated to the other nodes. This has proven
successful so far and, coupled with the ability to run transactions
spanning nodes, does not seem to overly restrict the application”s
capability. Although the "home node" and deferred update concept
seems adequate for the applications we have investigated, we continue
to investigate other approaches suggested in the literature.

As distributed databases and transactions become more prevalent, the
neéd for additional participation and control by the data dictionary
increases. We are currently investigating modifications to the
existing DDL product to allow it to provide active multi-node services
with respect to databases and the transactions. We are investigating
several items in the database dictionary area that should further
enhance the system”s database and transaction processing in a
distributed environment. The first of these 1is the ability to
dynamically relate dictionaries at various distributed nodes to one

40

another. This will allow the installation to describe the database at
the location that it is used, combine the descriptions from other
nodes of the network, and use this combination to interact with the
data, In addition, research 1is being done into how to produce an

"active" data dictionary in a distributed environment. This centers
on the ability to relate objects within a distributed environment and
to permit or disallow actions based on these relations. Finally, we

are investigating modifications to the current distributed security
scheme to enhance the protection offered in a distributed environment.
The investigations involve "hardening"” the network against possible
breach if a single node of the network is taken over. Such security
enhancements are a requirement for installations that run their
businesses based on distributed transaction processing.

In PATHWAY we are investigating the ability to control the distributed
transaction environment in which PATHWAY applications run. We feel
that the ability to exercise central control over distributed
applications is an important capability. This central control, and
the capability for PATHWAY applications to be knowledgable about the
network, are particularly promising areas of investigation.

Finally, in the TRANSFER product, we are looking at various ways that
Tandem and its customers can utilize the reliable, time-staged
delivery mechanisms provided by TRANSFER. The current TRANSFER and
TRANSFER/MAIL products will be followed by a TRANSFER/FAX package,
which will allow an installation to make cost effective use of its
Tandem systems to do a significant amount of its data and information
distribution. Further, TRANSFER is being investigated as a basis for
additional functions, such as stored voice, voice synthesis and
ASCII/FAX conversion. Our investigations indicate that TRANSFER can
play a central role in the management of a company”s. distributed data
and information resources.

Summary

The above clearly indicates that, although ENCOMPASS provides the
groundwork for distributed database and transaction processing, there
are still several areas in which it can be enhanced to satisfy the
growing requirements for distributed on-line transaction processing.

Bibliography

BART78, J. Bartlett, "A NonStop Operating System," Eleventh Hawaii
Conference on System Sciences, Jan. 1978.

BORR81, A. Borr, "Transaction Monitoring in ENCOMPASS," Proceedings of
the Seventh International Conference on Very Large Databases, Sept.
1981.

GRAY81, J. Gray, "The Transaction Concept: Virtues and Limitations,"

Proceedings of the Seventh International Conference on Very Large
Databases, Sept. 1981

41

The DDBS POREL: Current Research Issues and Activities

E.J. Neuhold
B. Walter

University of Stuttgart
Azenbergstr. 12
D-7000 Stuttgart 1
Fed. Rep. of Germany

Abstract: We briefly describe current research issues as well as
current activities related to POREL, a distributed database
system designed and implemented at the University of Stuttgart.

l. Introduction

The DDBS POREL /NEUH82/ was designed and implemented in the years
1977 - 1982 at the University of Stuttgart. The implementation of
-a first prototype has just been finished. Based on the experience
of this implementation further research studies have been made
and are partially still in progress. In the following chapters
each of our current subprojects related to distributed database
systems will be briefly surveyed, then some of our future plans
related to the DDBS POREL will be sketched.

2. Surveillance of Remote Sites

The processing of a distributed transaction is managed by its

site-of-origin. Assume that a transaction T has been initiated at

site A and that some part of T has to be processed at some remote

site B. Assume further, that A is waiting for a response message

from B. Now, if B crashes or becomes unavailable due to communi-

cation breakdowns, two different strategies are possible:

- A waits until the awaited message arrives. However, in the
worst case A must wait forever.

- A backs out the affected transaction.

The second strategy requires some mechanisms for detecting the

unavailability of remote sites. One such mechanism is the newly

developped RSC-protocol (RSC = Reliable Surveillance in Computer-

networks) /WALT82a/ which has the following characteristics:

- Maintenance of a table at each site of the network showing for
all remote sites whether they are currently available or not.

- Synchronization of the clocks in the system.

- Robustness against any number of site crashes and communication
breakdowns including network partitioning.

- Distributed Control.

- Minimality in the given context, i.e. a minimum number of mes-
sages is needed to perform the surveillance task and a minimum
of time is needed to propagate detected crashes and recoveries.

42

Among others the RSC-protocol supports WATCH-primitives. If such
a WATCH-primitive is called for a remote site B, then a signal is
passed to the calling module as soon as B becomes unavailable
(available). A desciption of recovery strategies for distributed
transactions using WATCH-primitives can be found in /WALT82a/
and in /WALT82b/.

3. Deferred Updating of Secondary Copies

In distributed systems it is not so easy to implement read-only
transactions with short response times and low processing costs
which nevertheless provide a consistent view of the database.
However, the observation that in many applications most of the
users do not really need data at the highest level of actualiza-
tion led to a new solution of this problem /WALT82c/.

The data in our system may be stored partially redundant. For
each object in the database there is one primary copy and a set
of secondary copies. The primary copies of different objects may
be located at different sites of the network. At each site either
one secondary copy of an object may be located or none /NEUH82/.
Each copy is stored twice on secondary storage, i.e. for each
page there are two physical representations.

In this context an updating protocol has been developed, which
immediately updates the primary copy of a data object whereas the
updating of the secondary copies is deferred to some later point
of time. The primary updates as well as the deferred updates
possess the atomic property, hence, each update transaction has
two commit points. From the user's point of view an update trans-
action terminates after having committed all its primary updates.
So-called read-only-primary transactions provide the user with
the most actualized view of the database at normal costs and
read-only-secondary transactions provide the user with an earlier
but nevertheless consistent view of the database at low costs.
However, in periods with only a small amount of updates this
'earlier' view also may reach the highest level of actualization.

The deferred updates are processed making use of stable storage.
At first only one of a copy's two physical representations is up-
dated whereas the other representation is used for the processing
of read-only-secondary transactions. After the deferred updates
have been committed, new arriving read-only-secondary transac-
tions are now processed using the 'new' representation. The 'old'
representation can be updated as soon as all transactions using
this representation have terminated. It is this newly developped
strategy for switching from the '0ld' to the 'new' representation
which enables read-only-secondary transactions to be processed
practically without synchronization and without any delays. In
systems with only a small amount of updates this strategy would
be suitable for updating primary copies as well. Furthermore, the
proposed algorithm supports local load balancing strategies.

43

4. DDBS and Open Systems

ISO's Open Systems Interconnection Architecture was developed in
order to standardize network protocols. The highest layer of this
architecture is the so-called application layer (layer 7). In the
case of distributed database systems this layer would include the
database operating system. An overall architecture of such an
application layer is being developed to meet the requirements of
~distributed database systems.

The investigation includes a comparison of the various approaches

to distributed data management to identify common primitives used

in the network sensitive parts of a DDBS. Such commonly used pri-

mitives which should be contained in an adequate layer 7 design

include among others:

- Routines for the manipulation of tables, which are used to con-
tain the current processing states of transactions.

~ Mechanisms for execution control such as the above mentioned
WATCH-primitives. A

- Protocols for the reliable transfer of data and control.

In this context a model for transaction-oriented communication in
distributed systems has been developped /ROTH82/. This model
identifies a set of primitives to support typical communication
patterns used between the various modules which have to cooperate
in order to process distributed transactions.

5. Formal Techniques

The application and evolution of formal techniques have always
been an important activity in our research group. For instance,
the Vienna Development Method (VDM) has been used for the speci-
fication of a 3 level external/conceptual/internal schema view of
a relational database system /NEUH81/ and for specifying parts of
an application development system /STUD82b/. Currently formal
techniques are used in the context of distributed database pro-
tocols. Since such protocols (e.g. for synchronization or for
recovery) are often rather complex, it is not obvious whether
they are correct or not. Therefore, formal techniques are
required for specifying the protocols and for giving rigorous
proofs of their characteristics. ‘

Higher level petri nets are used as a base for the development
of so-called Timed Predicate Transition Nets (TPrT-Nets)
JWALT82b, WALT82d/. TPrT-Nets include the possibility to model
minimum and maximum message delays as well as timers; they have
been used to model the above mentioned RSC-protocol and to verify
its properties 'freedom from deadlocks' and 'bounded'. Freedom
from deadlocks means that under each reachable marking at least
one transition is enabled. To prove this property for a TPrT-net
one has to show that this property holds for the untimed net
and that the availability periods of the tokens which enable some

44

transition do overlap. Examples have been given to show that the
timing of places is superior to the timing of transitions. The
major advantage of TPrT-Nets is that they are suitable for sym-
metric protocols with an arbitrary number of participants.

Another formal technique for specifying protocols in distributed
systems is the Behavioural Description Language (BDL) which is
currently under development /KARJ82/. BDL is based on an event-
oriented model, in which interactions and sequences thereof are
fundamental concepts. Interactions between processes represent
synchronized communication over explicit interaction points. Pro-
cesses which may have concurrent and nondeterministic behaviour
are denoted by so-called behaviour expressions. An algebra has
been defined for the operations of sequential, conditional, and
parallel composition of processes and for the restriction of in-
teraction points. Out of a behaviour expression a linear discrete
sequence of interactions can be derived, hence temporal logic can
be used for proving properties of BDL-specified systems.

6. User Interface Related Activities

To improve the usability of (distributed) database systems the
so-called Application Development and Support System (ADS) has
been developed /STUD80, STUD82a/. ADS, which is designed to be
implemented on top of the language interfaces of POREL offers
dialogue supported facilities for selecting, combining, and exe-
cuting prepared application programs from an application library:
it can be used in the context of any relational database system.

Another subproject is oriented towards extending the POREL-archi-

tecture to a three-level-architecture. This includes activities

for developping dialogue interfaces for

- defining a conceptual schema using the THM semantic data model
/SCHI82/,

- deriving a relational schema from the conceptual schema,

- defining subschemas which are mapped to the conceptual schema,

- defining method skeletons and specifying the appropriate input
data at the conceptual schema level.

It should be noted that the latter activity differs from the

above mentioned ADS in so far as it is constructed on top of the

conceptual schema level whereas ADS directly uses the relational

interface. '

Finally in a new subproject an interactive tool will be developed
which enables the user to determine a sultable distribution as
well as suitable replication of data.

7. Future Plans

Concerning the DDBS POREL the following activities have been
planned:
- Extensive testing of the prototype in order to improve the per-

45

formance and the reliability of the current implementation.

- Evolution of the current transaction management facilities to
include protocols of higher reliability.

- Investigation of some problems which are related to the execu-
tion of host language initiated transactions, e.g. how to avoid
a permanent 'jumping' of the cursor from one site to another
when a relation is accessed following some logical order which
does not correspond to its physical ordering.

Further activities will be related to the portability of POREL in

order to enable an installation of the system on other computers.

8. References

/KARJ82/

/NEUHS81/
/NEUH82/

/ROTH82/

/SCHI82/
/STUDSO/

/STUD82a/

/STUD82b/

/WALT82a/
/WALT82b/
/WALT82c/

/WALT824/

Karjoth, G., "A Behavioural Description Language for
the Formal Treatment of Protocols in Distributed Sys-
tems", in preparation, University of Stuttgart, 1982.
Neuhold, E.J., T. Olnhoff, "Building Data Base Manage-
ment Systems through Formal Specification", Proc. Int.
Coll. on Formalization of Programming Concepts, Lecture
Notes in Computer Science 107, Springer Verlag, 1982.
Neuhold, E.J., B. Walter, "An Overview of the Architec-
ture of the Distributed Data Base System POREL", in:

H.J. Schneider (ed.), "Distributed Databases", North
Holland Publishing Company, 1982.

Rothermel, K., "Primitives for Transaction-Oriented
Communication Systems", in preparation, University of
Stuttgart, 1982.

Schiel, U., "The Temporal-Hierarchic Data Model (THM)",
TR 10/82, University of Stuttgart, July 1982.

Studer, R. "A Dialogue Interface for Database Applica-
tions", Proc. Very Large Databases 6, Montreal, 1980.
Studer, R., "Concepts for the Interactive Development
and Usage of Application Systems", Dissertation, Uni-
versity of Stuttgart, March 1982 (in German).

Studer, R., "Using VDM for the Development of Inter-
active Application Systems", in: Y. Ohno (ed.), "Proc.

Int. Symp. on Current Issues of Requirements Engineering
Environments", North Holland Publishing Company, 1982.

Walter, B., "A Robust and Efficient Protocol for
Checking the Availability of Remote Sites", Computer
Networks 6:3, July 1982.

Walter, B., "Transaction Oriented Recovery Concepts for
Distributed Data Base Systems", Dissertation, Universi-

ty of Stuttgart, June 1982 (in German).

Walter, B., "Using Redundancy for Implementing Low-Cost
Read-Only Transactions in a Distributed Database System",
Working Paper, University of Stuttgart, August 1982.
Walter, B., "Timed Predicate Transition Nets: A Tool
for Modelling and Analyzing Protocols in Distributed
Systems", Working Paper, University of Stuttgart,
October 1982.

46

A Structural View of Honeywell's
Distributed Database Testbed System: DDTS

By

Said K. Rahimi
Mark D. Spinrad
James A. Larson

Honeywell Corporate Computer Sciences Center
10701 Lyndale Avenue South
Minneapolis Minnesota 55420
(612)887-4570

1. INTRODUCTION

Distributed database management systems have raised new
implementation questions, in addition to those usually asked for the
conventional centralized systems. One way to answer these questions
is by conducting experiments using a distributed database testbed
system. This paper presents the initial design of one such testbed in
Honeywell, called the Distributed Database Testbed System (DDTS).

DDTS ©became operational at Honeywell's Corporate Computer Sciences
Center (CC3C) in July, 1982. DDTS is a testbed in that the system
can be used for experimental evaluation of different issues in
distributed database management systems. The first version of DDTS
is an integrated, rather than federated distributed database’
management system in the sense that each node contains the same
conceptual schema that describes all of the data in the system.

Section 2 describes the basic architecture of DDTS, and section 3
describes some of the experiments planned for using this testbed.

2. DDTS ARCHITECTURE

The ANSI/SPARC 3-schema architecture was generalized to a 6-~schema
architecture (Figure 1), in order to provide flexible user interfaces

in a distributed system. This DDIS information architecture consists
of the following six inter-related levels of data description:

USER SCHEMA, a description of a wuser's view of the database,
specified in terms of any of several data models, One such schema
may exist for each user group. User schemas are not supported in the
current version of DDTS.

ECR SCHEMA, a description of a portion of the database to be accessed
by a user or user group, specified in terms of the same data model as
the global conceptual schema. ECR, the Entity-Category-Relationship
data model [WEEL80] is a generalization of Chen's Entity-Relationship
(ER) data model [CHENT76]. In the current version of DDTS, ECR
schemas are not supported.

47

GLOBAL CONCEPTUAL SCHEMA, a semantic description of the total
database content. The global conceptual schema is specified wusing
the ECR data model. Users use a high-level language, called GORDAS
(Graph ORiented DAta Selection language) [ELMA81], as a query and
update language. Currently, wusers may specify GORDAS commands
directly against the global conceptual schema. The data definition
language for the ECR data model includes the capabilities to specify
general constraints such as attribute domains. Update transactions
are specified without integrity constraints, and the transaction
compiler is designed to automatically modify the transaction to check
for semantic constraints defined in +the global conceptual schema
[ELMASBO]. The transaction will be examined as a whole, so that only
necessary checks are generated. Automatic integrity constraint check
generation has not been implemented in the initial phase of DDTS.

GLOBAL REPRESENTATIONAL SCHEMA, a syntactic representation of the
total database. The global representational schema is specified
using the relational data model. User requests, stated in GORDAS, are
automatically translated to the relational operators of the
representational schema.

LOCAL REPRESENTATIONAL SCHEMA, a syntactic representation of the data
resident at a specific node. The local representational schema is
specified using the relational data model. Transactions against the
global representational schema are transformed into several 1local
transactions against selected local representational schemas.
Transaction optimization is accomplished by using data flow analysis
to maximize inter-command parallelism [HEVN81].

LOCAL INTERNAL SCHEMA, a local representation of data resident at a
specific node. The local internal schema is specified using the data
model of the host database management system. Local transactions are
translated to sequences of commands against the 1local internal
schema. Currently all local internal schemas are IDS/II CODASYL
network schemas [HONET21].

The DDTS system architecture consists of three types of abstract
processors (Figure 1):

INTERFACE PROCESSOR (IP) accepts transactions from the user expressed
in terms of a user schema, and modifies those transactions to be
expressed in terms of the global conceptual schema. The interface
processor removes all of the differences in style used by different
users to express their transactions, and produces a common style of
transaction expression convenient for the transaction processor.
Interface processors are not supported in the current version of
DDTS.

TRANSACTION PROCESSOR (TP) modifies a GORDAS transaction to check for
the semantic constraints defined in the global conceptual schema. At
compile-time, TPs compile transactions and develop strategies for
processing transactions by appropriate data processors. For
interactive transactions execution 1is followed by compilation.
Execution performance can be gained by storing a compiled transaction

48

at local nodes. A compiled transaction can be executed many times
without recompilation.

DATA PROCESSOR (DP) accepts commands expressed using the local
representational schema and executes those commands against the
portion of the database for which it is responsible.

The data, transaction, and interface processors are designed as
"Guardians" [LISK79], abstract processors which support multiple
processes with shared memory. Processes in different guardians
communicate through messages sent to, and received from, ports
(one-way message queues).

Reliable execution 1is accomplished as follows. A master/slave
relationship between a distributed execution monitor (DEM) in a
transaction processor, and local execution monitors (LEM's) in
selected data processors, 1is established to carry out the parallel
execution and two-phase commitment of each transaction. The initial
version of DDTS requires all data replicas (if any) to be available
for updates to occur. Much of the recovery and restart capabilities
in DDTS are built upon facilities existing in the local DBMSs. These
include write-ahead logs and transaction backout and restart.

Concurrency control uses the 1locking facilities and conflict
detection mechanism of IDS/II to build a distributed deadlock

prevention technique. In this technique, 1locks are granted
"conditionally" on the basis of transaction timestamps (age) that
prevent deadlocks [ROSE78]. When a transaction is selected to be

restarted, the DEM is responsible for restarting the transaction at
all of the related data processors.

3. STATUS AND FUTURE PLANS

Currently, DDTS 1is functional in a multicomputer environment at
Honeywell's Corporate Computer Sciences Center (CCSC). Three
Honeywell Level 6 minicomputers form the initial DDTS system.
Approximately 20,000 lines of C-language code comprise the DDTS
software resident on the Level 6's. Capabilities of the initial
system include:

- translation of queries from GORDAS to a canonical
representational form;

- site selection of data to be used for transaction execution,
using a data clustering algorithm;

- distribution and synchronization of transaction compilation and
execution;. and,

-~ translation from the representational form to the network data
model (IDS/II).

Implementation of stored transaction capabilities and GORDAS updates
is scheduled for compleﬁipn in 1982. A reliable transaction

49

processing scheme, based on a quorum-based commit protocol [SKEE82]
and distributed concurrency control algorithm, is also scheduled for
completion in 1982.

The follow-on version of DDTS and our future experimentations plan
call for:

- database design experiments to determine tradeoffs involving
data distribution, data replication, and tools to support
distributed database design;

- distributed data dictionary facilities;

- evaluation and enhancements of materialization and access
planning;

- evaluation of several different concurrency control algorithms.

REFERENCES:

[CHENT6] Chen, P., "The Entity_Relationship Model: Towards a Unified

View of Data,"™ ACM Transactions on Database Systems, vol.
1, No. 1, March 1976.

[ELMA80] Elmasri, R., "Semantic Integrity in DDTS (Distributed

Database Testbed System)," Tech. Rep. HR-80-274, Honeywell
CCSC, Bloomington, Minnesota, December 1980.

[ELMA81] Elmasri, R., "GORDAS: A Data Definition, Query and Update

Language for the Entity-Category-Relationship Model of
Data," Tech. Rep. HR-81-250 Honeywell CCSC, Bloomington,
Minnesota, January 1981.

[HEVN81] Hevner, A., "Transaction Optimization Techniques in a

Distributed Database System, " Tech. Rep. HR-81-259
Honeywell CCSC, Bloomington, Minnesota, July 1981,

[HONE72] Honeywell Information Systems, Integrated Data Store

(IDS/II) References Manual, Wellseley, Massachusetts, 1972.

(LISK79] Liskov, B., "Primitives for Distributed Computing," Proc.

of The Tth Symposium on Operating Systems Principles, ACM,
December 1979.

[ROSE78] Rosenkrantz, D., Stearns, R.. and Lewis, R., "System Level

Concurrency Control for Distributed Database Systems," ACM
Transactions on Database Systems, Vol. 3, No. 2, June 1978.

[SKEEB2] Skeen, D., "A Quorum-Based Commit Protocol," Proc. of the

6th Berkeley Workshop on Distributed Data Management and
Computer Network, February 1982.

[WEEL80] Weeldreyer, J., "Structrual Aspects of the

Entity-Category-Relationship Model of Data," Tech. Rep.
HR-80-251, Honeywell CCSC, Bloomington, Minnesota, March
1980.

50

IP
TP
DP

Interface Processor
Transaction Processor

Data Processor

IP Ip
USER SCHEMA USER SCHEMA
r—-———-l——t—-—————-——d—-———q———-—
| ECR SCHEMA ECR SCHEMA
| \ //
| GLOBAL
| CONCEPTUAL
SCHEMA
| GLOBAL
REPRESENTAT 1ONAL
| SCHEMA
LOCAL LOCAL
| REPRESENTATIONAL REPRESENTATIONAL
SCHEMA SCHEMA
| _ — L = - — - L
LOCAL LOCAL
INTERNAL INTERNAL
SCHEMA o SCHEMA - op
DATABASE DATABASE

USER

]

—

Figure 1:

USER

]

—

6-Schema Architecture

51

'SCOOP : a System for COOPeration between existing
heterogeneous distributed data bases and programs

. 1 2 . 2 1
S. Spaccapietra, B. Demo, A. DilLeva, C. Parent

1Institut de Programmation 2Istituto di Scienze
Universitée Pierre et Marie dell'Informazione
Curie (Paris 6) Universita di Torino
4, Place Jussieu C. M. d'Azeglio, 42
75230 Paris Cedex 05 10125 Torino

France Italia

INTRODUCTION

The goal of the SCOOP project is to investigate the mapping
algorithms which are needed to build a cooperation-DDBMS,
that is a distributed system which allows for full integra-
tion of existing data bases and application programs.
SCOOP's research fits therefore into a rarely investigated
field of DDBMS design. It is hoped that it will allow a lar
ge set of applications (disregarded by actual DDBMS) to be
nefit by the current advance in the area of distributed da
ta bases.

A cooperation-DDBMS . should be able to:

-~ keep the existing data by integrating them into the DDB
with (ideally) no change at all;

- keep the existing application programs and let them run
as before while addressing the local DB through the DDBMS;

- use the local DBMSs for local data management (to reduce
software development cost);

- offer the other facilities currently provided by the exi
sting DBMSs.

52

Figure 1 illustrates the idea of a heterogeneous cooperation-
DDBMS. To build such a system, new methods and tools, specifi
cally taking into account the distributed environment, have
to be designed to perform the needed translation of data
structures and programs from the external level to the concep
tual level within the DDBMS. It is the purpose of the project
SCOOP (System for COOPeration), currently on progress at the
University of Paris 6 in cooperation with the Turin Universi-
ty, to investigate such new methods and tools.

external (user) interfaces

conceptual (global) interface

internal (local) interfaces

local
DBMS
n

- o - —— = o e e o o = - =/

Figure 1 : Skeleton of a heterogeneous cooperation-DDBMS
) (DM = data model)

53

SCOOP ARCHITECTURE

The overall project architecture is illustrated in figure 2;
for a more detailed discussion of the architecture the rea
der may refer to (Spaccapietra 81).

The SCOOP project concentrates on the mappings between the
external and the conceptual level in the DDBMS. For accessing
data through the network, SCOOP relies on the POLYPHEME pro-
totype, which is responsible for the overall management of
the DDB (Adiba 80). The interface between SCOOP and POLYPHEME
is defined as a relational DDL, allowing the description of
3NF schemata, and an associated QUEL-like DML. Consequently,
an additional mapping, from the conceptual level to this
interface, has been included in SCOOP.

Input to SCOOP are the user application programs, which may
be written in any of the DMLs supported by existing DBMSs;
the data referred to by a program are described by a global
external schema (gesi) expressing the user's view of the DDB.

The SCOOP system is made up of six different types of module:
the first three are devoted to schema translation, while the
next three perform program translation. These modules are:

- schema translation modules (ST.): these translate an user
schema (gesi) into an equivalent, external schema (eesi)
expressing the same semantics through the conceptual data
model. This corresponds to a first step (model mapping)
in the mapping process from the external to the conceptual

level. There is one such module for each DDL supported by
SCOOP.

- schema integration module (SI): this performs the second
step (semantic mapping) in the external to conceptual
mapping. It builds the semantic mapping linking the ees,
to the (global) conceptual schema gcs describing the DDB
and integrating all of the ees_ . As the ees, and the gcs
use the same data model, only éemantic tras%ormations are
perfomed by SI.

- schema conversion module (SC): this module performs a model
mapping to convert the conceptual schema into the equivalent

conceptual schema (ecs) used as interface to POLYPHEME. Ecs
is a 3NF relational schema.

54

ees,‘
,
—
<—
Jsc '
! o]
—l— >
»——-GDOLYPHM} - !
<>

Figure 2 : SCOOP architecture

55

- program translation modules (PT,): these modules translate
user application programs (UAP } into equivalent programs
(EAP) in which data manlpulatlons are stated in the DML
deflned for the conceptual level and refer to the associa-

ted ees, . There is a PTi for each DML/DDL couple supported
by SCOOP. :

- program integration module (PI): this module translates
the equivalent application programs (EAP,) into global
conceptual programs (GCPi) by transforming references to
the eesi to references to the gcs.

- program conversion module (PC): this last module translates
the GCP into their equivalent relational programs (RP)
which w111 interact with POLYPHEME.

The above architecture is based on two assumptions: the first
one is that the conceptual data model is different from the
relational model supported by POLYPHEME, which introduces the
need for the SC and PC modules. The second one is that the
external to conceptual mapping is split into its two separate
componentg: model mapping and semantic mapping.

The definition of the conceptual interface certainly is the
most sensitive point in the design of a system 1like SCOOP.

A complete definition includes the choice of a data model

as well as the choice of a DDL and a DML. For the data model,
the Entity Relationship proposal has been selected, mainly
because it is reasonably good at expressing the semantics
of the real world and easy to understand and use. A discus-
sion on the criteria of this choice is in (Spaccapietra 82).

For the DML, the specific criteria due to the distributed

environment suggest the development of a new DML. A complete
description of the SCOOP-ER DML working definition will be

available in an incoming paper (Parent 82).

56

SCOOP's architecture relies on the definition of a set of
mappings: the CODASYL versus ER schema mapping process is
described in (Perez de Celis 81). Some work has been done
on the schema and program conversion techniques for mapping
the conceptual ER interface into POLYPHEME's relational
interface (Belfar 81).

Current research is mainly on the CODASYL translation and
integration mapping and should result in the implementation
of a first software prototype of SCOOP translation methods
in 1983 (Demo 81).

REFERENCES

Adiba 80 Adiba M. et al: "POLYPHEME: An experience in
distributed database system design and implemen-
tation'", in Distributed Data Bases, North-
Holland, 1980,

Belfar 81 Belfar K. : '"Conversion de données et de pro-
grammes d'un modéle Entité-Relation & un modéle
relationnel'", TR SCOOP 81.4, Institut de Program-
mation, 1981.

Demo 81 Demo B. Spaccapietra S. : "A CODASYL COBOL
statements classification for conversion into an
assertional DML', TR.SCOOP 81.6, Institut de

Progfammation 1981.

Parent 82 Parent C., Demo B., Spaccapietra S. : An Entity-
Relationship DML for distributed DBMSs, TR.SCOOP
82.2, Institut de Programmation 1982 (in progress)

Perez de Celis 81 Perez de Celis C. : Traduction du LDD

CODASYL a un LDD Entité-Relation, TR.SCOOP 81.3,
Institut de Programmation, 1981.

Spaccapietra 81 Spaccapietra S. et al : "An approach to
effective heterogeneous databases cooperation',
in Distributed Data Sharing Systems, North-
Holland, 1982.

Spaccapietra 82 Spaccapietra S. et al. : "SCOOP: a system
for integrating existing distributed heterogeneous
data bases and application programs', TR.SCOOP
82.1, Institut de Programmation, 1982.

57

PERFORMANCE ANALYSIS OF DISTRIBUTED
DATA BASE SYSTEMS*

by

Michae!l Stonebraker, John Woodfill, JefI Ranstrom, Marguerite Murphy
Joseph Kalash, Michael Carey and Kenneth Arnold

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA
BERKELEY, CA.

ABSTRACT

In this paper we discuss the design of Distributed INGRES and the perfor-
mance testing that is planned for it. We also give initial benchmark data for the
system. In addition, we discuss analytic and simulation studies which are in pro-
gress and implementation difficulties we have faced.

1. INTRODUCTION

There have been a considerable number of algorithms developed to support
distributed relational data bases in the areas of concurrency control, crash
recovery, support of multiple copies of data, and command processing.

At present there is little concrete knowledge concerning the performance of
such algorithms. Previous work has been based exclusively on simulation, e.g.
[RIES79, GARC79, LIN81] or formal modeling, e.g. [GELE78, BERN79]}. It is the
basic objective of the Distributed INGRES project to provide empirical results
concerning the performance of alternate algorithms.

In Section 2 we discuss the current state of Distributed INGRES. Then, in
Section 3 we present initial benchmark data on the running system. Section 4
discusses the additional benchmarks that are planned while Section § and 6
describe some simulation and analytic studies that are underway. Lastly, Sec-
tion 7 comments on the implementation difficulties that we have faced.

2. DISTRIBUTED INGRES

Distributed INGRES operates in a hardware environment consisting of a col-
lection of DEC VAX 11/780s and 11/750s all running the UNIX operating system. In
fact, all run 4.28sD, a version of UNIX enhanced at Berkeley with paging and
numerous program development tools. As of September 1982 there are 5
11/780s and 5 11/750s connected by a 3Mbit ETHERNET purchased from. Xerox.
The 4.2BsD software has been extended to support remote interprocess commun-
ication and remote execution of a process. Hence, one can spawn a process on a
remote machine and then do interprocess communication with that process as if
it were on the same machine.

* Research Sponsored by the Air Force Office of Scientic Research under
Grant number (22544), by the Navy Electronics Systems Command under
Contract number (25990) and by the Army Research Office under Grant
number Z.

58

Distributed INGRES has been described in [EPST78] and is operational with
many of its features at this time. It consists of a master INGRES process which
runs at the site where the command originated and slave INGRES processes at
each site which have data involved in the command. The master process does
parsing, view resolution and creates an action plan to solve the command using
the fragment and replicate technique. The slave process is essentially one-
machine INGRES [STON76] with minor extensions and the parser removed. The
coordinator and slaves communicate over the 4.2BsD interprocess message sys-
tem.

Distributed INGRES supports fragments of relations at different sites. For
example, one can distribute a relation EMP as follows:

create EMP (name = c10, salary = i4, manager = c10,
age = i4, dept = c10)

range of E is EMP
distribute E at Berkeley WHERE E.dept = "shoe"
at Paris WHERE E.dept = "toy"
at Boston WHERE E.dept != "toy' and
E.dept I= "shoe"
Berkeley, Paris and Boston are logical names of machines which are mapped to
site addresses by a table lookup. The distribution criteria is assumed to parti-
tion the EMP relation and is not currently checked for this property by Distri-
buted INGRES software. A one site relation is a special case of the above distri-
bute cormmmand, e.g.

distribute ONE-SITE at Berkeley

At the current time all QUEL commands are processed correctly for distri-
buted data with the exception of aggregates. For example, it is acceptable to
perform the following update:

range of E is EMP
replace E(dept = "toy") where e.salary > 10000

This command will be processed at all three sites where fragments of the EMP
relation exist. Moreover, all qualifying tuples must have an update performed
and their site location may have to be changed.

A two phase commit protocol is implemented [GRAY78]. Hence, a "ready”
message is sent from the slaves to the master when they are prepared to com-
mit the update. If there are tuples which change sites, they are included with
the ready message. The master can then process the tuples from all sites and
redistribute them. This redistribution is accomplished by piggybacking the
tuples onto the commit message when it is sent out. Optionally, a three phase
commit protocol can be used %SKEEBZ] for added reliability. In this case the
above redistribution is handled in phase two.

When a command spans data at multiple sites, a rudimentary version of the
"fragment and replicate” gquery processing strategy is implemented. We illus-
trate this module by example. Suppose a second relation

DEPT (dname, floor, budget)
exists at two sites as follows:

distribute D at Berkeley where D.budget > 5
at Paris where D.budget <=5

and suppose a user submits the following query at Boston:

‘ 59

range of E is EMP
range of D is DEPT
retrieve (E.name) where E.dept = D.dname and D.floor = 1

First, the one variable clause "D.floor = 1" is detached from the query and run at
Berkeley and Paris, i.e.

range of D is DEPT
retrieve into TEMP (D.dname) where D.floor = 1

The original query now becomes

range of E is EMP
range of D is TEMP
retrieve (BE.name) where E.dept = D.dname

Data movement must now take place to satisfy the query. One relation (say
TEMP) is chosen to be replicated at each processing site. Hence, both Berkeley
and Paris send their portion of the TEMP relation to each site which has a frag-
ment of EMP. The needed transmissions are:

TEMPgParis) -> Boston
TEMP(Paris) -> Berkeley
'I'EMPEBe’rkeleyg -> Paris
TEMP(Berkeley) -> Boston

At this time all three sites have a complete copy of TEMP and a fragment of the
EMP relation. The above query is performed at each site, yielding a portion of
the answer. As a last step each site returns tuples to the master site which
displays them to the user.

Since our ETHERNET has the hardware capability to support broadcast, it is
possible to perform the above four transfers by broadcasting each fragment of
TEMP to the other two sites. However, the 4.2BSD operating system software
does not support multicast or broadcast transmissions. Consequently, the
above transmissions must take place individually and our strategy of replication
may perform poorly [EPST78]. The network on which we planned to run
[ROWE79] supported broadcast, and the code has not been changed.

At the moment, the relation to be replicated is chosen arbitrarily, so TEMP
and EMP are equally likely to be selected for movement. A more elegant stra-
tegy is being planned.

3. INITIAL EXPERIMENTAL OBSERVATIONS

In these experiments we use a data base of employees with flelds as dis-
cussed in Section 2. Our data base consists of 30,000 employee tuples, each 38
bytes in width. Our benchmark consisted of 1000 random updates of the form:

replace E (salary = K) WHERE E.name = L

For this benchmark we compare the performance of four different INGRES
configurations:

a) Normal INGRES on a single site data base with a VAX 11/780 CPU

b) Distributed INGRES run on a data base that happens to reside at the site from
which the benchmark originates. This site has a VAX 11/780 CPU.

" ¢) Distributed INGRES run on a data base spread evenly over three machines,
one VAX 11/780 and two VAX 11/750s. In this way exactly 1/3 of the updates are
performed at each of three sites. Moreover, the benchmark was submitted in
three job streams one at each site so as to avoid forcing a single site to be "mas-
ter' for every command. Consequently, the master running at each site will dis-
cover an update which is equally likely to be processed at any of the three sites.

60

In this case we report statistics for each site individually as well as a summation.
d) A computation called 3*780. This row is obtained by multiplying the 11/780
numbers from c¢) by three. Since one-third of the total work is performed at
each site, this is an estimate of the resources which would be consumed if the
benchmnark had been run on three VAX 11/780s.

Table 1 gives three measures for each system, elapsed time, CPU time
spent.in application code, and CPU time spent inside the operating system.

The conclusion to be drawn from Table 1 is that Distributed INGRES is about
20 percent slower than normal INGRES when run on a local data base. This time
is largely the extra overhead which Distributed INGRES must spend examining
the distribution criteria and ascertaining that each of the commands is a local
one. This checking is performed at run time in the current implementation;
however, a smarter implementation would perform most of it at compilation
time. The second source of overhead cannot be diverted to compile time. Each
tuple which is updated must be checked against the distribution criteria to

ensure that it is not being updated in a manner that would physically change its
location.

Second, note that 3*780 Distributed INGRES uses 20 percent more CPU time
than Distributed INGRES run on a local data base and 47 percent more CPU time
that Normal INGRES. This appears to be the overhead of communication with a
non-local data base. However, it could not possibly run slower than the 13:34
time reported for three site Distributed INGRES. Hence, it cuts elapsed time by
at least 50 percent compared to Distributed INGRES on a one-site data base and
40 percent compared to Normal INGRES.

Benchmark 1 results in 522,880 bytes being transferred across the network
in case c) and uses less than two percent of the available bandwidth. It appears
that a large number of machines could be added to ETHERNET before there were
any bandwidth limitations. Also, as long as the workload partitioned evenly,
total CPU time should remain a constant and be divided among a larger and
larger collection of machines, resulting in a throughput essentially linear in the
number of machines.

user time system time elapsed time

Normal INGRES 7:34 3:04 22:34

Distributed

INGRES - local

data base 9:06 3:53 26:57

Distributed

INGRES - three

sites

11/780 ', 3:43 1:30 12:43

11/750 5:28 2:16 13:34

11/750 5:48 2:13 13:22

total 14:59 5:59 -

3*780 . 11:09 4:30 -
' Table 1

- 61

4. FURTHER EXPERIMENTATION

We propose to run a variety of benchmarks in our environment. We propose
to vary the number of sites from which transactions originate, how many sites
have the data required for individual commands and how much data is required
to be moved between sites. The basic objectives are the following:

a) Network limitations

We speculate that it will be impossible to saturate our 3Mbit network. The
reason is that CPU overhead to manage the network and do local data base pro-
cessing is likely to saturate all computers on a reasonable size network before
this bandwidth is achieved. We propose to measure the maximum bandwidth
which our benchmark consumes. The result of this test will give insight into
whether network delay or bandwidth is ever a significant issue in our environ-
ment. Moreover, we propose to explore under what circumstances a distributed
DBMS can use more than 50Kbits of bandwidth. This will test whether our
software could saturate a long haul network such as the ARPANET. This test will
shed light on whether semi-join tactics which minimize data transmissions are
desirable in distributed environments.

b) Message Limitations

We speculate that the operating system cost of sending and receiving mes-
sages may be a significant factor in distributed data base performance, and pro-
pose to test this hypothesis by direct measurement. If so, a distributed DBMS
should attempt to package large messages.

On the other hand, if the operating system .cost for messages is not
significant, then we will have discovered that the entire network subsystem is
not a bottleneck in a distributed DBMS. This has great impact on the criteria to
be optimized by the query processing algorithm.

¢) CPU Saturation

We expect that many benchmarks will saturate all CPUs which are involved
in command processing and this will be the fundamental limitation in a distri-
buted DBMS. If so, a query processing algorithm should schedule the work over
as many machines as possible.

d) Uneven Work Distribution

Our simulation of a similar environment [MCCOB81] showed that an uneven
workload distribution among the machines caused substantial performance
degradation. We noted that statistical fluctuations in a uniformly distributed
workload could easily cause the command processing loads at the various sites
to become unbalanced. In this case response time for a distributed transaction
became the response time of the processing site with the heaviest load. This
site was slowest to respond and the transaction could not be completed until
this site finished.

Also, we found that an uneven work distribution, once created, tended to
persist for a long period of time. Hence, poor response time also tended to per-

sist. A similar phenomenon has been observed in the locking subsystem of Sys-
tem R [BLAS’?Qf

We plan to measure to what extent this uneven workload phenomenon sur-
faces in a benchmark of uniformly distributed work. If it is sizeable, then a
query processing algorithm should make rebalancing the workload it$ optimiza-
tion criteria. :

62

5. CONCURRENCY CONTROL

The experiments sketched above should shed light on query processing and
crash recovery algorithms. In addition, we expect to experiment with a variety
of concurrency control schemes. Unfortunately, there are twenty or more
schemes which have been proposed. Instead of attempting to implement all
twenty in Distributed INGRES (which was never designed with schemes other
than locking in mind), we are proceeding by a combination of theoretical
analysis and simulation.

We have proposed an abstract model of concurrency control algorithms
within which we can address the performance tradeoffs of various popular
schermnes. The model facilitates comparisons of the CPU overhead, storage over-
head, concurrency characteristics, and message overhead of alternative
schemes. A report on this analysis is nearing completion [CAREB2].

In order to validate the conclusions of the model and to offer further insight
we have also written a simulator of distributed concurrency control schemes.
Experimentation with this simulator will commence shortly. We intend to vali-
date the simulator by comparing its results for the Distributed INGRES locking
scheme with actual experimental data.

6. DISTRIBUTED ARCHITECTURES

An important aspect of any distributed data base system is sizing con-
siderations. 1/0 subsystems, CPUs and networks must be balanced to achieve
maximum throughtput. Moreover, the topology of the network may be a con-
sideration. We are constructing a second simulation model which can evaluate
alternate distributed architectures. Using this model we hope to experiment

with environments which are not easily tested in our VAX/ETHERNET environ-
ment.

7. IMPLEMENTATION PROBLEMS

In this section we mention a few of the difficulties that we have faced in the
implementation. :

1) Distributed Debugging

Attempting to remove the bugs from distributed programs has proved to be
a frustrating and slow process. Programs which run on one machine pretending
to be several do not usually run on several machines. Debugging tools for distri-
buted environments are very primitive.

2) Machine Time

Attempting to obtain stand-alone time on a substantial collection of
machines in order to perform experiments has been difficult. The social prob-
lern of obtaining cooperation from multiple independent system administrators
has proved taxing.

3) Limitations on Operating System Parameters

Distributed INGRES requires a large number of open files and connections
to numerous cooperating processes. Most machines on which we try to run are
not configured with sufficient maximum numbers of these objects. Moreover,
most system administrators refuse to reconfigure their systems to rectify the
situation. As a result we must treat file descriptors and connections as a scarce
resource and allocate them to tasks carefully.

63

4) Code Complexity

Distributed INGRES is about 1.7 times a large as normal INGRES. It has
been substantially harder to design and code than any of us realized at the
outset.

5) Connection Topology

A distributed data base systemn has a "master” and 'slaves” as noted above.
However, when data movement is required, a "receptor” must be activated at
the receiving site. Additionally, when tuples change sites, they must be sent
from a slave to the master who sorts them and redistributes them. The slave
must be prepared to accept both commands and data from a master. Lastly, a
user can interrupt the master which must reset all slaves and kill all receptors.
Ensuring that each process is "listening’’ to the correct connection under all cir-
cumstances has been difficult. We have had considerable difficulty managing a
complex connection topology.

8) Boredom

Distributed INGRES has been in development since 1979. Much of that time
has been spent in "wait state" awaiting operating system support for networking.
We have always been in the position of either "waiting a few months for the
promised arrival of general facilities" or "spending a few months on an ad-hoc
implementation of special facilities which would hopefully be thrown away'. We
have always chosen the former; and consequently, wait state has been frustrat-
ing. Moreover, a project which shows little noticeable progress results in bore-
dom for the implementation team.

REFERENCES

[BERN79] Bernstein, P. and Chiu, D., "Using Semi-joins to Solve Rela-
tional Queries”, Computer Corp. of America, Cambridge,
Mass., Jan. 1979.

[BLAS79] Blasgen, M. et. al., "The Convoy Phenomena", Operating Sys-
temns Review, April, 1979. :

[CARESR] Carey, M., "An Abstract Model of Data Base Concurrency Con-
trol Algorithms" (in preparation). .

[EPST78] Epstein, R., et. al., "Distributed Query Processing in a Rela-

tional Data Base Systemn,” Proc. 1978 ACM-SIGMOD Conference
on Management of Data, Austin, Texas, May, 1978.

[CARESZ] Carey, M., "A Formal Model of Concurrency Control Systems"
(in preparation).
[GARC79] Garcia-Molina, H., "Performance of Update Algorithms for

Replicated Data in a Distributed Data Base," PhD Thesis, Stan-
ford University, Computer Science Dept, June 1979.

[GELE?8] Gelenbe, E. and Sevcik, K., "Analysis of Update Synchroniza-
tion for Muiltiple Copy Data Bases,” Proc. 3rd Berkeley
Workshop on Distributed Data Bases and Computer Networks,
San Francisco, Ca., February 1978.

[GRAY78] Gray, J., "Notes on Data Base Operating Syétems," in Operat-
ing Systems: An Advanced Course, Springer-Verlag, 1978,
pp393-481.

64

[LINB1]

[MCCoB1]
[RIES79]

[ROWE79]

[SELI8O]
[SKEEB2]

[STON78]

Lin, W., "Performance Evaluation of Two Concurrency Control
Mechanisms in a Distributed Data Base System,” Proc. 1981
ACM-SIGMOD Conference on Management of Data, Ann Arbor,
Mich., May 1981.

McCord, R., "Sizing and Data Distribution for a Distributed
Data Base Machine,” Proc. 1981 ACM-SIGMOD Conference on
Management of Data, Ann Arbor, Mich., April 1981.

Ries, D., "The Effects of Concurrency Control on Data Base
Management System. Performance,” Electronics Research
Laboratory, Univ. of California, Memo ERL M79/20, April 1979.

Rowe, L. and Birman, K., "Network Support for a Distributed
Data Base System', Proceedings of the Fourth Berkeley
Workshop on Distributed Data Management and Computer
Networks, August, 1979, San Francisco, California.

Selinger, P. and Adiba, M., "Access Path Selection for a Distri-
buted Relational DBMS,” Proc. International Conference on
Data Base management, Aberdeen, Scotland, July 1980.

Skeen, D., "A Quorum-Based Commit Protocol,” Proc. 6th
Berkeley Workshop on Distributed Data Bases and Computer
Networks, Pacific Grove, Ca., Feb 1982.

Stonebraker, M. et. al., "The Design and Implementation of
INGRES," TODS 2, 3, September 1976.

65

:/-'
. \‘_/

acm DATABASE WEEK

SIGMODB83 Plus Special Sessions on
Databases for Business Applications and

Engineering Design

May 23-26, 1983, Hyatt Hotel, San Jose, California

Spoasored by: ACM SIGMOD. ACM SIGBDP, IEEE TC on VLS, IEEE TC on Design
Antomation, IEEE TC on Database Engineering

design.

In cooperation with: ACM SIGIR, Institut National De Recherche en
Informatique et en Automatique (INRIA)

TOPICS OF INTEREST

ENGINEERING DATABASES: Relational database suppbn for CAD/CAM, database for VLSI design, graphics
data management, database machines for engineering data, extensions of database systems for supporting

BUSINESS AND OFFICE DATABASES: Non-formatted data (speech, text, image), databases for graphics,
office data requirements, databases for workstations and personal computers, databases for decision support,
experience with database systems, dictionary design, database system selection and administration, database
support for expert systems, centralized versus distributed databases.

SIGMOD83: Database techniques and theory applicable to all areas, distributed database-systems, database
models, systems issues (concurrency, locking, transaction management), database machines, query systems,
query optimization and compilation, database languages, data sharing for multiprocessors, and related topics.

General Chairperson
Robin Williams

IBM Research, K55/281
5600 Cottle Road

San Jose, CA 95193

SIGMOD U.S. Chairperson
David J. DeWitt

Computer Sciences Dept.
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706

— MAY 23-26 —

FOCUS ON
ENGINEERING
DATABASES

FOCUS ON
BUSINESS AND
OFFICE DATABASES

SIGMOD83

W

VENDOR EXHIBITS

L

SIGMOD European Chairperson
Georges Gardarin

INRIA
B.P. 105

Domaine de Voluceau-Rocquencourt
78150 Le Chesnay, France

Engineering Databases Chairperson
Raymond Lorie

IBM Research, K54/282

.5600 Cottle Road

San Jose, CA 95193

66

Business and Office

Database Chairperson
Eric Carlson
Convergent Technologies

3055 Patrick Henry Dr.

Santa Clara, Calif. 95050

Exhibits Chairperson

Paula Hawthorn

Lawrence Berkeley Laboratory
CSAM S0B/3215

Berkeley, CA 94720

Gpansors

Lawrence Berksley Laborstory
University of California

U.S. Department of Energy

B ®

Call for Papers and Participation

Second International Workshop on
Statistical Database Management

27-29 September 1983, Los Altos, California

Workshop Program

This limited attendance workshop will bring together computer scientists,
statisticians, system designers, and others to discuss current work on statistical
database management. Working groups of five to fifteen participants will meet daily to
discuss and draft position papers on individual topics. Plenary sessions will include

I Soope for :‘t o special presentations, discussion of selected topics, and working group reports.
Machinery, SIGMOD Individual research reports, issue outlines, papers, and biographical sketches will be
American Statistical Assoc. circulated prior to the workshop.

tistical i i
Stal Computing Section TOP'G.

@ @ Like its highly successful predecessor in December 1981, this workshop will address

research and implementation issues including, but not limited to, the following areas
Genersl Chalrperson of statistical database management:
John L. McCarthy
Lawrence Berkeley Laboratory Meta-date Storage and Access Applications
conceptual models data structures scientific experiments

Program Chalrperson schema definition compression methods medicat records
Roy Hammond data dictionaries security and privacy economic time series
Statistics Canads self- describing files distributed databases data analysis
Program Committes User Interfaces Comparative Analysis Hardware
Rick Backer] performance evalustion database machines
Bell Telephone Laboratories software tools interface experiments storage technology
F"_‘ﬁ' _C"" interactive requirements benchmark standards MiCroprocessors
University of Alberts
tvor Frencis Participation by Invitation
Cornell University

Jerome Friedman

Stanford Linear Accelerator Center

James Gentle

international Mathematical and
Statistical Libraries, Inc.

Ron Heims

The Program Committee will invite 50 to 100 people to the workshop, based on written
research reports, issue outlines, and papers. Contributions should be 1000 to 5000
words in English (preferably in IEEE format), with a separate page containing an
abstract and a biographical sketch of each author (no more than 100 words each).
Send five (5) final copies by 1 March 1983, to

University of North Caroline Roy Hammond, Program Chairperson
Devid Hoaglin Statistics Canada, EPSD
Harvard University

Gregory A. Marks
Inter- University Consortium for

R. H. Coats Building - - 13th Floor
Tunney's Pasture, Ottawa Canada K1A 0T6
(telephone 613 995- 3973)

Political and Socisl Research
Wes Nicholson The Program Committee will notify authors by 1 May 1983.
Pacific Northwest Laboratory
Gordon Sande Location, Cost, and Accommodations
Statistics Canads » R
Disne C. P. Smith The workshop will be held at a 50 acre hilltop retreat center in Los Altos, California,
Computer Corp. of Americs about forty miles south of San Francisco. The cost will be approximately $250 per
Peter Stevens " person, including registration plus three full days room and board. There will be a
g:;:‘y °s'u"°°' Suatistics special registration- only rate for full- time students.
University of Florids
Harry Wong Important Dates
Lawrence Berkeley Laboratory Submigsion Deadline 1 March 1983
Acceptance Notification 1 May 1983

M":":‘ Coordinator Final Version Due 1 July 1983
Peggy Little Proceedings Mailed 1 September 1983
Lawrence Berkeley Laboratory _
Buiding B0C Workshop 27- 29 September 1983

rkeley. .
priiagriyaialies Further Information
FTS: 451-6396

Arpanet: john©Ibi- unix

For additional information, fill in and mail the attached response card, or contact the
LBL Conference Coordinator listed at left.

Name
Organization
Address

City, State, Zip Code
and Country

Response card (please mail to address on reverse side)

Telephone:

please check all of the following that apply:

— lintend to submit a research report

— | intend to submit & working group issue outline

——- | intend to submit 8 peper

—— | would like to help organize a working group

«— Not sure | can participate, but please keep me informed.

Subject of paper,
report, or outline

67

ER

3RD INTERNATIONAL
CONFERENCE ON

CALL FOR PAPERS

AprproacH ENTITY-RELATIONSHIP APPROACH

October 6-8, 1983

Anaheim, California

Major Theme: The Use of Entity-Relationship Concept
in Software Engineering

General Conference Chairperson
Or Cant G Dawvis
Ballisuc Missile Detense Advanced
Technology Center :
PO Box 1500
Huntswville. AL 35807

Conference Chairpersons
Mr Laszio A Belady
iBM
Oid Orchard Rd
Armonk. NY 10504

Protessor Donaid R Shurtieft
Department of Computer Science
University of Missoun-Columbia
Columbia. MO 65211

Program Chairpersons
Professor Raymond T Yeh
Department of Computer Scrence
University of Maryland
College Park, MD 20742

Protessor Peter A Ng
Urniversity of Missoun-Columbia

ER Conference Steering Committee Chairperson
Protessor Peter P Chen
Graduate School of Management
uCLa
Los Angeles. CA 90024

Program Committee Members

Mack W Altord usa Sung ¥ Bang Korea
Carto Bawny iraty Catrel Beer israet
John L Berg usa Paul K Biackwell usa
Jamis A Bubenko Sweden David T Chen USA
T C Criang USA Peter geJong usa
Al Dale usa Dennis W Fite . USA
Andre Fiory France FRoben A Frayley USA
K S Fu usa A L Funado Brasi
LS Hsy Singapare Rowland Johnson uSa
Stephen R Kimbieton USA R C T Lee China
Aibeno Mendelzon Canada wiliam E McCanny (VY
Epnram R Mctean USA John Mitchell usa
Encn J Neuhoid Germany Jurg Nievergeh Switzerlang
Ross A Overbeex USA C v Ramamoorthy usa
Douglas T Ross usa Nicholas Roussopoulos USA
Huotaka Saxas Japan Eagar H Sibiey usa
Arne Solvberg Norway Terry A Straeler USA
Daniel Texchroew usSa Julus T Tou usa
Jonn M Tsao USA Hubent Targieu France
A Min Toa Austna Jefirey O Uman USA
Charles Vick USA Herbert Weber Germany
James A Weeldreyer USA Alan B Salbury USA

CALL FOR PAPERS
INTERNATIONAL JOURNAL ON ENTITY RELATIONSHIP APPROACH
Fustissue Oclober 1982 (Quanetty Pubit atony

Tues 10 De (overea 101 Theory of Entes ang Rewatonsnips

121 Appicalons n Databases Informanon Syskems Accounting SO0 SCences
Orgarezanonal Desgns Swmutauon er

121 Case Sigees

Send fie CODes ! Ihe AOUDA SDACED MAnUSCHE 1

Or Rowlang Jonnson

1300

Lawrence Livermone Labusatey

Lvermore CA 94950 US A

et Papmers

st e

13D eaiia N 2GS T0 0 U S Canatle Subnd oDers

P SuDM IgARN ang Further Dtrmataer contacs ER insimute
PO B2 677 Sauqus CA9 I US A

68

Sponsors
ER Insttute
UCLA Graduate Schoot of Management
Univ of Maryland (Dept. of Computer Science)
Univ of Missoun-Columbia (Compuler Science)

This conference wilt bring together researchers and practtioners to focus
aftention upon the theory of entity relationships and its apphcations on soft-
ware engineering.

Topics of Interest

Papers ol high quality are solicited on both principles and pragmatics ol ER
Approach in sofiware engineenng. Topics ot major interest are. but are ot
hmited to.

Theory and Graphical Representations

o Definition of Entities. Relationstups. Attributes. etc

® Modification and Extension of Entity-Reiationship Models and Diagrams
® Representation of Schemes ot Entity Relationships

® Semantics and Optimization Issues

® Entity-Relationship Concepts in Management Science Models

® Other Conceptual Models

Systems and Languages

® Computer Languages Based on Entities and Retationships
» Dalabase Management Systems and Distributed Databases
® Database Schema Conversions and Translatons

© Database Design Tools

e Data Dictionaries

» Database Oynamics

System Analysis and Specihcatons

® Software Design Techniques and Tools
® Regquirements Engineering {Definition, Formulation and Analysis)
® Data Abstraction

® Software Envionment

® Software Metrcs

® Software Productivity

® Quality Control and Assurance

® Software Maintenance Evoluation

® Software Project Management

® Human Factors

® Organization Design

® Database Organization

® Case Studes

To Submn Your Papers
(1) Five copies in Engiish} of Ihe double-spaced manuscrnpt should be sub-
mutted by February 15 1983 10 the Chairperson
Protessor Peter A Ng
Department ot Computer Science
University of Missoun-Columbia
Columbia. MO 65211
Tel (314) 882-4540 or 3842 (Mrs Norma Kenyon)
(2) Authors will be notfied of acceptance or rejection by May 15 1983
(3) Rewvised papers will be due by July 15 1983

Proceeaings

The conference proceedings wilt be pubhshed by the ER insutule Authors of
all accepled papers will be expected (0 5:gn a copynghl release ltorm The
hard cover proceedings of the 2ng Conlerence may be ordered from the ER
INSTITUTE PO Box 617. Saugus CA 91350 USA ($25 prepaid $30
otherwise)

	40979_DataEngineering_Dec 1982_Vol 5_No4.pdf

