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Letter from the Editor-in-Chief

Bulletin and Technical Committee

This begins my fifth year as Editor-in-Chief of the Data Engineering Bulletin. This has been both a rewarding
experience and a time-consuming one. | have been fortunate to have worked with many fine issue editors over the
years, without whose efforts, the Bulletin simply would not have happened. | want to thank them all and express
the hope that my good fortune will continue in the future.

The problem of assuring funding for the Bulletin was with us from the time the Bulletin was revived in De-
cember, 1992. It continues. Fortunately, every year thus far, including this year, the IEEE Computer Society has
agreed to fund us yet again. This is gratifying but also potentially undatable for the longer term. Literally, at the
beginning of each calendar year, | ask whether our funding continues. So far, so good, but....

Meanwhile, the Technical Committee on Data Engineering, aside from the Bulletin, has become relatively
dormant. | have not seen more than two or three messages about TC affairs over the last year. This is not a good
situation. Does the TC have a role outside of the Bulletin. What about the SIGMOD model? Is there room for/do
we need two database organizations- one for the ACM and one for the IEEE, or is this just an historical accident?
This is more than a rhetorical question. | am prepared to devote scarce Bulletin pages to letters on this subject. |
would encourage you to write with your suggestions for the future of the TCDE.

This Issue

Daniel Barbaa is the issue editor for this special issue on on-line analytical processing (OLAP). OLAP has be-
come in a few short years one of the major applications of database technology, impacting indexing, query pro-
cessing, and caching strategies. This issue nicely captures some of the excitement of the OLPA field, both com-
mercially and in the research community. Daniel has done a fine job in assembling the issue. There is much to
learn in the reading of the issue.

David Lomet
Microsoft Corporation



Letter from the Special Issue Editor

On-Line Analytical Processing (OLAP), is atechnology that describes applications that require multidimensional
analysis of data. OLAP allows users to view aggregate data (e.g.,sales) along a set of dimensions (e.g., store,
products, months) and hierarchies (e.g., day, month, year). OLAP data is frequently organized in the form of
a data cube which is simply a multidimensional hierarchy of aggregate values. OLAP functionality enables
analysts to do calculations applied across dimensions and hierarchies, trend analysis, viewing of subsets of the
data, navigation among levels of data ranging from the most summarized (roll-up) to the most detailed (drill-
down), and other operations even on very large data bases. Although there are already a variety of products in
the market that support OLAP, the field is rich with research opportunities and thus, has attracted the attention of
researchers in both academia and industry.

This issue of IEEE data Engineering Bulletin focuses on recent efforts in developing techniques to efficiently
support OLAP. In one way or another, all the papers in this issue deal with the two key issues in OLAP: perfor-
mance and storage space. The first issue arises from the fact that queries in OLAP need to be interactive. The
second issue is a factor since data cubes are usually very large (sometimes too large to be completely material-
ized).

Our first paper written by Prasad M. Deshpande, Jeffrey F. Naughton, Karthikeyan Ramasamy, Amit Shukla,
Kristin Tufte and Yihong Zhao, reviews the work that the authors have done at the University of Wisconsin,
Madison. Concretely , the paper addresses three areas of OLAP. First, how to efficiently compute a cube from
the underlying relational database, by implementing multidimensional aggregation. Second, they review algo-
rithms to estimate the storage that would be needed to precompute a subset of a cube. Such algorithms are useful
since precomputing parts of the cube is a standard technique to improve response time, while at the same time
precomputation can demand a lot of storage. Finally, they look at the tradeoffs of using multidimensional struc-
tures (MOLAP) versus tables (ROLAP) for storing multidimensional data.

The second paper by Venky Harinarayan addresses the issue of query performance in OLAP applications.
Identifying the mismatch between the data cube model and the underlying relational interface and bridging this
mismatch becomes the focus of the paper. The paper also discusses approximate querying on OLAP.

The third paper by Curtis Dyreson, introduces the notiomodmplete Data Cubeas which regions of the
cube are missing. (For instance, at some point is decided that keeping hourly sales figures is not necessary, and
daily reports will suffice.) The author shows how incomplete cubes can be used as sieves of relevant summary
data from an unstructured text file.

The last two papers deal with indexing methods for OLAP databases. Sunita Sarawagi presents a survey of
existing indexing methods and discusses their advantages and disadvantages. The paper also proposes extensions
to multidimensional indexing methods that can make the indexes more appropriate for OLAP. The paper by Ted
Johnson and Dennis Shasha presents a novel data structurecobiiedrestshat exploits the hierarchical nature
of the OLAP data to save space.

OLAP is a fruitful area of database research with applications and needs that can be readily found in the real
world. The articles in this issue show some of the most important issues that drive research in OLAP nowadays.

Daniel Barbaa
Bell Communications Research



Cubing Algorithms, Storage Estimation, and Storage and
Processing Alternatives for OLAP*

Prasad M. Deshpande Jeffrey F. Naughton Karthikeyan Ramasamy Amit Shukla
Kristin Tufte Yihong Zhao

Computer Sciences Department
University of Wisconsin-Madison

Abstract

“OLAP” or multi-dimensional analysis workloads present a number of interesting challenges and oppor-
tunities for database developers and researchers. While the OLAP goal of extremely fast response times
is hard to meet in general, the structure of the underlying multidimensional model (whether implemented
by arrays or by tables) provides a framework that can be used to approach this performance goal for this
class of queries. In this note we give an overview of our research into these problems.

1 Introduction

The OLAP (On-Line Analytical Processing) phenomenon is interesting from both an academic and an indus-
trial point of view. While historically there have been companies selling systems that would be today classified
as "OLAP” systems for quite awhile, until recently this area was largely ignored by the database research com-
munity. Currently the research community is apparently making up for lost time, as we are in the midst of a
tremendous burst of OLAP-related research activity. This note gives an overview of some of the research we are
pursuing at the University of Wisconsin-Madison Computer Science Department.

For readers who are not familiar with “OLAP” or multi-dimensional data analysis, perhaps the best place
to start is the Web, which is full of vendor white-papers describing each company’s take on what these terms
mean. A good jumping-off point is the OLAP council Web site — http://www.olapcouncil.org/. In this short
note we will try to give enough background to make the note self-contained, but we are of necessity omitting
large portions of the OLAP universe. Also, due to space limitations, we are omitting a full discussion of related
work; we encourage the reader to get the full papers from the URL's listed in this paper to find references to
related work.

One key demand of OLAP applications is that queries be answered quickly. Of course, this is a rather com-
mon goal; few types of systems have as their goal “slow response times.” However, the OLAP marketplace has
perhaps taken this to a new level, demanding that decision support queries be answered in seconds. In general
this is hard to do; fortunately, the multi-dimensional data model embedded in OLAP systems is structured enough

Copyright 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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to allow systems to approach this goal. The overall goal of our research is just that: to exploit the structure of the
multi-dimensional model to provide extremely high performance for this class of queries.

Atthe heart of OLAP or multidimensional data analysis applications is the ability to simultaneously aggregate
across many sets of dimensions (in SQL terms, this translates to many simultaneous group-by’s.) Computing
these multidimensional aggregates can be a performance bottleneck for these applications, so we have explored
various schemes for implementing multidimensional aggregation. The SQL community has also taken notice of
the requirement for simultaneous multidimensional aggregation; in particular, there are proposals for extending
SQL to include the “cube” operator as proposed by Gray et al. [GBLP96]. This operator computes aggregates
over all subsets of dimensions specified in the “cube” operation, and is equivalent to the union of a number of
standard group-by operations. Initially, we focussed on efficient algorithms for computing the cube based upon
the standard relational techniques of sorting and hashing as applied to data stored in tables. Section 2 gives an
overview of this work. A team at IBM Almaden including Rakesh Agrawal, Ashish Gupta, and Sunita Sarawagi
independently explored similar approaches to this problem; for more details please consult our joint paper in
VLDB96, available as [AAD+96] or from
http://www.cs.wisc.ediind/papers/vidb96/Article.PS.

To speed up multidimensional data analysis, database systems frequently precompute aggregates on some
subsets of dimensions and their corresponding hierarchies. This is related to the “computing the cube” problem
in that a common tactic is to precompute some or all of the cube. This improves query response time. How-
ever, the decision of what and how much to precompute is difficult. It is further complicated by the fact that
precomputation in the presence of hierarchies can result in an unintuitively large increase in the amount of stor-
age required by the database. Hence, it is interesting and useful to estimate the storage blowup that will result
from a proposed set of precomputations without actually computing them. In Section 3 we describe three strate-
gies we have evaluated for this problem: one based on sampling, one based on mathematical approximation,
and one based on probabilistic counting. Full details on this work are available in either [SDNR96] or from
http://lwww.cs.wisc.ed@amit/vidb96.ps.

Finally, itis clear from alook at the OLAP industry today that array-based storage structures are an important
alternative to tables for storing multidimensional data. This has manifested in the heated “MOLAP/ROLAP”
marketing wars. In our research our goal is to attempt to identify the tradeoffs between the two approaches, to
qguantify differences between the two approaches, and to see if object-relational technology can be employed
to get the “best of both worlds.” Toward this end we have implemented a multidimensional array ADT in our
Paradise Object-Relational DBMS. Section 4 describes our ADT and discusses some early interesting results
from experiments on the implementation and our directions for future research. A paper describing some of this
research can be found in [ZDN97] or at http://www.cs.wisc.edu/zhao/cube?2.ps.

2 Cubing Relational Tables

The group-by operator in SQL is typically used to compute aggregates on a set of attributes. For business data
analysis, it is often necessary to aggregate data across many dimensions (attributes). For example, in a retail
application, one might have a relation with attribu{(Bsoduct, Year, Customer, Saleshn analyst could then
query the data by asking the system to display:

e sum of sales by (product, customer)

For each product, give a breakdown on how much of it was sold to each customer.

e sum of sales by (date, customer)
For each date, give a breakdown of sales by customer.

e sum of sales by (product, date)



For each product, give a breakdown of sales by date.

Gray et al. [GBLP96] proposed the “cube” operator to formalize this sort of simultaneous aggregation and to
express it in SQL.

The “cube” operator is the-dimensional generalization of the group-by operator. The cube operator on
dimensions is equivalent to a collection of group-by statements, one for each subset dirtlensions:

CUBE [DISTINCT | ALL] <select list> BY <aggregate list> <table expression>

The semantics of the cube operator is that it computes aggregates (specifiegagdnegate list> ) by
grouping on all possible subsets of the attributesgnlect list> . Each such group-by aggregate is called
acuboid. The group-by aggregate over all the attributesselect list> is called thebase cuboid Thus
for a cube over attributes2™ cuboids including the base cuboid would have to be computed.

Returning to our retail example, consider the rela{Broduct, Year, Customer, Sale3)he following state-
ment will compute the sales aggregate cuboids on all 8 subsets of tflereduct, Year, Customg(including
the empty subset):

CUBE Product, Year, Customer By SUM(sales)

The cube operation om attributes consists of computing a collection26fcuboids, and a key challenge is
to understand how the cuboids in this collection are related to each other, and to exploit these relationships to
minimize 1/0O. Our approach explores the relationships between the cuboids using a hierarchical structure, and
formalizes the problem of computing a CUBE in terms of this hierarchy. This provides a framework in which
algorithms for computing the CUBE can be understood and evaluated.

In our work we explored a class of sorting-based methods that try to minimize the number of disk accesses by
overlapping the computation of the various cuboids, thereby reducing the number of sorting steps required. Our
experiments with our implementation of these methods show that they perform well even with limited amounts
of memory. In particular, they always perform substantially better than the method of computing the CUBE by
a sequence of group-by statements, which is the only option in many commercial relational database systems.

For more detail on this work please consult either [AAD+96] or
http://www.cs.wisc.edu/ pmd/papers/vidb96/Article.PS.

3 Storage Explosion and the Cube

As noted in the introduction, multidimensional data analysis, as supported by OLAP systems, requires the compu-
tation of several large aggregate functions over large amounts of data. To meet the performance demands imposed
by these applications, virtually all OLAP products resort to some degree of precomputation of these aggregates.
The more that is precomputed, the faster queries can be answered; however, it is often difficult frieay
how much storage a given amount of precomputation will require. This leaves the database administrator with
a difficult problem: how does one predict the amount of storage a specified set of precomputations will require
without actually performing the precomputation? (Harinarayanan et al. [HRU96] considered the related problem
of which aggregates are best to precompute and store if only a given number of them can be stored.)

To further clarify the problem we are considering, we begin with an exdmg@lensider a table of sales with
the schema

Sales(Productld, Storeld, Quantity)

!This example is from [AGS95]. We gratefully use it here because we have always wanted to write a paper incorporating the term
“personal hygiene.”



with the intuitive meaning that each tuple represents some quantity of some product sold in some store. Further-
more, assume that we have some information about products captured in a table

Products(Productld, Type, Category)

capturing for each product to which Type it belongs, and for each Type to which Category it belongs. Finally,
suppose we have an additional table

Stores(Storeld, Region)

which captures for each store to which region it belongs. This data set can be viewed conceptually as a two-
dimensional array with hierarchies on the dimensions.

There are a number of queries that can be asked of this data. For example, one may wish to know sales by
product; or sales by type; or sales by product and region; or sales by store and type; and so forth. Each of these
gueries represents an aggregate computation. For example, sales by product in SQL is just:

select Productld, SUM(Quantity)
from sales
group by Productid;

If the sales table is large, this query will be slow. However, if this aggregate is precomputed, the query (and
gueries derived from it) can be answered almost instantly. Therefore, the task the DBA faces is to choose a set
of queries to precompute and store. In this paper, we first consider the problem of estimating how much storage
will be required if all possible combinations of dimensions and their hierarchies are precomputed. Furthermore,
once we have described how to estimate this full precomputation the extension to precomputation of a subset is
trivial.

A useful way to describe the full precomputation problem is to use the cube framewaork discussed in the previ-
ous section. In our example, the cube consists of the group-by’s: (), (Productld), (Storeld), (Productld, Storeld).
The SQL for these four group bys (in the above order) is:

select SUM(Quantity)
from sales;

select Productld, SUM(Quantity)
from sales
group by Productld;

select Storeld, SUM(Quantity)
from sales
group by Storeld;

select Productld, Storeld, SUM(Quantity)
from sales
group by Productld, Storeld;

When we consider the possibility of aggregating over hierarchies, we get a generalization of the cube, which
we will refer to as the cube from here on. Again returning to our example, the cube with hierarchies will compute
aggregates for (), (Productld), (Storeld), (Type), (Category), (Region), (Productld, Storeld), (Productid, Region),
(Type, Storeld), (Type, Region), (Category, Storeld), and finally (Category, Region). It is the presence of hierar-
chies in the dimensions that in general make the storage requirements of cubes with hierarchies far worse than
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Figure 1. Three sample multi-dimensional data séts represent Stores arfg’s represent Products. Stores

S1 - S5 are in California, and so roll up into the region California, while S6 - S10 are in Wisconsin, and roll
up into the region Wisconsin. Products P1 - P3 are of type Soap, while products P4 - P8 are of type Shampoo.
Soap and Shampoo are further grouped into the category Personal Hygienés ateesales volumes; entries

that are blank correspond to (product, store) combinations for which there are no sales. (b) and (c) are sample
multi-dimensional data sets which are used in an example.



Table 1: The variation in the size of the cube with the data distribution. Figures 1 (b) and (c) show DB 1 and DB
2 respectively.

Group-by DB1| DB2
0 1| 1
(Products) 3 8
(Type) 1 2
(Category) 1 1
(Stores) 5 10
(Regions) 1 2
(Products, Stores)| 15 15
(Type, Stores) 5 15
(Category, Stores)| 5 10
(Product, Region) | 3 14
(Type, Region) 1 4
(Category, Region) 1 2
| Size of Cube | 42 | 84 |

that of cubes without hierarchies. Note that on this small example of only two dimensions the cube computed on
the 16 tuples in Figure 1 (a) results in 73 tuples, while the cube without hierarchies has 34 tuples.

Furthermore, for a given database schema and a fixed number of data elements, the resulting size blowup on
computing a cube can vary dramatically. Figure 1 (b) and (c) show two databases which illustrate the range of
blowups that can occur. Each database has the same number of tuples (15), the same number of dimensions (2),
and the same hierarchy on the dimensions. As the computation in Table 1 shows, even for a small database, and
a small number of dimensions, the sizes of the cubes for the databases are very different.

We now turn to the problem of estimating the size of these blowups without computing the cube. We have
considered three solutions.

For the first solution, if the data is assumed to be uniformly distributed, we can mathematically approximate
the number of tuples that will appear in the result of the cube computation using the following standard result.
Feller [Fel57]:

If » elements are chosen uniformly and at random from a setetéments, the expected number of
distinct elements obtainedis— n(1 — 1/n)".

This can be used to quickly find the upper bound on the size of the cube as follows.

To apply the uniform-assumption method, we need to know the number of distinct values for each attribute
of the relation. Such statistics are typically maintained in the system catalog. Using the above result, we can
estimate the size of a group by on any subset of attributes. For example, consider a relation R having attributes
A, B, C, D. Suppose we want to estimate the size of the group by on attributes A and B. If the number of distinct
values of A isn; and that of B i1, then the number of elements.ihx B isny * ny. Thusn = ny * ng in the
above formula. Let be the number of tuples in the relation. Using these values we can estimate the size of the
group by. This is similar to what is done in relational group by estimation.

A cube is a collection of group bys on different subsets of attributes. If we are computing a ckib@men-



sions where dimensiohhas a hierarchy of sizk; then the total number of group bys to be computed is:

k

[T +1) 1)

=1

This figure is obtained by observing that in any group by atmost one of the attributes in each hierarchy should
be present. We can estimate the size of each of the group bys and add them up to give the estimated size of the
cube.

Any skew in the data tends to reduce the size of the group bys reducing the size of the cube. Hence the uniform
assumption tends to overestimate the size of the cube, and there is of course no way to know how far off it might
be, since this method does not consult the database other than to gather crude cardinalities. It also requires counts
of distinct values, without which it cannot be used. However, this method has the advantage that it is simple and
fast.

For the second solution we considered a simple sampling-based algorithm. The basic idea is as follows: take
a random subset of the database, and compute the cube on that subset. Then scale up this estimate by the ratic
of the data size to the sample size. To be more precise, we have the followind? amd s be the database
and a sample obtained from the database respectivaly. isfthe sample sizeéD| the size of the database, and
CUBE(s)is the size of the cube computed on the sampléen the size of the cube on the entire dataliase
approximated by:

CUBE(s)x 1Dl

|s|

This is admittedly very crude. The approach of estimating the size of an operation by computing the operation on
a subset of the data and then linearly scaling produces an unbiased estimator for some common relational alge-
braic operations such as join and select. Unfortunately, in this case, the estimate produced is biased, as estimating
the size of the cube is more akin to estimating the size of a projection than it is to estimating the size of a join.
However, once again the computation is simple, and has the potential advantage over the uniform assumption
estimate of examining a statistical subset of the database (instead of just using cardinalities.) This simple biased
estimator produces surprisingly good estimates.

The key idea of the third solution is based on an interesting observation made from Figure 1 (a). To compute
the number of tuples formed by grouping Product type by Stores, we essentially group tuples along the Product
dimension (to generate Product type), and count the number of distinct stores which are generated by this opera-
tion. Hence, by estimating the number of distinct elements in a particular grouping of the data, we can estimate
the number of tuples in that grouping. We use this idea to construct an algorithm that estimates the size of the
cube based on the following probabilistic algorithm which counts the number of distinct elements in a multi-set.

Flajolet and Martin [FM85] propose a probabilistic algorithm that counts the number of distinct elements
in a multi-set. It makes the estimate after a single pass through the database, and using only a fixed amount of
additional storage. This algorithm can be used as a basis upon which to build a cube size estimation procedure.

Comparing the algorithms based on their accuracy, we found that the algorithm based on sampling over-
estimates the size of the cube, and the estimate is strongly dependent on the number of duplicates present in
the database. The algorithm based on assuming the data is uniformly distributed works very well if the data is
uniformly distributed (what a surprise!), but as the skew in the data increases, the estimate becomes inaccurate.
In the experiments we carried out, the analytical estimate was more accurate than the sampling based estimate for
widely varying skew in the data. The algorithm based on probabilistic counting performs very well under various
degrees of skew, always giving an estimate with a bounded error. Hence it provides a more reliable, accurate and
predictable estimate than the other algorithms.

Which algorithm is best depends upon the desired accuracy, the amount of time available for the estimation,
and the degree of skew in the underlying data. But in most cases, the algorithm of choice for a reasonably quick



and accurate estimate of the size of the cube is the algorithm based on probabilistic counting. For more details
on this work please consult either [SDNR96] or from http://www.cs.wisc&uit/vidb96.ps.

4 An Object-Relational ADT Alternative to Tables

An interesting question is what storage structure should be used to hold multidimensional data for OLAP queries.
One logical option is relational tables. Suppose we wish to store a 3-D array of integers in a table. We can do so
by declaring a 4 attribute table, s&y, J, K, D), where the triplg 7, J, K) is the index of the array cell holding
the integer D. Another option is to store the data in an array, perhaps laying out the data in row-major or column-
major order, just like a programming language array.

Both of these approaches have advantages and disadvantages, and this has given rise to a vigorous ongoing
debate between the MOLAP and ROLAP vendors. Some of the advantages of a MOLAP approach include:

e Dense arrays (ones with a larger fraction of their cells filled with valid data) are stored more compactly in
the array format than in tables (because the array indices are implicit rather than explicit).

e Array lookups become simple arithmetic operations rather than associative lookups in tables.

Some advantages of the ROLAP approach include
e Sparse data sets may be stored more compactly in tables than in arrays (since only valid cells are stored.)
¢ With tables you get all of what a standard SQL database brings, including scalability to very large data sets.

The reality is of course far more complex than these simplistic facts indicate. For example, sparse arrays can
be stored compactly; tables can be indexed, e.g. by bitmaps, to provide fast operations on them. Also, there are
other issues we have not even touched upon here.

In our research we are investigating these tradeoffs in more detail, and to quantify the benefits of each. We
are fortunate in that we have available our object-relational DBMS, Paradise, for experimentation. We have used
Paradise to implement an array ADT as an example of a MOLAP-style storage system, and also to implement
bit-map indices and special purpose query evaluation algorithms as an example of a high-performance ROLAP
system. This allows us to greatly reduce the number of factors we vary in the experiments, since both systems run
in the same code base. For example, both subsytems have the same concurrency control and recovery subsystems.

We are currently experimenting with the system and a paper is under preparation. As an early example of a
problem we have investigated, consider the problem of computing the “cube” over data stored in arrays rather
than in tables. We have found that for a wide variety of data sets this is surprisingly efficient; in fact, it is so
efficient that in many cases it is faster to (a) start with a data set in a table, convert it to an array, “cube” the
array, and store the result back to tables, than to (b) cube the table directly. For more details on this work please
consult [ZDN97] or http://lwww.cs.wisc.edtliao/cube?2.ps.
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Abstract

OLAP applications make heavy use of aggregation and yet need to be interactive. Query performance
is thus crucial for OLAP applications. In this paper, we identify the impedance mismatch between the
“data cube” data model exported by OLAP engines and the underlying relational data-storage interface
as being key to understanding OLAP performance. Bridging this mismatch efficiently is essential and
in this context we survey some of the recent results in this area. Further, as the volume of data and the
number of data sources keeps increasing OLAP will have to evolve. In particular, we discuss approximate
querying and the effect of the Internet on OLAP.

1 Introduction

The increasing computerization of operations within enterprises has led to the availability of large amounts of
valuable corporate data. The explosive emergence of the Internet as a commercial medium also has added to the
volume of data confronting decision makers. Harvesting all this data to extract useful information is becoming
critical at all levels of decision making — from the enterprise to the consumer. For example, analysts in a large
retail company may determine which products to discount based on customers’ buying preferences. These buying
preferences may be extracted from a table that has the monthly history of individual transactions from the different
retail stores. As another example, a consumer desiring to buy a car may use information gleaned from multiple
data sources (web sites) on the Internet in deciding on the car and the dealer.

There are some common threads in these differing examples. First, user queries usually span multiple data
sources. Further, since the decision-making process is interactive, responses to user queries must take of the or-
der of a few seconds to execute. In many practical cases, having the query access the data sources at run time
(the mediator approach [Wie92]), results in unacceptable response times. An increasingly popular solution is to
collect, reconcile, and store all the required data in one unified data repository commonly referred to as a “data
warehouse.” It is important that decision-makers be able to navigate this data to analyze and extract informa-
tion. Enabling such navigation is the goal of Online Analytic Processing (OLAP) systems. A preferred way of
navigation is to view aggregate properties of the underlying data at different granularities of aggregation. Using
aggregation to analyze data becomes especially important as the volume of the underlying data becomes large.

Copyright 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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However at the same time, the cost of aggregation increases with the volume of the data, since it can potentially
involve accessing every data item. This fact coupled with user requirements for interactivity make efficient pro-
cessing of aggregate queries central to the success of OLAP — enabling interactive aggregation is in some sense
the goal of OLAP systems. In this paper, we survey some of the recent advances in making aggregation truly
interactive.

This short paper has two sections. First, in Section 2, we examine the current state of the art in high-performance
OLAP query processing. We identify the impedance mismatch between the “data cube” data model used by
OLAP engines and the relational data model used by the underlying data store. Bridging this mismatch effi-
ciently is the key to OLAP performance and it is in this context that we survey some of the recent results in this
field. Next, in Section 3, we discuss some of the future directions for OLAP. In particular, we examine the impact
of the Internet in making OLAP more mainstream and also the use of approximate querying in OLAP engines to
handle ever-increasing volumes of data without sacrificing interactivity.

2 OLAP in the Enterprise

2.1 OLAP Architecture — The Impedance Mismatch

Enterprises are standardizing on relational database systems for storage of corporate data. Thus, enterprises typ-
ically use commercial relational database systems to house their data warehouses. As mentioned before, it is
important for OLAP users to be able to navigate and visualize the underlying data for their analysis. However,
presenting the data to the user in the form of many “flat,” 2-D relational tables does not help much in visualizing
the data. If a user is to extract information buried in the data, it is important that the data be presented to the user
in an intuitive way. For many OLAP applications, it is much more intuitive to present the data to the user as a
multidimensional “cube.”

Example 1. Consider the example of a retail chain that sells products in various countries and is interested in
their sales over time. This data is typically kept in tables in a relational database. Now, consider an analyst who
has noticed that total sales in the year 1995 were higher than normal and wants to investigate why. He may wish
to breakdown the sales by country to determine the countries that accounted for this increase. If the interface
presented to him is one of relations, this simple operation is made unnecessarily complex by having him think
of joins, selections, and so on. It is much more natural to think of the data as sales numbers populating a three-
dimensional cube, whose dimensions are product, country and time. Breaking down sales by country corresponds
to projecting the cube onto the country dimension. For most of the ad-hoc analysis done in OLAP, a cube is the
natural interface. The relational model is much too cumbersome an interface.

This multidimensional-spreadsheet (data-cube) perspective of data is referredinmeasional modeling
The data-cube data model is more restrictive than the relational data model. However itis an intuitive and natural
data model for OLAP applications.

There is thus an “impedance mismatch” between the interface the users would like — the data cube, and
SQL —the interface provided by the relational database that stores the data. This impedance mismatch is usually
bridged by a layer of software known as t®&AP engine In particular, the OLAP engine has to handle the
following two shortcomings of the relational engine.

e Functionality. The relational engine may not provide the functionality required by the OLAP engine.
e Performance. The relational engine may not efficiently execute common OLAP operations.

Efficiently managing and narrowing this impedance mismatch is at the heart of improving OLAP query per-
formance. Managing this mismatch efficiently is the charter of the OLAP engine, while narrowing this mismatch
is the charter of the relational engine.
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2.2 OLAP Performance

In the ensuing discussion we identify techniques to improve query performance in the OLAP engine and in the
relational engine.

2.2.1 The OLAP Engine

Arguably, the best method to manage a mismatch is to avoid encountering it. For the OLAP engine, this method
translates to having as much of the data available natively to the data cube interface. In effect, this means precom-
puting the aggregates corresponding to data cubes or parts thereof. In fact, precomputing aggregates is the single
most effective tool to improve query performance [Kim96]. Picking the right set of aggregates to precompute is
critical to the success of this strategy and there is a fundamental trade-off between performance and scalability:
the more aggregates an OLAP engine precomputes, the better the query performance but the less the scalability
with larger data cubes. Different OLAP engines choose differing points on this trade-off curve, sacrificing op-
portunities either because they cannot scale or because they do not have adequate performance. Arbor’s Essbase
system, for example, precomputes the entire data cube and stores it in its own proprietary storage system. Once
the precomputation is done, there is little interaction between the OLAP engine and relational engine. Informix’s
MetaCube, on the other hand, only precomputes parts of the data cube and stores it in the relational engine itself.
This approach while not as high-performance as Arbor’s is more scalable. In [HRU96], we investigate this prob-
lem in detail and provide simple yet scalable greedy algorithms that select the set of aggregates to precompute
based on the available resources. We also show that these algorithms perform provably close to optimal.

When the OLAP engine precomputes aggregates, it also has to address two important issues:

e Aggregate Navigation. Itis important to make these precomputed aggregates transparent to the user of the
OLAP engine. This transparency is required to make query specifications independent of the aggregates
precomputed: the user of the OLAP engine should pose queries on the base tables not the precomputed
aggregates. The OLAP engine should determine if the precomputed aggregates can be used to answer the
query. The component of the OLAP engine that determines if the precomputed aggregates can be used
to answer a given query is called the “aggregate navigator” [Kim96]. In [GHQ95], we give a general al-
gorithm that determines when a given aggregate view can be used to answer a query. Recently, Dar et
al. [DJLS96] have also provided solutions to this problem.

e Maintenance. Even though OLAP is a mostly read-only process, all the aggregates have to be recomputed
when a new batch of data is loaded. Recomputing aggregates for every batch load may result in unac-
ceptable downtimes and overhead. Quass in [Qua96] investigates and provides solutions to incrementally
maintain aggregate views.

2.2.2 The Relational Engine

In terms of API-level functionality, relational engines can offer much to narrow the mismatch. By reducing the
gap between SQL and the data-cube interface we move more of the processing closer to the data, reducing the
transfer of data between the relational database and the OLAP engine, thus improving performance.

Since the data cube is a generalization of a spreadsheet, users expect the numerous aggregate functions pop-
ular in spreadsheets. SQL, however, has only five aggregation funcsemscount, avg, max, andmin. If the
user specifies an aggregate function that is not expressible using these functions, the aggregate computation must
be done by the OLAP engine. Itis much more efficient to do this computation in the server itself. Some database
systems like Red Brick, already provide an augmented SQL interface that has aggregate functions like the rank,
etc.[Sys94]. Another extension to SQL — the data-cube operator — is proposed by Gray et al. in their semi-
nal paper [GBLP94]. The data-cube operator enables OLAP engines to construct an entire data cube with one
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guery rather than having to invoke the relational engine with many groupby queries, thus improving performance.
Agrawal et al. in [AAD"96] provide fast algorithms to compute the data cube in a relational engine.

In terms of performance requirements too there is a significant impedance mismatch. Most relational en-
gines have been built with OLTP (Online Transaction Processing) applications in mind — an environment of
many, simple, concurrent, read-write queries. Relational Engines frequently have poor performance for queries
common in an OLAP environment.

Since OLAP is a mostly read-only query environment, complex index structures can be built to improve per-
formance. Such indexes would be infeasible in an OLTP environment since they would incur too much overhead
during updates. Indeed, index structures such as bit-mapped indexes [OG95], cube forestt¢J Pk been
suggested. Bit-mapped indexes are now available in many commercial relational systems. It should be noted
here that there is a significant cost to adding a new index type, since it adds a hew access method for the query
optimizer to consider — substantial work on the query optimizer may be required to generate good plans.

Complex-query processing is another area in which most relational engines do not provide the performance
required by OLAP applications. In OLTP systems query optimization is less important than efficient concurrency
control and good resource allocation mechanisms. In OLAP systems, with complex queries and huge databases,
a bad query plan can cause the query execution time to increase by orders of magnitude. Query optimization is
thus extremely important. Unfortunately, while most OLAP queries are aggregate queries, aggregates are second-
class citizens in commercial query optimizers: the number of plans considered is severely limited in the presence
of aggregates.

Optimization of complex queries has received much attention in the research community and some of these
techniques are indeed being implemented in commercial relational engines. Dayal [Day87], Chaudhuri and
Shim [CS94], Yan and Larson [YL95], and Gupta et al. [GHQ95] give rules to move aggregates around in a query
tree. A query optimizer can use these aggregate-reordering rules to pick the best query plan in a cost-based man-
ner. Rather than move the aggregations around, Levy et al. [LMS94] have examined the dual problem of moving
the selections around in a complex-query tree. They pull all selections to the top of the query tree and combine
them to infer potentially stronger selection conditions on the the individual branches. Another technique called
“magic sets” [UII89] attempts to discard the irrelevant tuples early in the query processing. Magic sets can be
used to good effect in complex queries, since the cost of determining the irrelevant tuples is more than offset by
the benefit of reducing the size of intermediate relations. Mumick et al. first showed that magic sets could be
used for query optimization in nonrecursive queries [MFPR90]. Seshadri et al.[$6]Recently show how to
use the magic-sets rewriting in the context of a new relational operator they call “filter join” and incorporate the
magic-set rewriting process into conventional cost-based optimizers.

We believe that relational engines will continue to extend their OLAP functionality using plug-in modules
like Informix’s datablades for example, to provide more of the required interfaces and functions. Thus, in the
future, it is quite possible that relational engines will completely support the OLAP interfaces thereby obviating
the need for OLAP engines.

3 OLAP: the Future

3.1 Approximate Queries

OLAP queries are typically aggregate queries that ask for statistical properties of the data. It is only appropri-
ate that the results of an aggregate query not be exact but be statistically characterized. Consider the following
example.

Example 2: Ananalyst in aretail chain wishes to know the average sales per day of widgets and issues this query
over the sales-history table. Let us assume that five widgets, on average, were sold each day. In most scenarios,

15



an analyst is looking for trends not exact values, so a result of the form: the average number of widgets sold per
day is between 4.999 and 5.001, with a confidence of 95%, is sufficient.

The advantage of answering a query approximately is that it may be answered very quickly. For example,
sampling techniques can be used to reduce the size of the data sets. The biggest reasons given for not adopting
such “statistical querying” in OLAP are:

1. Cultural. In many cases, mostly for psychological reasons, users want exact answers.

2. Software Engineering. Itis not easy to develop and maintain a query processor which may return a different
answer for the same query each time.

As the amount of data in data warehouses keeps increasing, techniques like statistical querying will have to be
used in OLAP, if the querying process is to remain interactive. This need is already being recognized in industry:
recently, Informix announced its MetaCube 3.0 product which has some of this capability. In another interesting
direction, Hellerstein [Hel96] exploremline aggregation, an extension to statistical querying. With online ag-
gregation, the aggregation operators provide ongoing feedback, including statistical parameters like confidence.
The aggregation operators are also controllable, so the user can terminate processing whenever desired. It should
be noted however that such statistical OLAP engines increase the impedance mismatch with the underlying re-
lational engine.

3.2 The Internet

The widespread adoption of Internet technology will profoundly affect OLAP. Most vendors of OLAP engines
have thus far focused on Internet-enabling their offerings. Arbor’s Essbase Web Gateway, Microstrategy’s DSS-
Web and Oracle’'s Express Web Agent are examples of solutions that enable access to OLAP engines through
popular web browsers.

The true promise of the Internet however is in making OLAP a mainstream technology — moving OLAP
from the domain of analysts to consumers. Already, one of the larger applications of the Internet is in decision-
support — in providing job-seekers, computer-buyers, and such consumers with the information to make their
decisions. The basic concepts of data warehousing and aggregation have thus naturally made their way onto the
web. In fact, some of the most popular web sites on the Internet are basically data warehouses. Examples are
search engines such as Alta Vista (www.alta-vista.com) and Lycos (www.lycos.com) which attempt to warehouse
the entire web. Aggregation as a means to navigate and comprehend the vast amounts of data on the Internet,
has also been recognized. Directory services such as Yahoo! (www.yahoo.com) and Excite (www.excite.com)
attempt to aggregate the entire web into a category hierarchy and give users the ability to navigate this hierarchy.

However, inspite of the magnitude of this application and the accompanying growth of Internet commerce,
the infrastructure present for decision support is extremely rudimentary and limited. Even popular web data ware-
houses like Alta Vista offer very limited capability for decision-support and this is often cited as a serious failing.
The reason for this failing is that such data warehouses are unstructured and not subject-oriented. Hence com-
plex queries like those needed for decision-support cannot be posed. There are significant technical challenges
in building structured and subject-oriented warehouses that enable decision-support. Even if the underlying data
source is structured, since the language of choice on the web, HTML, is unstructured, the underlying structure
is lost. HTML thus needs to be enhanced to allow marking-up content structure. Another approach is to build
sophisticated domain-specific extraction rules that derive structure. Also in many cases for a variety of reasons
including issues such as copyright, volume of data, staleness and so on the data from some sources cannot be col-
lected into a central data warehouse. For such sources, only the metadata can be stored and the data is presented
at query time by accessing the source. How to answer queries in such a mixed mediator-warehouse environment
is an interesting research problem.
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The benefits of such subject-oriented, structured warehouses are immense. They will enable consumers to
have comprehensive market knowledge. For example, job seekers will know how jobs are distributed by location,
category and salaries. Home buyers will know how home prices in a given location vary by time of the year. As
anecdotal evidence to the utility of OLAP on the web, consider the example of a warehouse that pertains to jobs
that was built by Junglee (www.junglee.com) for a leading newspaper. The popularity of the “JobView” pages
that gives the user a fixed “OLAP view” of the distribution of all jobs by location, company, and category, has
been steadily increasing and now accounts for a significant fraction of all page views.

In summary, in today'’s society, as the amount of data being made available increases, information is becoming
the biggest differentiator, and time the biggest resource. Decision-support techniques such as OLAP hold a key
to improving efficiency in the society of the future.
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Abstract

An incomplete data cube is a multidimensional hierarchy of aggregate values in which regions of the hi-
erarchy, and the source data from which those regions are derived, are missing. We model an incomplete
cube as a collection of complete sub-cubes called cubettes. Each cubette is defined using a precise, sim-
ple specification. The set of cubette specifications concisely characterises the information content of the
cube. We discuss how these simple specifications can be used to generate a parser to sieve data from an
underlying data source and populate an incomplete cube.

1 Introduction

Data cubes are a relatively recent, and popular phenomenon. A brief description of a data cube is that it is a
multidimensional hierarchy of aggregate values. Values higher in the hierarchy are further aggregations of those
lower in the hierarchy. The utility of the hierarchical organisation is that the user can easily navigate between
high and low precision views of the same aggregate data. The hierarchical organisation sinipdds/n,
an operation that increases the precision of the aggregate data being viewedll-apdwhich decreases that
precision. For instance, suppose that a store manager is using a data cube to look at monthly sales for shoes and
notices that sales in January were low. To analyse the poor sales the manager might drill-down to look at monthly
sales by type of shoe or she might roll-up to look at sales for all product types combined. Several vendors already
have cube products on the market, either as add-ons to existing databases or as stand-alone tools, and a “cube”
operator has been proposed for inclusion in future SQL standards [3].

A cube can be implemented usindaay, eager or semi-eagestrategy [6]. The eager strategy materialises
every aggregate value in the cube hierarchy. The advantage of the eager strategy is that values can be quickly
fetched from the cube during a query. The primary disadvantage is high storage cost (Shukla et al. present algo-
rithms for estimating cube size [5]). For many applications eager cubes are just too big. A lazy implementation
strategy does not materialise values. Instead, the values in the cube are computed from the underlying relations

Copyright 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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during a query. The disadvantage of the lazy strategy is that it slows query evaluation (faster evaluation algo-
rithms are being researched [1]). The semi-eager strategy eagerly materialises only some regions in the cube,
and lazily computes others when needed during a query [4].

An incompletedata cube is also a multidimensional hierarchy of aggregate values. But in an incomplete
data cube regions of the hierarchy, and the source data from which those regions are derived, are missing. For
example, a data cube administrator may decide that hourly sales data from two years ago is no longer needed, daily
sales data will suffice. The administrator can remove the aged, hourly data from the cube. The missing region
makes the data cube incomplete and some queries (e.g., what are the hourly sales figures over the lifetime of the
enterprise) can no longer be satisfied. Incomplete cubes have mechanisms for handling queries in the missing
regions, such as suggesting alternative, complete queries and computing partial results.

In terms of storage, an incomplete cube has the same desirable behaviour as lazy and semi-eager cubes. Each
materialises only part of what would be stored in an eager cube; the incomplete or unmaterialised portions incur
no storage cost. For example, assume that a regional sales officer wants aggregate data for sales at stores in her
region for every hour in 1995, but for stores in other regions, aggregate data for each day will suffice. In an eager
cube an aggregate value for every combination of store and hour must be stored resulting in a much larger cube
than needed. In contrast, an incomplete cube only stores the relatively small amount of data specified as needed,
the hourly data for the other stores forms an incomplete region. Incomplete, lazy, and semi-eager cubes also scale
well, new dimensions can be added to the cube and existing dimensions can increase in size (i.e., a more precise
measure can be added to the dimension) with no adjustment to the existing cube storage. The resulting cube is
merely incomplete in the new dimension, and can be populated as needed later.

But in one important respect an incomplete data cube is like an eager data cube, and unlike a lazy or semi-
eager cube. Eager and incomplete cubes do not need the source data from which aggregate values in the cube
are derived. Both lazy and semi-eager cubes presume that the source data is still available, so that an aggregate
value which is not stored in the cube can be computed when needed. Both striagégiesouplethe cube to a
data source. Eager and incomplete cubes, on the other lnacwlplethe cube from the source data.

In general, an incomplete cube is useful in situations where a complete, eager cube would be unnecessarily
large, but where a lazy or semi-eager cube cannot be used because the source data is not available or expensive
to query. We conjecture that an incomplete data cube would be useful in the following scenarios, among others.

e One reason that data cubes are popular is that many data collections are characterised by the property that
as data in the collection ages, each datum individually becomes less relevant, but remains relevant in ag-
gregate. For such data collections, a data cube can be used to store the aggregated historical data, allowing
the original data to be archived or deleted and resulting in considerable savings in space.

e A data cube is used to summarise data from a log file or flat file. For example, suppose that a data cube
is used to store aggregate data from a log file of sales transactions rather than a sales relation. To search
a large log file and retrieve data during query evaluation imposes a heavy burden on system resources, so
the data cube’s administrator decides to use an incomplete data cube and package requests for more data
in an overnight cron job.

e Aggregate data is broadcast on a network by various sites. The aggregate data from external sites is col-
lected and inserted into a cube at each site, but the source data is not shipped across the network for a
number of reasons (privacy, cost of broadcasting and duplicating the source data at each site, etc.).

e The cube contains regions of secret data and the authorisation to view the secret data varies from user to
user, that is, some users can see all of the data, others only a portion, still others a different portion, etc. In
an incomplete cube, it is easy to create a different, incomplete view of the same complete cube for each
class of authorised user. The data can be kept secret by hiding it in an incomplete region.
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This paper describes how an incomplete data cube can be used to sieve relevant summary data from an un-
structured text file which is too large to store and query, such as a rapidly-growing log file. The next section
briefly describes a real-world problem that could benefit from the application of incomplete data cube technol-
ogy. We will use this example problem in the remainder of the paper. We then discuss an incomplete data cube
in more detail. Anincomplete cube is a federation of complete sub-cubes, which welzattes Each cubette
is defined using a precise, simple specification. The set of cubette specifications concisely characterises the in-
formation content of the cube. We then discuss how these simple specifications can be used to generate a parser
to sieve data from an underlying data source and populate an incomplete cube.

More information on incomplete data cubes as well as a prototype implementation in the Java programming
language is available attp://www.cs.jcu.edu.au/ curtis/IncompleteCube.html

2 Motivating example - analysis of the World-Wide Web access log

A very rough description of the World-Wide Web (WWW) is that it is a network of information servers. A server
responds to a client (browser) request by supplying the appropriate information, typically a page in a hypertext
document. The authors of these documents usually want to know how their documents are being used. In par-
ticular, they would like to ascertain how frequently their pages are being requested and what kinds of users are
requesting them. Of course there will likely be many different authors at a site and each will want a very detailed
analysis of their materials. In addition, others at the site will want other kinds of summary information, for in-
stance the server administrator might want to monitor the overall daily traffic from each country. So in general

both detailed and abstract summaries must be collected and maintained.

The starting place for any quantitative analysis of WWW page usage is the seoass log The access
log is a history of server requests. Each record in the log has a timestamp, the requesting machine IP name or
number, and the resource requested. For example, in the following access log record:

crab.jcu.edu.au - - [01/Jan/1997:17:55:24] "GET /web/home.html HTTP/1.0" 200 4748

the timestamp if01/Jan/1997:17:55:24] , the requesting machinegsab.jcu.edu.au ,and the
resource igweb/home.html . Although each record in the access log also has other information, such as the
response code, without loss of generality, we ignore that information in this paper.

A single access log, however, will never contain the entire request history for pages on a server. Many clients
will use a proxy cache server. A proxy cache server keeps copies of frequently requested pages in its cache. A
page request for a cached page will be handled entirely by the proxy, and so will be logged in its access log. So the
complete history of requests for a page is commonly distributed over many log files. In order to more accurately
assess the use of WWW pages, the data in these distributed log files needs to be integrated.

Few, if any, of these log files are kept entirely in situ. Logically, the access log is an append-only file since
server history only accumulates. The access log for the Department of Computer Science server at James Cook
University grows by about a megabyte a day. Physically, some technique must be used to limit the file's growth,
otherwise, at many sites, it will quickly exceed storage capacity. Typically, as the access log grows, it is period-
ically moved to a different storage medium, e.g., from disk to tape, or from an uncompressed to a compressed
version, and the log is restarted.

Even if the entire access log is kept, access to the log file at many sites must be restricted to protect the privacy
of both clients and authors. So it would be beneficial if the relevant access log data could be hidden or made
available on an individual basis.

In summary, a data analysis tool is needed that can generate a parser to sieve data from a text file prior to the
file being archived, allows the piecemeal specification and retention of relevant summaries, is able to integrate
several data sources, and supports data hiding. While a complete data cube can satisfy some of these require-
ments, the resulting data cube will likely be too large. An incomplete data cube can satisfy all the requirements
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in a minimal amount of space since only the data specifically requested is put into the cube (and just like in a
complete cube, that data can still be compressed and compacted).

3 Measures and units

The three kinds of information in an access log record come from separate domains. The time is a value from the
temporal domain, the source machine is from the domain of machine names (a spatial domain), and the file name
is from the domain of file names (a second spatial domain). Each kind of information is in fact a unit of measure-
ment, and given to an implied system of measurement. For example, the temporal information in an access log
record is measured seconds|Individual units in a measurement by secondstdidan/1997:17:55:24 ,
01/Jan/1997:17:55:25 , etc. In the remainder of this paper we will refer to a system of measurement as a
measuree.g., seconds, and a unit of measurementwastae.g., a particular second.

There can be many different measures in a single domain. For instance, in the temporal domain, a page re-
guest might be measured by the second, hour, day, week, month, or year in which it occurs. Most of these mea-
sures are related insofar as some are strictly more precise than others. For example, a temporal measurement
given in days is more precise than one given in weeks since a measurement in days pinpoints the week but not
vice-versa (since there are seven days in every week). In the next section we discuss how units, measures, and
the relationships among them are used in an incomplete data cube.

4 Data cubes

In this section we describe an incomplete data cube in more detail.

A useful way of understanding a data cube is to conceive of it as a dataflow graph. An edge in the graph
represents a data dependency; the data at the “to” node is derived from the data at the “from” node. In the graph
there are two kinds of nodesourcenodes andlerivednodes.

A source node represents a group of facts drawn from some underlying data source, usually a database re-
lation. Facts are precisely measured in several dimensions and those with the same measurements are grouped
at the same source node. The most common measurement dimensions are space and time. For example, facts
could be grouped based on the temporal measure of days and the spatial measure of countries. In such a group-
ing there would be one source node for every combination of country and day; facts having the same country and
day measurements would be placed in the same source node.

A derived node, on the other hand, holds the result of an aggregate operation applied to the data at the in-
coming nodes. A derived node on an edge from a source node holds the result of computing an aggregate, e.g.,
count, on the group of facts at the source node. Other derived nodes hold the result of an aggregate operation,
e.g.,sum, applied to the aggregate values on the incoming edges.

An example graph is shown in Figure 1. The graph assumes that there is only one domain of measurement:
time. The lone source node depicted is the grbufan 1997 . Facts that share a temporal measurement of
1/Jan/1997 are in the group at this source node. Above the source node is a derived nodel theruriif97 .

The aggregate value at this node is a count of all the page requests for the first of January. An edge connects the
source node to this node because the aggregate value is computed using the data at the source node. Above that
derived node are other derived nodes, with the data dependencies indicated by the edges.

The dependencies in the graph are given by the relationships among the measures in each dimension. In gen-
eral, units in less precise measures are dependent on those in a more precise measure. For example, the measure
of months is less precise than that of days. The graph in Figure 1 shows that tlaaub®97 (which isin the
measure of months) is dependent on the uhitgn 1997 through31 jan 1997

As an aside, we note that units, measures, and the relationships among them are specified in internal cube
tables (we assume finite, bounded domains). Figure 2 presents a simplified view of the internal tables which
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sum(jan 1997 , ...,dec 1997)

unit: jan 1997
sum(1l jan 1997 , ...,31 jan 1997 )

unit: 1 jan 1997
count(groupl jan 1997 )

group:1 jan 1997

crab.jcu.edu.au [1/Jan/1997:00:52] index.html
peri.execpc.com [1/Jan/1997:00:55] “tony/slicing.html
crab.jcu.edu.au [1/Jan/1997:00:56] ftp/www/cube.tar.gz

Figure 1: A graph depicting the hierarchy of dependencies in a data cube

describe the dependencies in the graph for Figure 1. Hduestable is the set of edges between nodes (the
edge from a source node to a derived node is implicit). Ghaupstable is the set of groups. The membership
pattern is a regular expression which is used to identify members of the group when scanning the access log. To
reconfigure the cube for a text file with a different date format,Ghheupstable must be edited. Although the
cube is a multidimensional space, the tables for each dimension are specified independently.

In an incomplete data cube the values of some nodes in the grapitangplete An incomplete value is not
stored and can not be computed from the values that it depends on (at least one of them must also be incomplete,
otherwise the value could be computed).

4.1 Cubettes

Integral to an incomplete data cube is a concise, high-level description of the complete regions in the cube (and by
omission, which regions are incomplete). We will call a complete regicubatte to signify that it is a diminu-

tive, complete cube within the incomplete cube hierarchy. A cubette is concisely specified as a combination of a
unit, 4, and a measure:, and is writtenu@m (literally v atm). The cubette specification describes a subgraph

that extends from an apex@ato those units in the measure:afthat are on a path from a source node.td’he

units at measure: in the subgraph form thieaseof the cubette. For example, consider the cubette specification

jan 1997@days . The base of the cubette is all the days that are on a path from a source jeulelt®97 |,

that is, all the days in the month of January 1997. All the nodes in the cubette from the base (the days in January
1997) to the apexdn 1997 ) are complete.

The core of an incomplete cube is the set of cubette specifications. The set represents the information content
of the incomplete cube. We anticipate that the set will be moderately large, between a thousand and a hundred
thousand cubettes. Each cubette is an independent, complete cube within the incomplete cube and can be im-
plemented using a lazy, semi-eager, or eager strategy. Elsewhere we give algorithms for inserting new cubettes
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(which is more involved than simply adding a new specification to the set) and deleting cubettes [2].

4.2 Queries

A data cube query, such as drill-down, is an operation that retrieves the value at a unit (or set of units). For
instance, the user could query for the value of the jamit 1997 . This unit may be within a cubette and the
guery can be satisfied (elsewhere we give an algorithm for quickly determining whether the query can be satisfied
[2]), or the unit may be in an incomplete region.

When the user queries for information in an incomplete region, the incomplete cube may have enough infor-
mation to partially satisfy the query. For example, a query for the valj@nofl997 can be partially satisfied
since most of the values upon which it depends are complete (alllsgae 1997 ). Various notions of query
completeness can be defined and supported in an incomplete cube [2].

Queries in a cube will often fall into an incomplete region since users typically will not know a priori the
extent of the complete information in a cube. However, a query in an incomplete region can be redirected to the
“nearest” complete region. For example, a query for the incomplete valia® at997 could be redirected
to the complete value gan 1997 (or to one of the days in January). Elsewhere we give an algorithm for
redirecting queries to complete regions[2].

5 Populating the cube

The cubette specifications describe which regions of the graph are complete. These regions can be populated
from an underlying text file by parsing the file and matching only records that belong to source nodes that the
region (transitively) depends on. In this section we sketch how to build the grammar for the parser.

Initially, the grammar just consists of productions for recognising units in a dimension. These productions
are built from the tables described in Section 3. The terminals in the grammar are the groups (they are the tokens
recognised by the lexical analyser). Groups have an associated regular expression that defines their members as
shown in Figure 2. The nonterminals are the derived nodes. There is one production in the grammar for each
derived node in the graph. The body of the production consists of all the nodes on incoming edges. An example
grammar in BNF for the units depicted in the graph in Figure 1 is given below. The terminals are the day groups.

1997 »=Jan1997| Feh1997| ...| Dec1997;
Jan 1997 »=1Jan1997| 2.Jan1997| ...| 31Jan 1997,
Dec 1997 :=1Dec1997| 2.Dec1997| ...| 31.Dec1997

1.Jan1997 :=1_Jan_1997;

31 Dec 1997 ::=31_Dec_1997;

So the tokerl_jan _1997 would be recognised dsJan 1997 Jan 1997, and1997.

To complete the grammar, we need to add a production that identifies which records will be considered legal
sentences. We only want records that provide information for a cubette. So we add a production that defines a
record as the sequence of units in each cubette specification. For example, suppose that we have the following
cubette specificationgan 1997@days ,nov 1997@months ,andl dec 1997@days . Then we would
add the following production to the grammar.

Record »=Jan1997| Nowv.1997| 1.Dec 1997

Records the start symbol in the grammar. A parser for this grammar will only accept records pertinent to January,
November, or December 1. Only these records will be needed to compute the values in the complete regions of
the cube.
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Edges Groups

to from group membership pattern
1997 jan 1997 1jan 1997 | "[1/3an/1997"["\]]+
1997 feb 1997 2jan 1997 | "[2/3an/1997"["\]]+
e e 3jan 1997 | "[3/Jan/1997"["\]]+
1997 dec 1997 4 jan 1997 | "[4/3an/1997"["\]]+

jan 1997/ 1 jan 1997 5jan 1997 | "[5/Jan/1997"[\]]+

jan 1997| 31jan 1997 31 dec 1997 "[31/Dec/1997"[\]]+
Figure 2: An example of the tables that store the dependencies in a cube

This grammar can be fed directly into a parser generator (e.g., yacc) to construct a parser for populating an
incomplete data cube. The grammar itself can be automatically generated from the tables and set of cubette spec-
ifications. Although we have not discussed the actions that need to be associated with each production, these
actions can also be automatically generated.

There are, however, several problems with this solution that all have to do with the fact that available parser
generation packages tend to be limited. The first is that favadtimensional cube, the resulting grammar will
require N lookahead symbols. Most parser generators can only generate single lookahead parsers. The second
problem is that top-down parsers will be much too slow, they might explore the entire cube graph for every record,
so some bottom-up parsing technique has to be utilised. But bottom-up parsers usually generate tables that are
proportional in size to the product of the number of terminals and the number of parsing states. There will be
a large number of terminals (one for every unit in a dimension). Finally, if overlapping cubette specifications
are allowed the generated grammar will be ambiguous (since some records might satisfy two or more cubettes).
To handle this kind of ambiguous grammar the constructed parser should allow “multiple passes” over the token
stream for some productions.

6 Conclusions

An incomplete data cube is a data cube that allows incomplete regions to exist in the cube hierarchy. Such cubes
are useful when the analytic power of the cube organisation is needed, a complete, eager cube is too large, and the
underlying source data for the incomplete regions is unavailable. We briefly described a real-world problem that
fits these criteria. To analyse the WWW access log, a site administrator can specify which summary data to put
in the cube by giving a set of cubette specifications, e.g., to monitor the use of lecture notes for an Introduction to
Database course from machines on campus week-by-week during the first semester, the site administrator would
add the following cubette specification (assuming the relevant units and measures exist).

jcu@machines, first semester_1997@weeks, database lecture notes@pages

The set of cubette specifications is a high-level description of the information content of the cube. It is essential
to querying the cube, and can also be used to automatically generate a data sieve for populating the cube.
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Abstract

The paradigmatic view of data in decision support consists of a set of dimensions (e.g., location, product,
time period, ...), each encoding a hierarchy (e.g., location has hemisphere, country, state/province, ...,
block) or nearly a hierarchy (there are exceptions: weeks dont fit into months and sizes dont fit into
colors). Typical queries consist of aggregates over a quantifiable attribute (e.g., sales) as a function of
at most one attribute in each dimension of this “data cube.” For example, find the sum of all sales of
blue polo shirts in Palm Beach during the last quarter. We discuss a few different alternatives to solve this
problem including a data structure calletdibe forestand its elaboratiorhierarchically split cube forests

that exploit the hierarchical nature of the data to save space. We also discuss some design considerations.

1 Introduction

Corporate and government executives must gather and present data before making decisions about the future of
their enterprises. The data at their disposal is too vast to understand in its raw form, so they must consider it in
summarized form, e.g. the trend of sales of such and such a brand over the last few time periods[3]. “Decision
support” software to help them is often optimized for read-only complex queries. Companies such as Red Brick
Systems, Teradata, Tandem, Masspar, Sybase, Praxis, and smaller companies such as Arbor Software all have
products that cater to this market often using proprietary data structures. Other decision support products in the
PC market are CA-Comptel, and Lotus Improv.

2 Approaches

We know of four main approaches to decision support:

1. Virtual memory data structures made up of two levels in which the bottom level is a one or two dimen-
sional data structure, e.g., a time series array or a spreadsheet-style two dimensional matrix (time against

Copyright 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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accounts) (see Figure 1. Arbor has a patent [2] that generalizes this so that the bottom level index can have
many dimensions. These are the dense dimensions (the ones for which all possible combinations exist).
The sparse dimensions are at a higher level in the form of a sparse matrix or a tree. Queries on this structure
that specify values for all the sparse dimensions work quite well. Others work less well.

. Bit map-based approaches in which a selection on any attribute results in a bit vector. Multiple conjunctive
selections (e.g., on product, date, and location) result in multiple bit vectors which are bitwise Anded (see
Figure 2. The resulting vector is used to select out values to be aggregated. Praxis [8] and the Sybase index
accelerator use this approach. Bit vector ideas can be extended across tables by using join indexes.

. RedBrick has implemented specially encoded multiway join indexes meant to support star schemas
(http://www.redbrick.com/rbs/whitepapers/stap.html). These schemas have a single large table (e.g.,

the sales table in our running example) joined to many other tables through foreign key join, (to location,
time, product type and so on in our example). Red Brick makes heavy use of such STARindexes to identify
the rows of the atomic table (sales table) applicable to a query. Aggregates can then be calculated by re-
trieving the pages with the found rows and scanning to produce the aggregates. Our structure is also aimed
at star schemas, except that our structure holds the aggregates directly making queries on aggregates signif-
icantly faster. Redbrick claims that STARindexes work well on non-star schemas too. Our basic structure
does not support such a generalization.

. Materialized views for star schemas. Gupta, Harinarayan, Rajaraman and Ullman[6, 5] present a frame-
work for choosing good aggregate views and indices to materialize. While the problem is NP-Complete,
the authors give heuristics which approximate the optimal solution extremely closely.

. Massive parallelism on specialized processors and/or networks — Teradata and Tandem use this approach,
making use of techniques for parallelizing the various database operators such as select, joins, and aggre-
gates over horizontally partitioned data. Masspar[1] by contrast uses a SIMD model and specialized query

pr

sparse dimensions Multidimensional
search structure

Multidimensional
dense matrix

dense
dimensions

Figure 1: A two-level sparse/dense index.

We introduce a new data structure for this problem, which wectdde forestsLike bit vectors and two di-

mensional indexes, cube forests are oriented towards a batch-load-then-read-intensively system. As we will see,
cube forests improve upon two level indexes for large data sets because cube forests treat all dimensions symmet-
rically and use standard disk-oriented indexes (there may be other reasons; the internal data structures of the PC
vendors are wrapped in a veil of secrecy). Cube forests improve upon bit vectors for at least some applications
because each bit vector query is linear in the number of rows in the table. Cube queries of the kind introduced in
the abstract, by contrast, can be answered using a single index search in a cube forest, regardless of selectivities.
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Attributes Bit vectors

A |[B |[C |V [1<A<10 [B=5 | C=10] B>9| 0<C<{
O (5 |7 (3]0 1 0 0 1
12 |4 |15|12]| 0 0 0 0 0
6 |3 |8 |1]1 0 0 0 1
12 |5 |10|7]0 1 1 0 0
8 |10 13 |4 |1 0 0 1 1

Figure 2: Bit vectors defined on a relation.

The price of fast response to queries is duplication of information. As a result, cube forests have higher update
costs and higher storage requirements than bit vectors. In many applications, this is the right tradeoff. Hierarchi-
cally split cube forests provide a method for efficiently duplicating information, and can be optimized to reduce
update and storage costs. In summary, cube forests are most appropriate for read-intensive, update-rarely-and-
in-large-batches multidimensional applications in an off-the-shelf (low cost) hardware environment.

3 Cube Forests

3.1 Preliminary Notions

To simplify the discussion, suppose our data is a single denormalized table whose attributes comeifrom
mensions denoting orthogonal properties (e.g., as above, product, location, time, organization, and so on). Each
dimension c is organized hierarchically intp dimensional attributest.;, A2, ..., A, WhereA,; is the most

general attribute (e.qg., continent) aAgd, is the most specific (e.g., school district). Thus, the denormalized rela-

tion looks like thiS:R(AH, Ao, ..., Alnla Aoy, Ao, ..., A2n2, vy Adgr, Ago, - Adnda value-attm’butes). Here

the value attributes are those to be aggregated, e.g., sale price, cost, value added, or whatever. This relation is
denormalized becaus&; — A;;, whenj > k, thus violating third normal form. (The key &, Aoy, ... Adn,-)

We first presentube forestsin which every dimension consists of a single attribute, and then present the
hierarchically split cube forestn which dimensions are hierarchies of attributes. (Our techniques can also handle
lattice-structured dimensions, though we don’t show that here.) While our presentation uses a single aggregate
value, our structure applies unchanged to multiple aggregates over multiple values.

3.2 The Basic Structure

The instantiationof a cube treeis a tree whose nodes are search structures (e.g. B-trees or multidimensional
structures). Each node represents an index on one attribute (or a collection of attributes). Parent nodes store
aggregate values over the values stored in their childr&rcube tree is specified by itemplate which shows

the (partial) order in which the attributes are indexed. Let us consider the simple example illustrated in Figure 3.
Suppose that we index a taldifirst onA, then onB, then onC. The template for the cube tree is the #sB-C,

and we call this type of cube trediaear cube tree. Thastantiationis shown on the right side of Figure 3. The
guantity inside each leaf node is the sum of Yhattribute for a specifié\, B, C value. At the next level up the

guantity inside a node is the sum of t¥eattribute for a specifié, B combination. At the very top, we have the
sum ofV over the entire relation.

!Larry Laing of Data Fusion Technologies points out that such a structure can also be useful in the detection of phantom concurrency
control conflicts.
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We note that the index in our example is “cooked” to simplify its presentation. Since the relation is small,
we can represent an attribute in the template as one level in the index. For a large relation, we need to define a
strategy for implementing an index structure based on the template. For most of our discussion, we will assume
that each attribute in the template corresponds to a separate index (for example, a B-tree). Our experiments with
cube forest implementations have shown that a tight integration between the index structure and the cube forest
algorithm is required for good performance. Cube fotestplatedesign and optimization can be performed
ind:

A BCV Q
1311
1312 e
1 373 é@
12 234
12235
12276
12377
1289 8

Figure 3: A cube tree template and its instantiation. Circled numbers represent the sum of V (i) over the entire
relation (at the root, depth 0), (ii) for particular A values (depth 1), (iii) for particular AB combinations (depth
2), (iv) for particular ABC combinations (depth 3 or leaf level). Note that the instantiation is a tree even though
the template is linear.

An interior node may have several children. In this case, each entry in a leaf of an index in the instantiation
corresponding to the node has a pointer to a subindex for each template child of the node. This second feature
leads to a tree topology for the template as shown in the left side of Figure 4. (The idea of using sequential
combinations of attribute indexes as in our linear cube trees, though without aggregates, first appeared in Lum’s
seminal work[7].)

Let n be a node in a cube tree template. We defitteib(n) to be the attributes indexed by Next, we
definepathattrib(n) to be the union ofittrib(m) for everym on the path from the root of the cube tree to
n (inclusive). The aggregates in the instantiatiomadre sums over particular combinations of values of the
attributes inpathattrib(n). Finally, we definexncestattrib(n) to bepathattrib(m), wherem is the parent of
n in the cube tree, df if n is aroot. A cube tree templafis well-formedif the following two conditions hold:

1. For everyn in T, attrib(n) consists only of dimensional attributes (as opposed to value attributes such as
sales).

2. For everyn in T, attrib(n) N ancestattrib(n) = (.

Thatis, a cube tree template is well-formed if it contains neither unnecessary nor redundant attributes in any of its
nodes. The definition of a well-formemibe forestemplate extends this definition, but requires the elimination
of redundancies between trees. So, a cube forest tenfplaterell-formedif the following two conditions hold:

1. Every cube tree templai € F' is well formed.

2. Letn be a node irl” andm be a node iff”, whereT, T’ € F. Thenpathattrib(n) = pathattrib(m)
implies thatn = m. If n were unequal ten in this case, the two nodes could be combined and their
children combined.
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For example, consider the cube forest shown in Figure 4 for the relation R of Figure 3. There are two trees,
one described a&-(B,C) and the other (a linear tree) BsC. The root of the first treeX) has two childrenB and
C). Therefore, in the instantiation of the tree with data from R, éasfalue has two pointers, one to a subtree
indexing, effectively, sums over théattribute forAB combinations and one to a subtree providing sumaor
combinations. Note thd appears in both trees. But, in the first tree the patB t® A-B, while in the second
tree the path i8. Since the paths are different, the forest is well-formed. This should be intuitive, since a node
in the instantiation oB in the first tree corresponds to a sum ove”Adpair whereas a node in the instantiation
of B in the second tree is a sum oveBaalue.

Figure 4: A cube forest template and its instantiation. Note that each A value in the instantiation of the left tem-
plate has both B children and C children.

Given queryg, let point(q) be the set of attributes that the gqeury specifies in eithewtiere clause or the
group-by clause. A cube foregst' is complete with respect t@if there is a rooted path i’ that contains all
attributes inpoint(q) U range(q). A cube forest icompletdf it is complete with respect tg for everyq € Q.

Completeness ensures that a query will not have to scan the base relation. However, even complete cube
forests can lead to bad query execution times. If there is an attribute that is in the rooted path but that is not
in point(q), then the execution will be forced to scan the corresponding level of the cube forest. Consider for
example a query of the forigB : All, A : Point, C : Point) to be executed on the linear cube tree of Figure 3:
everyB value corresponding to the specifida@ combination will be summed over. This observation motivates
a stronger condition.

ForestF' is compatiblewith queryg if there is a rooted patR in F’ such thatttributes(P) equalpoint(q)U
range(q). Compatibility reduces the time needed to calculate a point query to a single index search.

4 Full Cube Forests

We would like to be able to construct a well-formed cube forest in which any point query can be answered by
searching for a single node. That s, the structure should be compatible with every point query. We can construct
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such afull cube forestF; oni attributes,A4, . .., A; recursively:
1. F; consists of a single nodelabeledA; .
2. To constructr;,

(a) Create a node labeledA;.
(b) Create a copy of;_1. Make each tree if;_; a subtree of.
(c) Create another copy @f;_. F; is the union off;_; and the tree rooted at

An example of a full cube forest is shown in Figure 5.

Theorem 1: The full cube foresf;,
(i) contains2™ — 1 template node<™ ! of which are leaves.
(ii) is compatible with any query on ite dimensional attributes.

Proof Note: (i) follows by solving the recurrence implicit in the constructidh; consists of two instances of the
template tree of,_; plus one new node.

b

Figure 5: A full cube forest on the four attributgsA, B, C.

5 Hierarchically Split Cube Forests

From now on, we allow a dimension to contain multiple attributes that are related in a hierarchical (or, if you
prefer, a one-to-many fashion). For example, the date dimension can be specified by year, month, or day with
a one-to-many relationship from year to month and month to day (we defer the question of weeks to a longer
paper). The attributes in a single dimension esedimensional The template for dierarchically split cube

foreston dimensiond, ..., D, is afull cube forest oD, ..., D,. (We call this full cube forest made up only
of dimensions @imensional cube fore$t
Each dimensiorD; consists of attributes; i, ..., a; x;, Wherea; ; is coarsest (e.g., year) angy, is finest

(e.g., day). Sog; ;1 is the child of and functionally determines ;. Eacha; ; has as children (i) a full copy of
the h-split forests corresponding to the forests of whiglis the ancestor in the dimensional cube forest; and (ii)
if 7 < k;, aco-dimensional child; ;.

A full h-split forest(our abbreviation for hierarchically split cube forest) on three dimensions is shown in
Figure 6. Dimensiona andC each have three attributes, a@Bdhas two attributes. The three rightmost trees in
Figure 5 constitute its underlying full dimensional cube forest.

In Figure 6, the tree for dimensid® and the tree for dimensio@ are attached to each of the attributes of
dimensionA (i.e., A1, A2, A3). This is calledsplitting a dimension This may seem to be inefficient, but the
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full h-split forest has far fewer nodes and takes much less space than a full cube forest that treats all attributes
as orthogonal. Recall that a full cube forestioattributes containg* nodes in the template. Suppose that the
h-split forest containgf dimensions, each of which contaids attributes; = 1, ..., H. Let N; be the number

of nodes in the h-split forest template fiodimensions. Then,

Theorem 2: Including a node that gives the total value of the aggregate over all data instNmpes,]‘[fil(A,-Jr
1)
The theorem holds because of the recurreNge- V; | + A; * N;_1. Note that the number of root to leaf

paths isti‘ll(A,» + 1). Consider the example in Figure 6. The h-split forest has 48 nodes, 12 of which are
leaves. A full cube forest on the same set of attributes would have 255 nodes, 128 of which would be leaves.
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Figure 6: Template for a hierarchically split cube forest on 3 dimensions (A, B, and C).

How good is a full hierarchically split cube forest? Consider the style of queries we discussed at the begin-
ning. Ostensibly a full h-split forest is not compatible with most queries, since any query referepngimyist
also reference, ;, for 1 <=k < j. This does not force a scan, however, becaygenas a many-to-one rela-
tionship with all suchu; ;, as opposed to being an orthogonal attribute.

We formalize this intuition as follows.

A point cube querys a cube query restricted to the formd(: point, Ay : point, ..., A, : point, Dy :
all, D, : all, ..., Dy : all) such that4; is in a different dimension from; when: and; are different. Also,
neitherA; nor A; is in dimensionD,,, for 1 <= m <= k. In other words, either no attribute in a dimension
D is specified or exactly one attribute i has a point constraint. A rooted pakhthrough an h-split forest
is hierarchically compatiblevith a point cube query if the following holds: (i)P touches every attributd in
point-attributeg) but touches no co-dimensional child4f (i) P touches no attributes from dimensions outside
point-dimensiony).

To gain intuition about hierarchical compatibility, consider the point cube quésy point, C : point, B
. all) on the forest in Figure 6. Suppose, for concreteness, the query specifiede 313 and’; to be 1711.
A search descends the instantiation of the leftmost template tree of the figure until the search reaches a node
containing thed, value of 313. The search continues down €hsubtree ofn until it reaches the node: in
the instantiation of template nodg containing 1711. Node: contains, therefore, the aggregate, say sum, of
whereAds = 313 andC; = 1711.

We can reduce the number of nodes (and the attendant storage and update costs) still further, if we are willing
to increase the query costs. To bound this increase, we exploit the fact that many of the attributes summarize only
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a few values from the attribute immediately lower in the hierarchy — only 12 months in a year, only a few states
in a region. It might be acceptable to leave out all children of, say, the year node other than its co-dimensional
child month. The reason is that we can compute a per-year aggregate by summing twelve per-month aggregates.
We call this operation pruning.

PruningattributeA; ; means eliminating all children of; ; (and subtrees rooted at those children) other than
its co-dimensional childi; ; ;. An attribute may be pruned only if it has co-dimensional children, because that
would cause an unrecoverable loss of information (one can calculate the sum of sales over years from the sum
of sales over months if years are pruned but not vice versa).

Pruning a node high in a tree eliminates many template nodes, because all descendant trees will be pruned.
However, the cost imposed on the worst case queries multiplies whenever two pruned attributes are related by
ancestor-descendant relationships within the same dimension or come from different dimensions. For example,
if we prune months alone, then each year calculation is slowed down by a factor of 12 compared to an unpruned
h-split forest; if we prune month and state, however, and we want sales from a specific month and state, then the
calculation is slowed down by a factor of 12 times the number of counties per state.

5.1 Tuning Considerations

The designer of a cube forest has many options — how to “stack” the dimensions and how to prune the resulting
cube forest. We are designing algorithms to compute optimal cube forest templates. However, many people
prefer to use a rule of thumb. Below, we give some guidelines to cube forest design:

1. Frequently issued queries should have compatible paths at their disposal.

2. Putthe dimension with the largest number of attributes at the “bottom” dimension in the forest, to minimize
the number of root-to-leaf paths in the template.

3. Put dimensions whose attributes have only a few unique values in a batch “high” in the forest (i.e., the
Time dimension for daily feeds.)

4. Dimensions that are frequently involved in range queries should be “low” in the forest.

5. Itis better to prune attributes with a small number of unique values, and preferably an attribute that is low
in a dimension but high in a given tree.

6. Each tree in a hierarchically split cube forest can be pruned independently.

6 Conclusions

Hierarchically split cube forests constitute a new structure for multi-dimensional hierarchical decision support.
In a full h-split forest, point cube queries of the form “Find the sales of all Mustangs in New England in the first
quarter of last year” can be answered in a single index lookup yielding sub-second response time. Other general
purpose structures such as bit vectors would require at least linear time searches for such queries.

Our experiments suggest both that the hierarchically cube forest structure gives good performance on large
data. Batch updates show good use of main memory.
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Abstract

In this paper we discuss indexing methods for On-Line Analytical Processing (OLAP) databases. We
start with a survey of existing indexing methods and discuss their advantages and shortcomings. We then
propose extensions to conventional multidimensional indexing methods to make them more suitable for
indexing OLAP data. We compare and contrast R-trees with bit-mapped indices which is the most popular
choice for indexing OLAP data today.

1 Introduction

Decision support applications are increasingly relying on data warehouses to understand and analyze their busi-
nesses. These applications often require fast interactive response time to a wide variety of large aggregate queries
on huge amounts of data. Current relational database systems have been designed and tuned for On-Line Transac-
tion Processing (OLTP) and are inadequate for these applications. On-Line Analytical Processing (OLAP) [CCS93]
databases have been designed to close this gap and meet the needs of decision support applications. As a result,
several OLAP products have appeared on the market (see [Rad95], [Gri96] for a survey). These systems pro-
vide fast response time by pre-computing a large number of anticipated aggregate queries [GBLP986AAD
HRU96] and making extensive use of specialized indexing methods on multiple attributes of the data. In this
paper, we will discuss the problem of indexing OLAP data.

Contents We first consider an example OLAP database and review relevant terminologies in Section 1.1. We
then discuss the desired features of a good OLAP indexing method and highlight why indexing OLAP data is
different from indexing OLTP data in Section 1.2. We then briefly discuss in Section 2 some of the popular in-
dexing methods in use today. One alternative that has not been explored is using conventional multidimensional
indexing methods like R-trees for indexing OLAP data. In Section 3 we discuss how R-trees can be modified to
take advantage of the special characteristics of OLAP data and thus be more useful for indexing OLAP data. We
argue how, in many cases, R-trees could out-perform the popularly used bit-mapped indexing methods.

1.1 Terminology

Consider a database that contains point of sale data about the sales pricéuafts , the date of sale and the
store which made the sale. Conceptually, this cube can be viewed as a multidimensional cube. In this cube, at-

Copyright 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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tributes likeproduct, date, store which together form a key are referred todasmiensionswhile the at-
tributes likesales are referred to asieasuresThere can be multiple measures lig@antity , projected

sales ,profit associated with a given record. Dimensions usually have associated withigranchiesthat

specify aggregation levels and hence granularity of viewing data. Thys> month — quarter — yearis a
hierarchy ordate . Similarly, product name — type — category is a hierarchy on thproduct dimension.

In addition to hierarchies, dimensions can have other attributes (cadiedlimension attributgdike “color

of product ”and “owner of store " associated with them. There are two implementation approaches
for OLAP data: MOLAP (multidimensional OLAP) where data is stored as a multidimensitatalcubewith

the dimensions forming the axis of the cube and ROLAP (relational OLAP) where data is stored in tables. RO-
LAP systems often organize data using $ti@-schemavhere a centrdiact tablestores the encoded dimension
values (like 4-byteproduct -id, store-id, data-id) and all the measures and individliension tablestore
hierarchies and other associated non-dimension attributes for each dimension. See [CD96] for a detailed survey.

1.2 Requirements on an indexing method

Example 1: We give below some queries to provide a flavor of multidimensional queries. These queries use the
cube from the previous section.

e Give the total sales for eaghroduct in each quarter of 1995.

e In 1995, for each store give tipgoducts  with the top 5 sales.

e For store “Ace” and for eachroduct , give difference in sales between Jan. 1995 and Jan. 1994.
e Select top 5 stores for eagioduct category for last year, based on total sales.

e For eachproduct category , Select total sales this month of theoduct that had highest sales in
thatcategory last month

e Select stores that currently sell the highest selbngduct  of last month.
e Select stores for which the total sale of evprgduct increased in each of last 5 years.

Based on these queries, we can enlist the following requirements on a good OLAP indexing method.

Symmetric partial match queries Most of the OLAP queries can be expressed conceptually as a partial range
guery where associated with one or more dimensions of the cube is a union of range of values and we need to
efficiently retrieve data corresponding to this range. The extreme case is where the size of the range is one for
all dimensions giving us point query The range could be continuous, for instandané between Jan
'94 to July '94 " or discontinuous, for instancefifst month of every year "and “product
IN {soap, shirts, shoes }”. Itis desirable to extend the index traversal techniques to allow a collection
of key values to be searched simultaneously instead of doing the search one value at a time. Typically, the car-
dinality of the range is one for most dimensions except a few. Also, there is no fixed set of dimensions on which
the predicates are applied: therefore, ideally we would likeytometricallyindex all dimensions of the cube.
Sometimes, it might be necessary to index the non-dimension attributes of a dimension too. The measure
attributes can also be treated as dimensions in some cases and it is useful to index them. For instance, an analyst
might be interested only iproducts  whose total sales is greater than some amount. Queries of the form: “top-
5 sellingproducts in eachcategory "are also common in OLAP and could benefit from a combined index
onproduct category and sales.
OLTP queries differ from the OLAP gueries discussed above in that most OLTP queries typically access small
amounts of data. In OLTP databases, point queries are more common. Also, multiple predicates on many at-
tributes at the same time is less common than in OLAP application.
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Indexing at multiple levels of aggregation Most OLAP databases pre-compute multiple group-bys corre-
sponding to different levels of aggregations of the base cube. For instance, groupbys could be computed at
the <product-store > level, <product-time > and <time > level for a base cube with dimensions
product, store and time . Itis equally important to index the summarized data. An issue that arises
here is whether to build separate index trees for different levels of aggregation or whether to add special values to
the dimension and index precomputed summaries along with the base level data. Forinstance, if saésdex

for <product-year >, then we can storetal-sales at the<product > level by simply adding an ad-

ditional value for theyear dimension corresponding to “ALLyears and storingtotal-sales for each

product there. Similarly values along hierarchies can be handled by extending the domain of the dimensions.

Multiple traversal orders  B-trees are commonly used in OLTP systems to retrieve data sorted on the indexed
attribute. This s often a cheaper alternative to doing external sorts. OLAP databases, because of the large number
of group-bys that they perform, can also benefit from using indices to sort data fast. The challenge is in allowing
such a feature over multiple attributes instead of a single one and also for any permutation of any subset of the
attributes.

Efficient batch update OLAP databases have the advantage that frequent point updates as in OLTP data is
uncommon. However, the update problem cannot be totally ignored. Making batch updates efficient is absolutely
necessary. Itis not uncommon for multinational organizations to update data as high as four times a day since
daily data from different locations of the world appear at different times. On the other hand, these updates are
clustered by region and time. This property can be exploited in localizing changes and making updates faster.

Handle sparse data Colliatin [Col96] states that typically 20% of the data in the logical OLAP cube are non-
zero. However, as the OLAP model is finding newer applications, it is desirable to have an indexing method that
is not tied to any fixed notions of sparsity. Therefore, the ideal method should scale well with increasing sparsity.

2 Existing methods

We classify existing indexing methods into four classes. The first class consists of methods that are based on
using multidimensional arrays. The methods of the second class are based on bit-mapped indices. The third
class consists of hierarchical methods and finally the fourth class includes conventional multidimensional indices
originally designed for spatial data.

2.1 Multidimensional array-based methods

Logically, the OLAP data cube can be viewed as a multidimensional array with the key attributes forming the axis

of the array. The ideal indexing scheme for this logical view of the data would have been a multidimensional array

if the data cube were dense. Any exact or range query on any combination of attributes could have been easily
answered by algebraically computing the right offsets and fetching the required data. But since most OLAP data
is not dense, several alternatives have been proposed that attempt to handle sparsity while staying as close as
possible to the array model. A good example of this is Essbase’s proprietory indexing scheme [Ear94] that we
discuss next.

In Essbase [Ear94], the user identifies a set of dimensions of the cube that are dense meaning that each com-
bination of values formed out of the dense dimensions has high likelihood of data associated with it. These are
the dense dimension3, the remaining dimensions belong to the sparseSseA index tree is constructed on
the combination of values of the sparse dimensions. Each entry in the leaf of the index tree points to a multidi-
mensional array formed by the dense dimensibng his array, called alock, stores in its cells all the measure
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values. The dimension fields (which are often arbitrary strings) are mapped to continuous integers which deter-
mine the contiguous positions of the multidimensional arrays. The arrays of dense dimensions may not all be
dense. Therefore, they are further compressed where necessary.

Consider an example of a four dimensional cube wipgogluct andstore are identified as sparse di-
mensions antime andscenarios belong to the dense set. A B-tree index is built ongheduct -store
pair and for each pair of values where data is present, a 2-dimensional atirag oindscenarios is stored.

When a query arrives with a restriction on one or more sparse dimensions the index tree is searched on the sparse
dimension, and for each matching block, the restrictions if any, on the dense dimensions are used to get the right
offsets in the block. Before searching the index tree the mapping tables are used to convert required values to
their integer maps.

We will now evaluate how this method meets the requirements of Section 1.2. Assume that a B-tree is used to
index a concatenation of fields from the sparse dimensions. A point query is fast since we first search the B-tree
on the sparse dimensions and then calculate the array offsets to redeltahethe dense dimension. The hope
is that the sparse index is small and can fit in memory [Col96]. Thus, we go to the disk only for data. When the
sparse index does not fit in memory, the performance of a query that retrieves a range of values on a dimension
that is not one of the outermost dimension will result in multiple searches. In the above example, if we built a B-
tree on the concatenation pfoduct andstore ,then a query of the formstore = Ace " will require us
to make multiple searches for different valuepodducts . Note that other methods like R-trees will be better
in this regard. If there are predicates only on the dense dimensions, one can directly calculate the right offsets in
the blocks and visit the linked array blocks in turn. It is not clear, how non-dimension and summary attributes
are indexed. Batch updates with this method is efficient because the data can be first sorted in the index order
(the sparse dimensions first in the same order as the compound key, the dense dimensions later in the same ordel
as the array storage order) and then the index structure can be updated as a batch. Precomputed summaries ar
stored in the same index as the base cube. The success of this method depends on the ability to find enough dense
dimensions, failing which, this reduces to B-tree on multiple attributes and inherits are its disadvantages [LS90].

2.2 Bit-mapped indices and variations

When data is sparse, a good option is not to index the multidimensional data space but index each of the dimension
space separately as in bit-mapped indices. This is a popular method used by several vendors. Different vendors
have different variants of the basic method [OG95] that we discuss next.

Each dimension of the cube has associated with it a bit-mapped index. In the simplest form, a bit-mapped
index is a B-tree where instead of storing RIDs for each key-value at the leaf, we store a bit-map. The bit-map for
value “v” of attribute “A” is an array of bits where each bit corresponds to a row of the fact table (or a non-empty
cell of the data cube). The bit is a “1” only at those positions where the corresponding row has value “v” for
attribute A.

Exact match queries on one or more dimension can be answered by intersecting the bit maps from multiple
dimensions. Limited kinds of range queries can also be answered by ORing the bit-maps for different values of
the same dimension and finally ANDing them with the bit-map of the other dimension as suggested in [OG95].

Major advantages of this method is that: (1) for low cardinality data, bit maps are both space and retrieval
efficient. Bit-operations like AND/OR/NOT/COUNT are more efficient than doing the same operations on RID
lists. (2) Access to data is clustered since the bit-map order corresponds to the data storage order. (3) All dimen-
sions are treated symmetrically and sparse data can be handled the same way as dense data. (4) If required, datz
can also be retrieved in any arbitrary sorting order of dimensions by traversing the bit-maps in a certain order.
However, using the indices to retrieve data in a particular order, can result in a loss of the clustered data access
property discussed in item (2).

The major disadvantages of bit-mapped indices is: (1) ORing bit maps for range queries might be expensive.
The number AND operations is limited to the number of dimensions and is therefore small in most cases. How-
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ever, the number of OR operations can be large for many queries since each value in a range of a dimension will
incur a OR operation. (2) the increased space overhead of storing the bit-maps especially for high cardinality
data. (3) Batch updates can also be expensive since all bit-map indices will have to modified for even a single
new row insertion.

In short, this approach is only viable when the domain of each attribute is small. Otherwise, the space over-
head and the bit processing overhead could be probatively large. We next discuss some of the techniques used
by vendors to deal with these disadvantages.

Compression Bit-maps are often compressed to reduce space overhead. But, this implies that the overhead
of decompression has to be incurred during retrieval or one has to rely on methods of doing “AND” and “OR”
operations on compressed bit-maps [GDCG91]. For simple compression schemes like run-length encoding it is
easy to design AND/OR algorithms that work on compressed data. However, it is necessary to keep the cost of
these operations low since one of the main reasons for using bit-mapped indices is that it enable fast bit operations.

Hybrid methods Since bit-maps are not appropriate for high cardinality data, some products [Ede95] follow
a hybrid approach where a plain B-tree is used when the list of qualifying RIDs per entry is small, otherwise a
bit-mapped index is used.

Dynamic bit-maps Another approach (used by some vendors) to handle high cardinality data and large range
gueries is to construct the bit-maps dynamically from vertically partitioned fact table as follows. Each column
stores a compressed representation of the values in the column attribute. For instance, if thediferent

values of a particular attribute, we map the values to continuous integers and represent each value in the column
by onlylog n bits which represents its integer map. When a predicate requires a subset of values in that column,
the required values are converted to their integer maps and represented in an in-memory array or hash-table. Now,
the column partition is scanned and for each value, the in-memory array is probed. Depending on whether a match
is found or not, a 1 or a 0 is stored at the row position of a bit-map that is constructed dynamically. This process
is repeated for predicates on other columns. At the end of scanning all queried columns we have a bit-map with
a 1 at the row positions that satisfied all predicates. This bit-map can be further AND-ed with a bit-map obtained
from a bit-mapped B-tree index on a low-cardinality column.

2.3 Hierarchical indexing methods

Both of the above schemes index data aggregated at different levels of detail the same way. Thus, measures
summarized at thproduct level are indexed the same way, in the same indexing structure as measures at the
product-store level. A different approach is followed by hierarchical indexing methods as proposed by Di-
mensional Insight [Pow93] and Johnson and Shasha [JS96]. In these schemes, we first build an index tree on
theproduct dimension and store summaries at fieduct level. Eachproduct value, contains a sepa-

rate index at the store level and stores summaries girtiauct-store level and so on. Summaries at the

store level are kept in a separate index treesbore . In general, the number of such index trees can grow
exponentially, [JS96] discusses how to cut down the number of trees based on commonly asked queries.

The main advantage of the hierarchical indexing schemes is that data at higher levels of aggregations that
is typically accessed more frequently can be retrieved faster than the larger detailed data. Also, dimensions are
symmetrically handled and data can be retrieved in a sorted order for several permutation of dimensions. The
main disadvantage is the widely increased index storage overhead and thus a decrease in update efficiency. The
average retrieval efficiency can also suffer because large indexing structures often implies poor caching and disk
performance.
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2.4 Multidimensional indices

Another alternative for indexing OLAP data is to apply one of the many existing multi-dimensional indexing
methods designed for spatial data (see [Gut94] for an overview). This alternative is not well explored in the
commercial arena. The widely cited reasons being that these schemes do not scale well with increasing dimen-
sionality and that for predicates on multiple categorical attributes a cartesian product of the keys will need to
be searched. However, some of these indexing methods offer certain advantages which should be deployed in
indexing OLAP data, albeit with some modifications. One of the key features of several indexing schemes like
R-trees and Grid files is symmetric treatment of all dimensions without incurring the space overhead of the hier-
archical indexing methods or processing overhead of doing bit operations as in bit-mapped indices. We discuss
in Section 3 how some OLAP-specific optimizations can be applied to such indexing methods. This is a summary
of the results being reported in [Sar97].

3 Optimizing R-trees for efficient access to OLAP data

The OLAP matrix is sparse but not uniformly so. There are typically rectangular shaped regions of density. For
instance, a supplier might be selling to stores only in a particular region. Hence, for that supplier all other regions
will have NULL values. Ideally, we do not want to explicitly index dense regions since we can directly compute
the array offset. We propose extending the indexing method to allow nodes of two types: 1. rectangular dense
regions that contain more than a threshold number of points in that region and 2. points in sparse regions. For the
dense clusters we only store the boundaries. It is like doing run-length encoding on points in multidimensional
space. The dense cluster itself is stored as a multi-dimensional sub-array elsewhere. For instance, if we can find
a 10 by 10 rectangular dense cluster of 100 points in an otherwise sparse two-dimensional array, we can index all
100 points in that sub-array using a single rectangle instead of inserting 100 individual points in the index. The
index entry for the rectangle would point to the 100-point sub-array stored elsewhere. Searching the index for a
point in the sub-array would first return the boundaries of the rectangle and then we use array offset calculations
to reach to the exact point in the sub-array. This idea of indexing dense regions generalizes the approach used by
Arbor software for indexing OLAP data. Their approach is to manually identify dense and sparse dimensions.
We believe that, one is more likely to find dense regions rather than dense dimensions. For instance, if we have a
2-D data cube with the bottom-right quarter dense and the rest of the region sparse, the Arbor approach will not
be able to extract any dense dimensions.

3.1 Storing Dense clusters

The issues that arise in storing the dense clusters are similar to the ones used for storing duplicates in a B-tree
access method as discussed in [GR94]. Each dense-cluster entry in the R-tree contains the boundary of the dense
cluster and a pointer to a variable length array. The array itself can be organized in one of two ways. Each entry of
the array can either be (1) a TID (tuple identifier) or (2) the tuple itself. In either case, the entries of all sub-arrays
can be concatenated one after another and stored as a single tuple stream as discussed in [GR94]. The advantag:
of the second approach is lower storage overhead and fewer 1/Os during retrieval. But the disadvantage is that,
the indexed relation has to be organized in the order determined by each dense clusters. An advantage of the
first approach is that missing combinations in any dense cluster will incur smaller storage overhead than with the
second approach. In either case, we can use array clustering techniques as discussed in [SS94, Jag90] to improve
spatial locality instead of storing the array in the linear fortran order that destroys spatial locality.
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3.2 Finding Dense clusters

In many cases, the dense clusters can be identified at the high level by a domain expert. For instance, it might
be possible for the DBA, to infer that certain stores selpafiducts or that some collection gfroducts

are sold everyday in every store or that woolen clothes are sold in all store in all winter months and so on. In
the absence of such knowledge, one can use clustering algorithms to automate the search for dense regions. The
requirements on the clustering algorithms are slightly different in our case because we require that each cluster be
rectangular. Hence, our goal is to find rectangular shaped regions so that the fraction of points present in any such
regions is more than such fixed threshold. Such algorithms [BR91, SB95] are common-place in image analysis
and other applications of similar flavor. It is necessary, however, to evaluate how these algorithms scale with
input size and how well they handle arrays of dimensionality greater than two.

3.3 Comparing Bit-mapped indices and R-trees

Multi-dimensional index trees like R-trees have a number of advantages over bit-mapped indexing schemes. Ex-
act match and range queries on multiple dimensions can be answered by simply searching the index tree. The
overhead of bit ANDing/ORing operations can thus be avoided. The space overhead will be smaller because
R-trees only index the region where points are present and hence do not index the “0"s as in the bit-mapped
techniques. R-trees also can be expected to be more space-efficient than bit-mapped indices especially when the
bit-maps are not compressed. When they are compressed, the overhead of ANDing/ORing will increase and thus
the retrieval performance could suffer. R-trees also are more efficient to update than bit-mapped indices.

However, there could be situations where a search on the R-tree could take longer than bit ANDing/ORing
operations on an index tree especially when the query rectangle is large. R-trees are better when most of the di-
mensions have predicates on them. Their performance can be expected to be worse when only a few dimensions
are restricted, this may not be a big handicap since most OLAP queries leave at most two dimensions unspeci-
fied since cross-tabular presentations are cumbersome for larger than two dimensions. The exact difference will
depend on the number of such dense clusters one can find.

Thus, in conclusion, we can state that, R-trees should be preferred when partial search queries have few un-
specified dimensions, the dense regions are large, overhead of bit operations are high, and updates more common.
Bit-maps should be prefered when dimensions have low cardinality, queries have few restricted dimensions and
data is very sparse so that the chance of finding dense regions is small.
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