Provenance in Scientific Workflow Systems

Susan Davidson, Bertram Ludascher, Timothy McPhillips Juliana Freire
Sarah Cohen-Boulakia, Anat Eyall Shawn Bowers, Manish Kumar Anand University of Utah
University of Pennsylvania University of California, Davis juliana@cs.utah.edu

{susan, sarahch, angt@cis.upenn.edu {ludaesch, tmcphillips, sbowers, maanp@licdavis.edu

Abstract

The automated tracking and storage of provenance infoongbromises to be a major advantage
of scientific workflow systems. We discuss issues relateatacathd workflow provenance, and present
techniques for focusing user attention on meaningful pramee through “user views,” for managing
the provenance of nested scientific data, and for using mm&dion about the evolution of a workflow
specification to understand the difference in the proveaafsimilar data products.

1 Introduction

Scientific workflow management systenesg, myGrid/Taverna [18], Kepler [6], VisTrails [13], and Chara
[12]) have become increasingly popular as a way of spegjfgind executing data-intensive analyses. In such
systems, a workflow can be graphically designed by chairoggther taskse(g, for aligning biological se-
qguences or building phylogenetic trees), where each tagktake input data from previous tasks, parameter
settings, and data coming from external data sources. lergkm workflow specification can be thought of as a
graph, where nodes represembdulesof an analysis and edges capture flbev of databetween these modules.

For example, consider the workflow specification in Fig. 1{a)ich describes a common analysis in molec-
ular biology: Inference of phylogenetic (i.e., evolutionary) relatibips between biological sequenceghis
workflow first accepts a set of sequences selected by the naseraf database (such as GenBank), and supplies
the data to module M1. M1 performs a multiple alignment ofgequences, and M2 refines this alignment. The
product of M2 is then used to search for the most parsimorpbybogenetic tree relating the aligned sequences.
M3, M4, and M5 comprise a loop sampling the search space: l@dg¢es a random number seed to M4, which
uses the seed together with the refined alignment from M2datera set of phylogenetic trees. M5 determines
if the search space has been adequately sampled. FinallgpMputes the consensus of the trees output from
the loop. The dotted boxes M7, M8 and M9 represent the fattdtiaposite modulemay be used to create
the workflow. That is, M7 is itself a workflow representing #léggnment process, which consists of modules
M1 and M2; M8 is a workflow representing the initial phylogéodree construction process, which consists
of modules M3, M4, and M5; and M9 is a composite module repriasg the entire process of creating the
consensus tree, which consists of modules M3, M4, M5 and M6.

The result of executing a scientific workflow is calledusn. As a workflow executes, data flows between
moduleinvocations(or step3. For example, a run of the phylogenetics workflow is showRig 1(b). Nodes

Copyright 2007 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

1

i

1

M6: Compute !
consensus : @

1
1
[1
[1
III M1: Compute M2: Refine | | || M3: Iterate M4: Find M5: Check |
alignment alignment ' over seeds MP trees exit condition | |
1 (A ! 1
: L t | | :
! AL [. ! |
[M7:Align sequences 1 v] M8: Infer trees | MO: Infer tree !
g §
(b) Alignment2,
Alignment2, Tree1 ... Tree3,
|I| Seq1 ... Seq10 - Alignment1 - Alignment2 - Seed1 - Seed1
Alignment2,
Alignment2, Alignment2, Tree1 ... Tree5 Tree6
Tree1 ... Tree3, Tree1 ... Tree5,
Seed2 Seed2

Alignment2

Figure 1: Phylogentics workflow specification, run, and dipendency graph.

in this run graph represent steps that are labeled by a usigpeidentifier and a corresponding module name
(e.g, S1:M1). Edges in this graph denote the flow of data betwespgssand are labeled accordingéd, data
objectsSeql,...Seql10 flow from input | to the first step S1). Note that loops in the kftmw specification are
always unrolled in the run graph,g, two steps S4 and S7 of M4 are shown in the run of Fig. 1(b).

A given workflow may be executed multiple times in the conteki single project, generating a large
amount of final and intermediate data products of interesitéauser [9]. When such analyses are carried out
by hand or automated using general-purpose scripting &yeg) the means by which results are produced are
typically not recorded automatically, and often not evesorded manually. Managing such provenance infor-
mation is a major challenge for scientists, and the lack @istéor capturing such information makes the results
of data-intensive analyses difficult to interpret, to rém@mcurately, and to reproduce reliably. Scientific work-
flow systems, however, are ideally positioned to recordcatiprovenance information that can authoritatively
document the lineage of analytical results. Thus, thetglidi capture, query, and manage provenance informa-
tion promises to be a major advantage of using scientific flawksystems. Provenance support in scientific
workflows is consequently of paramount and increasing itapoe, and the growing interest in this topic is
evidenced by recent workshops [4, 17] and surveys [5, 19jigdrea.

Data provenance in workflows is captured as a set of deperdebetween data objects. Fig. 1(c) graph-
ically illustrates a subset of the dependencies betweem algects for the workflow run shown in Fig. 1(b).
In such data-dependency graphs, nodes denote data ol@egit3r(ee4) and dependency edges are annotated
with the step that produced the data. For example, the depepcdge fronAl i gnent 2to Al i gnrent 1
is annotated with S2:M2 to indicate thaki gnnment 2 was produced fromil i gnrent 1 as a result of this
step.

Many scientific-workflow systemse(g, myGrid/Taverna) capture provenance information impidn an
event log. For example, these logs record events relatdketstart and end of particular steps in the run and
corresponding data read and write events. Using the (IDgicder of events, dependencies between data ob-
jects processed or created during the run can be inferrébhus, determining data dependencies in scientific

The complexity of the inference procedure and type of logiesseequired depends on the specific model of computatiod tose

(a)

SZZMQ

Figure 2: Provenance dfr ee6 in Joe’s (a) and Mary’s (b) user views.

workflow systems generally is performed using dynamic asigliie., modules are treated as “black boxes” and
dependency information is captured as a workflow executesoftrast, determining provenance information
from database views (or queries) can be performed usinig stalysis techniques [10]. In this case, database
gueries can be viewed as “white box” modules consistingg#ladaic operatorse(g, o, 7, <). Anintermediate
type of provenance can also be considered in which blackabocules are given additional annotations spec-
ifying input and output constraints, thus making them “gbeyxes” [6]. These additional specifications could
then be used to reconstruct provenance dependencies taioggaalysis techniques, without requiring runtime
provenance recording.

The use of provenance in workflow systems also differs froat itth database systems. Provenance is not
only used for interpreting data and providing reproducii@sults, but also for troubleshooting and optimizing
efficiency. Furthermore, the application of a scientific kilmw specification to a particular data set may involve
tweaking parameter settings for the modules, and runniagvtbrkflow many times during this tuning process.
Thus, for efficiency, it is important to be able to revisit &éckpoint” in a run, and re-execute the run from that
point with new parameter settings, re-using intermediate desults unaffected by the new settings. The same
information captured to infer data dependencies for a raratso be used to reset the state of a workflow system
to a checkpoint in the past or to optimize the execution of difredl version of a workflow in the future.

While the case for provenance management in scientific wawkélystems can easily be made, real-world
development and application of such support is challengBgjow we describe how we are addressing three
provenance-related challenges: First, we discuss how asitepmodules can be constructed to provide prove-
nance “views” relevant to a user [3]. Second, we discuss hmwvemance for complex datad., nested data
collections) can be captured efficiently [7]. Third, we diss how the evolution of workflow specifications can
be captured and reasoned about together with data prowefEsic

2 Simplifying provenance information

Because a workflow run may comprise many steps and interteedgda objects, the amount of information
provided in response to a provenance query can be overwinglriven for the simple example of Fig. 1, the
provenance for the final data objéatee6 is extensivé. A user may therefore wish to indicate which modules
in the workflow specification arelevant and have provenance information presented with respebataser
view. To do this, composite modules are used as an absmaotchanism [3].

For example, user Joe might indicate that the RR2fine alignmeniM4: Find MP trees and M6: Compute
consensusnodules are relevant to him. In this case, composite moddlésnd M8 would automatically be
constructed as shown in Fig. 1(a) (indicated by dotted Jin@sd Joe’s user view would bgM7, M8, M6}.
When answering provenance queries with respect to a useyatidy data passed between modules in the user

execute a workflone.g, see [8].
The graph shown in Fig. 1(c) is only partial, and omits thedsaesed in M4 as well as additional notations of S7:M4 on tlyesd
fromTreel,...,Tree3 to Al i gnnment 2.

view would be visible; data internal to a composite moduléhim view would be hidden. The provenance for
Tr ee6 presented according to Joe’s user view is shown in Fig. 2¢dte thatAl i gnment 1 is no longer
visible.

More formally, auser viewis a partition of the workflow modules [3]. It induces a “highevel” workflow in
which nodes represent composite modules in the partigan M7 and M8) and edges are induced by dataflow
between modules in different composite moduleg(an edge between M7 and M8 is induced by the edge
from M2 to M3 in the original workflow). Provenance infornmatiis then seen by a user with respect to the flow
of data between modules in his view. In the Zoom*UserViewstay [2], views are constructed automatically
given input on what modules the user finds relevant such t)ad Composite module contains at most one
relevant (atomic) module, thus assuming the “meaning” af thodule; (2) no data dependencies (either direct
or indirect) are introduced or removed between relevantutesg and (3) the view is minimal. In this way,
the meaning of the original workflow specification is presekvand only relevant provenance information is
provided to the user.

Note that user views may differ. Another user, Mary, may dmyinterested in the modules MRefine
alignmentand M6: Compute consensudlary’s user view would therefore be constructed{ ¥, M9}, and
her view for the provenance df ee6 (shown in Fig. 2(b)) would not expoSe eel ... Tr eeb.

3 Representing provenance for nested data collections

Modules within scientific workflows frequently operate owetlections of data to produce new collections of
results. When carried out one after the other, these opastian yield increasingly nested data collections,
where different modules potentially operate over différesting levels. Theollection-oriented modeling and
design(COMAD) framework [16] in Kepler models this by permittingié to be grouped explicitly into nested
collections similar to the tree structure of XML documeni&hese trees of data are input, manipulated, and
output by collection-aware modules. However, unlike a ganéML transformer, a COMAD module generally
preserves the structure and content of input data, acgegaiticular collections and data items of relevance to
it, and adding newly computed data and new collections tal#ta structure it received. COMAD workflow
designers declare thead scopeandwrite scopefor each module while composing the workflow specification.
A read scope specifies the type of data and collections miégaa module using an XPath-like expression to
match one or more nodes on each invocation; paths may balyespecified using wildcards and predicates. As
an example, the read scope for M1 could be giveRrasj / Tri al / Seqs, which would invoke M1 over each
collection of sequences in turn. A write scope specifies elaemodule should add new data and collections
to the stream. Data and collections that fall outside a mesluéad scope are automatically forwarded by the
system to succeeding modules, enabling an “assembly4ity$& of data processing.

Similar to other dataflow process networks [15], modules @QMAD workflow work concurrentlyover
items in the data stream. That is, rather than supplyingritieegiree to each module in turn, COMAD streams
the data through modules as a sequence of tokens. Fig. Batles the state of a COMAD run of the example
workflow shown in Fig. 1 at a particular point in time, and gasts the logical organization of the data flowing
through the workflow in Fig. 3(a) with its tokenized realipatat the same point in time in Fig. 3(b). This figure
further illustrates the pipelining capabilities of COMAD ncluding two independent sets of sequences in a
single run. This pipeline concurrency is achieved in partdpresenting nested data collections at runtime as
“flat” token streams containing paired opening and closieljketers to denote collection membership.

Fig. 3 also illustrates how data provenance is captured epebsented at runtime. As COMAD modules
insert new data and collections into the data stream, treyiakert metadata tokens containing explicit data-
dependency information. For example, the fact tlatgnment 2 was computed fromdl i gnnent 1 is stored
in the insertion-event metadata token immediately prexpdie A2 data token in Fig. 3(b), and displayed
as the dashed arrow from A2 to Al in Fig. 3(a). The products GIGMAD workflow may be saved as an

(a) Proj Key

. Data token

@ Collection opening-delimiter token
@ Collection closing-delimiter token
O New data token produced by step

. Insertion-event metadata token
Trees

AR §>§:¥y Dependency relation

2T T2 Ty

Ty T : Tg

S7:M4

(b) M8: Infer trees Mé6: Compute Consensus

T5 Ty T3To Ty

<suuy> @

<sju|y/>
<sbag>
<jeu]>
<loag>

Figure 3: An intermediate state of a COMAD run

XML-formatted trace file, in which provenance records ardedded directly within the file as XML elements
annotating data and collection elements. Detailed daterdigmcies can be inferred from the trace file,
from the embedded provenance annotations together witietsted data collections output by the workflow run.
Note that COMAD can minimize the number and size of proveaamotations as described in [7, 9]. For
example, when a module inserts a node that is a collectiepribvenance information for that node implicitly
cascades to all descendant nodes. Similarly, if a node igediefrom a collection node, an insertion annotation
is created that refers just to the collection identifier eattman the various subnodes.

The current COMAD implementation includes a prototype gatesn for querying traces. The system pro-
vides basic operations for accessing trace nodes, cotisgutependency relations, and querying corresponding
dependency graphs over the XML trace files. Methods alsorardded to reconstruct parameter settings and
metadata annotations attributed to data and collectioes1f4.

4 \Workflow evolution

Scientific workflows dealing with data exploration and vigation are frequently exploratory in nature, and
entail the investigation of parameter spaces and altemédichniques. A large number of related workflows
are therefore created in a sequence of iterative refinenoétiie initial specification, as a user formulates and
tests hypotheses. VisTrails [13] captures detailed in&diom about this refinement process: As a user modifies a
workflow, it transparently captures the change actions, #agaddition or deletion of a module, the modification
of a parameter, the addition of a connection between modw&s to a database transaction log. The history
of change actions between workflow refinements is referred tvisual trail, or aistrail.

The change-based representation of workflow evolutionngise and uses substantially less space than the
alternative of storing multiple versions of a workflow. Thedel is also extensible. The underlying algebra of
actions can be customized to support change actions atatiffgranularities (e.g. composite modules versus
atomic modules). In addition, it enables construction oframitive interface in which the evolution of a work-
flow is presented as a tree, allowing scientists to returnoegious version in an intuitive way, to undo bad
changes, and be reminded of the actions that led to a panticesult.

Vistrails and data provenance interact in a subtle but itambrway: The vistrail can be used to explain
the difference in process between the data provenance dasidata products. Returning to our example,

3Modules are connected by input/outpdrts, which carry the data type and meaning. Static type-chgckim be therefore per-
formed to help in debugging.

(6 6.8 , VisTrails Builder - lung.vt -

= x — | ~
P 2 & & ¢ & B ‘@\-‘\\,
Execute Undo Redo Pipeline History Query Exploration Select Pan Zoom
! lung.vt Ix)
T E AN Froperie ‘]?E[‘
N X

g
g
?J

Tag: z-space

\6 ? & User: juliana
/@ b Date: 28 Mar 2006 09:39:40

=2k paramea! wepingfiom 101035 I 3 025 hwa ot

P & NnNN . Visual Diff - from z-space to good transferfunc -
O SO E=0 [G

2

Figure 4: Visual difference interface for a radiation treant planning example.

suppose that two runs of the workflow in Fig. 1 took as inputghme set of sequences, but returned two
different final trees. Furthermore, suppose that the spatifin was modifed between the two runs, e.g. that a
different alignment algorithm was used in M1, or that threeations of the loop were performed in M8 due to
different seeds being used. Rather than merely examinimgldlta provenance of each tree, the scientist may
wish to compare their provenance and better understdnadhe final data differed. However, computing the
differences between two workflows by considering their ulyiteg graph structure is impractical; the related
decision problem obkubgraph isomorphism (or matchingy known to be NP-complete [14]. By capturing
evolution explicitly in a vistrail, discovering the diffence in process is simplified: The two workflow nodes are
connected by a path in the vistrail, allowing the differehetween two workflows to be efficiently calculated
by comparing the sequences of change actions associatethes [11].

Figure 4 (right) shows the visual difference interface jmed by VisTrails. A visual difference is enacted
by dragging one node in the history tree onto another, whpeEne a new window with a difference workflow.
Modules unique to the first node are shown in orange, modul&gie to the second node in blue, modules
that are the same in dark gray, and modules that have diffpggameter values in light gray. Using this in-
terface, users can correlate differences between two dadiaigts with differences between their corresponding
specifications.

5 Conclusion

Workflow systems are beginning to implement a “depends-oatiehof provenance, either by storing the in-
formation explicitly in a databases.g, VisTrails) or within the data itselfglg, COMAD). Several techniques
have also been proposed to reduce the amount of provendnomadtion either presented to the user, user
views), or stored by the databased, by treating data as collections). Furthermore, since mrkspecifica-
tions evolve over time, there is a need to understand nottbelprovenance of a single data item but how the
provenance of related data items differ.

Although some workflow systems provide a query interfacérfmracting with the provenance information,
it is still an open problem as to what a provenance query laggwshould provide. For example, we might
wish to scope provenance information within a certain djgtportion of a workflow, or return all provenance
information that satisfies a certain execution pattern. duery language should also allow users to issue high

level queries using concepts that are familiar to them, ardgnt the results in an intuitive manner. Related
work in this area has been done in the context of businesegsiong systems, in which runs are monitored by

querying logs €.g, [1]).

References

[1] C. Beeri, A. Pilberg, T. Milo, and A. Eyal. Monitoring biness processes with queries.MhDB, 2007.

[2] O. Biton, S. Cohen-Boulakia, and S. Davidson. Zoom*WMéews: Querying relevant provenance in workflow sys-
tems (demo). I'VLDB, 2007.

[3] O. Biton, S. Cohen-Boulakia, S. Davidson, and C. Harae®ing and managing provenance through user views in
scientific workflows. INCDE, 2008 (to appear).

[4] R.Bose, I. Foster, and L. Moreau. Report on the Inteomati Provenance and Annotation Worksh8pGMOD Rec.
35(3), 2006.

[5] R. Bose and J. Frew. Lineage retrieval for scientific daiacessing: a surveyACM Comp. Surveys37(1):1-28,
2005.

[6] S.Bowers and B. Ludascher. Actor-oriented design @rddic workflows. InER, 2005.

[7]1 S. Bowers, T. M. McPhillips, and B. Ludascher. Provetam collection-oriented scientific workflows. @oncur-
rency and Computation: Practice and Experiendéley, 2007 (in press).

[8] S.Bowers, T. M. McPhillips, B. Ludascher, S. Cohen, &n&. Davidson. A model for user-oriented data provenance
in pipelined scientific workflows. IHPAW, volume 4145 of NCS pages 133-147. Springer, 2006.

[9] S. Bowers, T. M. McPhillips, M. Wu, and B. Ludascher. J&a histories: Managing provenance across collection-
oriented scientific workflow runs. IBata Integration in the Life Science®007.

[10] P. Buneman and W.Tan. Provenance in databaseslGMOD pages 1171 — 1173, 2007.

[11] S. Callahan, J. Freire, E. Santos, C. Scheidegger)¥a, &ind H. Vo. Using provenance to streamline data exptorat
through visualization. Technical Report UUSCI-2006-036] Institute—University of Utah, 2006.

[12] I. Foster, J. Vockler, M. Woilde, and Y. Zhao. Chimera: viktual data system for representing, querying, and
automating data derivation. BSDBM pages 37-46, 2002.

[13] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. Befslegger, and H. T. Vo. Managing rapidly-evolving scifiati
workflows. InIPAW, 2006.

[14] J. Hastad. Clique is hard to approximate withilT¢. Acta Mathematica182:105-142, 1999.
[15] E. A. Lee and T. M. Parks. Dataflow process netwoikmceedings of the IEEB3(5):773—-801, 1995.

[16] T. M. McPhillips, S. Bowers, and B. Ludascher. Colleatoriented scientific workflows for integrating and arzihg
biological data. IrData Integration in the Life Science2006.

[17] L. Moreau and B. Ludascher, editor€oncurrency and Computation: Practice and Experience -cBpéssue on
the First Provenance Challeng&Viley, 2007 (in press). (see also http://twiki.ipaw.ififm/view/Challenge/).

[18] T. Oinnet al. Taverna: a tool for the composition and enactment of bisimttics workflows Bioinformatics 20(1),
2003.

[19] Y. Simmhan, B. Plale, and D. Gannon. A survey of data pmance in e-scienc&IGMOD Rec.34(3):31-36, 2005.

