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Abstract

Scale is often an issue when attempting to understand and analyze large social networks. As the size
of the network increases, it is harder to make sense of the network, and it is computationally costly to
manipulate and maintain. Here we investigate methods for pruning social networks by determining the
most relevant relationships in a social network. We measure importance in terms of predictive accuracy
on a set of target attributes of social network groups. Our goal is to create a pruned network that models
the most informative affiliations and relationships. We present methods for pruning networks based on
both structural properties and descriptive attributes. These pruning approaches can be used to decrease
the expense of constructing social networks for analysis by reducing the number of relationships that
need to be investigated and as a data reduction approach for approximating larger graphs or visualizing
large graphs. We demonstrate our method on a network of NASDAQ and NYSE business executives and
on a bibliographic network describing publications and authors and show that structural and descriptive
pruning increase the predictive power of affiliation networks when compared to random pruning.

1 Introduction

A social network describes a set of actors (e.g., persons, organizations) linked together by a set of social relation-
ships (e.g., friendship, transfer of funds, overlapping membership). Social networks are commonly represented
as a graph, in which the nodes represent actors and edges represent relationships. Examples of social networks
include online communication networks, disease transmission networks, and bibliographic citation networks.
There is a growing interest in methods for understanding, mining, and discovering predictive patterns in social
networks.

An affiliation network is a special kind of social network in which there are two kinds of entities, actors
and events, and there is a participation relationship which relates them. Affiliation networks are commonly
represented as bipartite graphs, in which there are two kinds of nodes, representing actors and events, and edges
link actors to events. Examples of affiliation networks include: 1) corporate board memberships, where the
actors are executives, the events correspond to different company boards, and the links indicate which executives
serve on which company boards; 2) author collaboration networks, where the actors are authors, the events are
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papers, and the links indicate co-authors of papers; and 3) congressional voting records, where the actors are the
congressional members, the events are the bills, and the links represent the supporters for a bill.

A social network has both structural properties and descriptive attributes. The structural properties are
determined by the graph structure of the network. Examples include the density of the graph, the average degree
of nodes in the graph, the geodesic distance in the graph, the number of cliques in the graph, etc. In addition
to structural properties, actors, events and relationships often have associated descriptive attributes containing
features specific to the social context of the network. These are typically represented as attributes of the nodes
or edges. For example, a corporate board social network may contain descriptive attributes representing the job
function and age of a board member. A disease transmission social network may contain descriptive attributes
representing the location of person’s home and date of disease discovery.

Recent literature in the network science community has focused on understanding the structural properties
of social networks and the construction of models for generating networks which have certain structure charac-
teristics (degree distribution, small-world effects, etc.). Computer scientists are mining social networks based
on these structural properties of networks. However, developing methods which combine network structure and
descriptive attributes are necessary for accurate predictive modeling.

Predictive modeling can also be used to study approaches for compressing the representation of a social
network, while maintaining its predictive accuracy. In the past, the social networks as studied in sociology
tended to be relatively small, often with only tens of nodes. However, given the great increase in ability to
both gather and process data, the social networks being analyzed today can be quite large. Because the data
used to describe the network may not originally have been collected for the purpose of social network analysis,
the data may contain irrelevant, redundant or noisy information. Noisy and redundant information can make
networks difficult to interpret. Automatic techniques for identifying relevant aspects of the social networks can
help improve computational efficiency and may at the same time improve understandability. Furthermore, since
recording changes to a social network and maintaining consistency can be expensive, some applications can
benefit from minimizing the amount of information stored.

In this paper, we begin by giving an overview of some of the representational issues related to social net-
works, especially affiliation networks. Next, we describe different pruning strategies for social networks. Our
aim is to find compressed networks that maintain predictive and descriptive quality. Here we measure the com-
pression in terms of the description length of the network and we measure the quality by measuring the predictive
accuracy for the event attribute classifier built from the compressed network. We have evaluated our pruning
methods on two real-world data sets. One is a network of NASDAQ and NYSE business firm executives and
board members. The second is a bibliographic network describing publications and authors. We have found that
we can achieve significant compression without sacrificing (and in some cases improving) predictive accuracy.
This paper extends the work introduced in [17].

2 Affiliation Networks

Definition 1: An affiliation network N consists of a set of actors A, linked via a set of relationships R to a set
of events E, N = A,R,E, where

A = {a1, . . . , an},
E = {e1, . . . , em},
R = {rij}, where rij denotes actor ai participates in event ej ,

and n is the number of actors and m is the number of events.

An affiliation network may be represented using many different graph structures. The most common rep-
resentation for affiliation networks is as a bipartite graph, which we will call an actor-event graph, AE. In
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Figure 1: (a) A simple affiliation network with actors a1, a2, a3, a4 and a5 and events e1, e2 and e3 (b) The
co-membership graph for the affiliation network (c) The event overlap graph for the network.

this representation, there are two different node types representing actors and events. Networks with two node
types are called two-mode or bi-modal. Figure 1(a) shows a small example of a two-mode actor-event node
graph. The squares in the figure represent actors and the triangles represent events. The membership relations
are highlighted in this graph structure.

There are several useful projections of the actor-event graph. To focus on actors, one can perform a unipartite
projection of the actors on the two-mode affiliation graph. The resulting network is a single-mode or uni-modal
network, where we have a single object type and a single edge type. Representing an affiliation network in
this way results in what is referred to as the co-membership graph, CM . The co-membership graph has a node
for each actor, and an edge between actors who participate in the same event. Similarly, to focus on events,
one can projection the actor-event graph onto the events. This results in what is called an event overlap graph,
EO. It also contains a single node type and a single edge type. In the event overlap graph, the emphasis
is on the connections among events. This graph has a node for each event, and an edge between events that
share a common actor. Figure 1(b) shows the co-membership graph corresponding to the actor-event graph in
Figure 1(a), and Figure 1(c) shows the event overlap graph corresponding to the same actor-event graph.

In addition to the nodes and edges themselves, the nodes and edges in the affiliation network can have
descriptive attributes or features associated with them. Figure 2(a) shows the affiliation graph along with
descriptive attributes for the actors and events (shown in ovals). In a corporate board social network, executives
may have attributes such as education level, academic degree and age, companies may have attributes describing
the corporation such as industry, sector, stock exchange and share price, and the serves-on-board relation may
have attributes describing the relationship between the corporation and the executive such as position on the
board and length of tenure on the board.

It is straight-forward to represent an affiliation network in relational algebra. We introduce the relations
A(IdA, B1, . . . , Bk),E(IdE , C1, . . . , Cl), and R(IdA, IdE ,D1, . . . ,Dm), representing the actors, the events,
and the participation relations of a network. Here the IdA, IdE , and (IdA, IdE) are primary keys and the Bi,
Cj and Dk are descriptive attributes for the relations A, E and R, respectively.

3 Prediction in Social Networks

Our goal is to develop principled approaches to compressing and pruning social networks. Our approach is to
determine which portions of the network can be removed while minimizing information loss. Let N = (A,E,R)
be ther original network and N′ = (A′, E′, R′) be the pruned network (we will describe how we construct the
pruned network shortly). We begin by describing the predictive accuracy measure used to assess the performance
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Figure 2: (a) The affiliation graph with descriptive attributes for the actors and events shown in ovals. (b) The
constructed attributes for the events.

of different pruning approaches.
Here, we will focus on maximizing our predictive accuracy on the event attributes. For ease of exposition,

we will assume we are attempting to maximize the predictive accuracy for a single event attribute E.Ci, based
on attributes of related actors found using the co-membership information and based on attributes of related
events found using the event overlap information. The idea is to construct a classifier, using local neighborhood
information, to predict E.Ci. Now it is easy to see the difficulty with this setup. Each event may have a different
number of related actors and a different number of related events, so how can we construct features to use in our
classifier?

We solve this problem by computing an aggregate over the set of related actors and over the set of events.
Aggregation is a common technique used to construct feature vectors in relational domains [11, 15]. Here we
assume some set of aggregates is associated with each attribute. For the actor attributes {B1, . . . , Bk}, we have
associated aggregate operators {aB1 , . . . aBk

} and for the event attributes {C1, . . . , Cl}, we have associated
aggregate operators {aC1 , . . . , aCl

},
We begin by computing the aggregates over the set of related actors:1

AA(IdE , AB1 , . . . , ABk
) =

γIdE ,aB1
(B1),...,aBk

(Bk)(R ��
R.IdA=A.IdA

A)

which we call AA for aggregates over actors. Next we compute aggregates constructed from the related events:

AE(IdE , AC1 , . . . , ACl
) =

γIdE ,aC1
(C1),...,aCl

(Cl)(EO ��
EO.R.IdE=E.IdE

E)

which we call AE for aggregates over events.
We can combine these relations with the event relation E to create a set PE containing both constructed

features and event attributes.

PE = E ��
E.IdE=AA.IdE

AA ��
E.IdE=AE.IdE

AE

1Recall that γ is the grouping operator in relational algebra [6].
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We will use the constructed features to predict event attributes.
Example: Consider the affiliation network with descriptive attributes shown in Figure 2(a). Suppose that the
aggregate operator that we use for B1 is maximum and the aggregate operator that we use for C1 is average. The
constructed table showing the aggregates that will be used to build our classifier is shown in Figure 2(b).

The above describes in a generic way how we find the features from which we will predict event attributes.
In order to actually make a prediction, we will need to first learn a classifier. Here we do not do anything out of
the ordinary; we construct an appropriate training set from an observed social network. The constructed training
set can be used by any supervised learning method to learn a classifier F , which predicts the value of E.C based
on {AB1 , . . . , ABk

, AC1 , . . . , ACl
}.

We compare the classifier FN constructed from the original social network N = {A,E,R} with the clas-
sifier FN ′ constructed from a pruned social network N′ = {A′, E′, R′}. We compare both accuracy on the
training sets and, more importantly, accuracy on test sets. Accuracy on the training set measures how well the
classifiers are able to fit the existing network. Accuracy on the test set measures how well the classifiers are able
to generalize. Our goal is to find pruned networks that are both compact and accurate on both sets.

4 Pruning Techniques

Next we describe different pruning strategies. We consider two categories of operations. The first involves
removing edges from the affiliation network. The second involves removing actors (and incident edges) from
the affiliation network. We can use different techniques for pruning a network. The three techniques of interest
to us are: 1) pruning based on structural properties, 2) pruning based on descriptive attribute values, and 3)
pruning based on random sampling.

Structural Pruning Structural network properties or measurements involve evaluating the location of actors
in a social network. Measuring the network location involves finding the centrality of a node. Structural mea-
sures have traditionally been used to identify prominent or important nodes in a social network. Two well known
centrality measures are degree and betweenness. The degree of a node is defined as the number of direct con-
nections a node has to other nodes in the network. The nodes with the most connections are considered the most
active nodes in the network. They are referred to as the connectors or the hubs in the network. Betweenness of
a node corresponds to the number of shortest paths going through the node. Nodes with high betweenness are
referred to as brokers. A variation of this that is appropriate for affiliation networks is the number of cliques
a node connects. This allows us to identify nodes that connect one group of actors to another group of actors.
In traditional uni-mode networks, this could be a node that links two clusters that it does not participate in. It
acts as a bridge between these clusters. In affiliation networks, this measure identifies nodes that participate
concurrently in multiple events. These brokers are boundary spanners that have access to information flow in
multiple clusters. They tend to have great influence in the network [19].

Therefore, when pruning based on structure, we will be interested in removing actors that are not hubs and/or
brokers from the network.

Descriptive Attribute-based Pruning Another pruning technique of interest involves pruning based on de-
scriptive attributes. We prune edges by selecting on attributes Dj of the R relation,

R′ = σR.Dj=dj
(R),

where dj is some constant attribute value. In other words, we will remove edges from our graph based on values
for Dj . We look at both the case where we keep only edges with value dj for Dj , and also the case where we
keep all edges except edges with value dj . Pruning edges may result in pruning both actor and event nodes if
after pruning there are no edges connecting them to the network.
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In addition, we prune actors by selecting on attributes Bj of actor relation A,

A′ = σA.Bj=bj
(A),

where bj is some constant attribute value. Pruning actors also results in a reduction in the number of edges, since
we drop any edges to non-selected actors.

Random Sampling Finally, as a baseline, we compare pruning based on random sampling. This involves
maintaining only a random sample of the actor population for analysis. Random sampling is a traditional statis-
tical approach to approximating large graph structures.

Compression It is important to quantify the compression achieved by pruning. We use a relatively generic
measure, the description length of the graph,

DL(N) = log(|A|) + log(|E|) + |R|(log(|A|) log(|E|))
where the logs are base two. DL(N) is the number of bits required to represent the network. We need the first
two terms to describe the number of actors and the number of events and the final term is the number of bits
required to represent the edges.

5 Experimental Results

In this section we evaluate the degree of compression and the predictive accuracy of different pruning ap-
proaches.

5.1 Data Sets

We analyzed two affiliation networks. The first data set, the Executive Corporation Network (ECN), contains
information about executives of companies that are traded on the NASDAQ and the NYSE. The executives serve
on the Board of Directors for one or more of the companies in the data set. This data was collected from the
Reuter’s market data website (yahoo.mulexinvestor.com) in January 2004. There are 66,134 executives and 5384
companies (3284 NASDAQ and 2100 NYSE). The executives are the actors in the ECN, the companies are the
events and board membership is the connecting relationship between the actor nodes and the event nodes. The
relational schema is:

• A = Executive(exec id, exec name, age, education level)
• E = Company(co id, co name, stock exchange, sector, stock price)
• R = BoardMembership(exec id, co id, officer position, join date)

The average board size is 14, the average number of boards an officer is on is 1.14, the number of officers
serving on multiple boards is 6544, and the average number of boards these officer are on is 2.4. We attempt
predicting two attributes, stock exchange and sector. A sector is a coarse grouping of industries of the compa-
nies, e.g., telecommunications and health care. When pruning on descriptive attributes, we consider attributes
of both the Executive relation and the BoardMembership relation. One example is officer position, e.g., CEO,
President, Treasurer and Director.

The second data set, the Author Publication Network (APN), contains information about publications and
their authors. This data set was created using a portion of the ACM SIGMOD anthology in 2004. We focused
on a subset of the periodicals and authors where there was at least one reference to the publication. In the final
data set we analyzed, there were 13,070 authors and 16,287 publications.

The authors are the actors in the APN and the publications are the events. Paper authorship is the connecting
relationship. The relational schema is:
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Figure 3: Comparisons of compression vs. accuracy for a variety of network pruning strategies for a) ECN
exchange b) ECN sector c) APN pulbication type and d) APN number of references.

• A = Author(author id, author name, affiliation, number of publications)
• E = Publication(pub id, pub type, pub date, number of references, number of citations)
• R = PaperAuthorship(author id, pub id)

The average number of authors per publication is 2.4 and the average number of publications per author is 2.9.
For APN, we predicted the two event attributes pub type and number of references (to publication).

5.2 Accuracy and Compression Results

Our goal is to find small networks that can accurately predict event attributes. We compare the following
affiliation networks:

• no pruning (full)
• descriptive attribute pruning (descriptive)
• pruning based on hubs and/or brokers (structural)
• random sampling (random)

We built event-attribute classifiers from the networks as described in Section 3. For categorical aggregate
attributes, we calculated the mode of the neighboring event values, and for numeric aggregate attributes, we
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Figure 4: The structural characteristics of actors in different prunings for a) ECN and b) APN.

calculated the minimum, maximum and average of the neighboring event values. Once the predictive models
have been generated, we evaluate the predictive accuracy of the complete network and the different pruned
networks. We also compare the compression rations in terms of descriptive length, DL(G). The classifiers
were then created using WEKA. We tested a range of classification algorithms including decision trees, Naive
Bayes, and support vector machines (SVMs). The results were relatively consistent across classifiers; due to
space constraints, here we present results only for SVMs using five-fold cross validation.

When constructing our feature vector, we constructed aggregates for the following ECN actor and event
attributes: stock exchange, industry, sector, number of officers on a board, number of advanced degrees on a
board and officer age of a board. We evaluated three descriptive prunings. The first two descriptive prunings,
position and tenure, involve removing edges from our affiliation graph for executives based on the attributes
BoardMembership.officer position and BoardMembership.join date. For example, one pruning of BoardMem-
bership.officer position keeps only edges of CEOs and removes all other membership edges from the network.
The third descriptive pruning involves removing actors based on age.

To group attribute values, we binned numeric attributes and we abstracted categorical attributes. Binning for
each descriptive attribute used for pruning was created based on maintaining approximate equal size buckets or
based on sematically interpretable abstractions. For both our networks, the binnings resulted in four to five bins
for each attribute. For example, the attribute bands for BoardMembership.officer position are as follows:

• A - Chairman of the Board
• B - Executive Officer (CEO, President, COO, etc.)
• C - Senior Officer (VP, Sr. VP, Comptroller, etc.)
• D - Board Officer (Treasurer, Secretary, etc.)
• E - Director

For the APN, we used the attribute Author.number of publications for descriptive pruning.
As mentioned earlier, descriptive attribute pruning has one of two interpretations for an attribute B with

attribute value c: 1) maintain only actors with B = c (only) and 2) maintain all actors except where B = c
(except). We evaluated pruning on every descriptive attribute value for each descriptive pruning category.

For structural pruning, we tested four cases: maintaining only actors who are hubs, (HUB), maintaining
only actors who are brokers, (BRK), maintaining only actors who are both hubs and brokers, (BOTH), and
maintaining only actors who are hubs or brokers. (HBK). Finally, for random pruning, we compared results on
random samples for 9 different sample sizes (between 10% and 90% of the actors in the network).

Figure 3 shows compression versus predictive accuracy for two different attributes in each data set. The
right upper corner represents the ’best’ networks in terms of compression and predictive accuracy. Figure 3(a)
shows results for predicting the ECN exchange attribute. The classifier built using the full network achieves
an accuracy of 72.4%. The best accuracy and compressions are for networks pruned using descriptive pruning.
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Pruning on position, we achieve an accuracy of 72.3% with a compression of 94%. In this case, we removed all
actors except for the chairs of the company boards. Pruning on tenure, we achieve an accuracy of 70.29% with a
compression of 95%, and pruning on age, we achieve an accuracy of 69.2% with a compression of 99%. In this
case, we kept only the older executives. These accuracies are all better than the baseline prediction accuracy of
61% achieved by simply choosing the most common exchange.

For predicting the ECN sector, shown in Figure 3(b), the full network achieves accuracy of 40.4%. Here
pruning based on both descriptive and structural properties perform well. When pruning based on age, we
achieve accuracy of 40.2% with compression of 34%. In this case we kept the younger executives rather than
the older ones. When pruning based on structure, we achieve accuracy of 39.7% and compression of 97% by
keeping only the brokers. Figure 3(c) and (d) show similar results for the pruned APN networks, with many of
the pruned networks achieving significantly higher accuracies than classifiers built from the full network. For
both APN attributes, the network pruned on structure that achieved the best accuracy-compression tradeoff was
the one that kept only the actors that were both hubs and brokers.

For both data sets, pruning on descriptive attributes and structure properties outperformed random pruning.
One question this raised was whether or not the different pruning techniques were removing the same nodes
and edges or different ones? To address the first question, Figure 4 shows the percentage of structural actor
types (hubs, brokers (BRK), hubs and brokers (HBR), and other) preserved under various descriptive pruning
strategies. These graphs show that for both data sets, the networks created using descriptive pruning contain a
different mix of actors than those created using structural pruning. This supports our claim that structural pruning
and descriptive pruning are two distinct methods for compressing networks and maintaining information rich
nodes for prediction in affiliation networks.

6 Related Work

A large portion of the work in mining social networks has focused on analyzing structural properties of the
networks. For a recent survey, see Newman [13]. Much of the work has been descriptive in nature, but recently
there has been more work which uses structural properties for prediction. Within this category, a number of
papers focus on the spread of influence through the network (e.g., [5, 9, 3]). These papers attempt to identify
the most influential nodes in the network. Domingos and Richardson [5] use a global, probabilistic model that
employs the joint distribution of the behavior over all the nodes. Kempe et al. [9] use a diffusion process that
begins with an initial set of active nodes and uses different weighting schemes to determine whether or not a
neighbor should be activated. Liben-Nowell and Kleinberg [12] attempt to predict future interactions between
actors using the network topology. In addition, Palmer et al. [14] propose an efficient method for approximating
the connectivity properties of a graph.

Other work uses structural properties for both classification and clustering. Agrawal et al. [1] use the
link structure of newsgroup social networks to classify user behavior within a newsgroup, specifically they
identify whether a respondent agrees with a posting. Schwartz and Wood [16] create an email graph with edges
corresponding to sets of shared interests and present an algorithm that analyzes the graph structure to cluster
users with similar interests. Their approach derives a specialization subgraph from the relationship clusters.

Graph sampling and compression is also a relevant, active area of study. As we saw in section 5, random
sampling did not generally lead to good prediction results. This finding agrees with that of Airoldi and Carley
[2]. They find that pure network topologies are sensitive to random sampling. As mentioned earlier, graphs have
been compressed using different local network measures [4]. A similar approach is to use frequently occurring
subgraphs as proposed in [10].

There is also a related line of work which makes use of the descriptive attributes of the entities in the
network for collective classification (e.g., [8, 18, 7]). While potentially applicable here as well, our focus is not
on collective classification.
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7 Conclusions

Exploring descriptive and structural pruning techniques together is needed for compact and accurate compres-
sion of networks. In this paper we showed how to use structural properties and descriptive attributes to prune
social networks. We began by introducing a general framework for representing affiliation networks using rela-
tional algebra to formally express different network representations. We then used relational algebra expressions
to define pruning strategies based on structural properties and descriptive attributes. Finally, we demonstrated
the effectiveness of these pruning approaches on two real world data sets. While the networks resulting from
structural pruning and descriptive pruning are quite distinct, both are viable approaches for reducing the size of
a social network while still maintaining predictive accuracy on a set of target event attributes. Both approaches
perform better than random sampling and lead to understandable, compressed networks that maintain (and in
some cases increase) predict power.
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