Process M ediation, Execution Monitoring and Recovery for
Semantic Web Services

Katia Sycara Roman Vaculin
The Robotics Institute Institute of Computer Science
Carnegie Mellon University Academy of Sciences of the Czech Republic
kati a@s. cnu. edu vacul i n@s. cas. cz

1 Introduction

One of the main promises of web services standards is toenatlfacilitate seamless interoperability of diverse
applications and business processes implemented as centpan services. A service can be part of a business
workflow that prescribes control and data flows of complexiagpons. As business needs change, processes
may need to get reconfigured or additional process comperaedtservices may need to be added. As a result of
these changes, the previous components must become eviatgwith the new one. This can be accomplished
by making manual changes to the existing workflow componamtisprogramming the new components in such
a way as to have interoperability built-in. This is a rathepdrious and inefficient process since it must be
repeated every time workflow reconfiguration is needed. Assace many different elements of a business
workflow may be under the control of third parties (e.g. sultators), additional costly coordination will be
needed with these third parties to manually find interopétalsolutions. Moreover, since the Internet gives
the opportunity to dynamically discover service providérs often not a priori known which service provider
may best fit the application workflow changing needs. In otherds, the new service component that must
interoperate with old ones, is dynamically discovered.réfare, (a) a more general solution is desired, namely
the ability to achieve process interoperability (e.g. ioperability of existing processes with new ones) without
actually modifying their implementation and interfacasq #b) the mediation may need to be done dynamically
even at runtime, which implies that only minimal assumpgiabout knowledge of service requester and service
provider interfaces is allowed. One solution to this reguient is to apply a process mediation component which
resolves all incompatibilities and generates appropmiad@pings between different processes while making
minimal assumptions about implementation details of serproviders and requesters.

Creating such a process mediation component is a very olailg task. Service providers and requesters
may not share basic standards for Web Service specificatiel; may not share domain ontologies; further-
more, they typically do not do share the same data modelstenaittion protocols. Moreover, the changing
business needs may dictate that existing services are emdifius rendering previous compatible interactions
incompatible. As a result, a mediation module must deal witlompatibilities of multiple types and also be
able to incorporate adaptive reasoning mechanisms to sgldg@mamic environment changes.

Current web services standards provide a good basis foewdnbiat least some level of interoperability.
WSDL allows to declaratively describe operations and faraianessages and data structures that are used to

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to serversor lists, or to reuse any
copyrighted component of thiswork in other works must be obtained from the |EEE.

Bulletin of the |[EEE Computer Society Technical Committee on Data Engineering




communicate with the web service. BPELAWS adds the poggitil define the interaction protocol and possi-
ble control flows and combine several web services withirraé&tly defined process model. However, none of
the current standards goes beyond the syntactic desasptioweb services. Newly emerging standards for se-
mantic web services, such as SAWSDL [4], OWL-S [8] and WSMP4g6ive to enrich syntactic specifications
with rich semantic annotations to further facilitate fldgidynamic web services discovery, composition and in-
vocation [7]. However, the current standards do not provédesoning methods for interoperability of providers
and requesters as application requirements change. ¥asipas of middle agents [14] — employing techniques
such as reasoning and planning combined with approacheslyikamic discovery and recovery from failure
— present a possible solution for bridging the gap betweerncserequesters and providers with incompatible
interaction protocols (process models) and possibly inpatible data models.

2 Process Mediation

In our recent body of work [11, 9], we address the problem tdmatic mediation of process models consisting
of semantically annotated web services. Processes cas aetdce providers, service requesters or commu-
nicate in peer-to-peer fashion. We are focusing on thetsiwuavhere the interoperability of two components,
one acting as the requester and the other as the providels ebe achieved. Usually, both the requester and
provider adhere to some relatively fixed process models pidwess models can either correspond to a particular
existing implementation or they can be default (generiocpss models that for example generalize a business
processes of some specific problem domain (e.g., clientaviger of flight booking service). In particular,
our research focuses on mediation of process models ofde®/and requesters in open dynamic environments
where new services could be dynamically discovered, thusgsitating runtime mediation. Additionally, we
assume that both the requester and the provider interamtdiicg to specified process models that are fixed, are
expressed declaratively and might be incompatible.

We use the OWL-S ontology [8] for semantic annotations bseatiprovides support for description of
individual services and also explicit constructs with cleamantics for describing process models. In OWL-
S, the elementary unit of process models is an atomic prpedssh represents one indivisible operation that
the client can perform by sending a particular message teghdce and receiving a corresponding response.
Processes are specified by means of their inputs, outpetsonpititions, and effects (IOPEs). Types of inputs
and outputs are defined as concepts in an ontology or as sk8iedata-types. Processes can be combined
into composite processes by using control constructs ssisk@uence, any-order, if-then-else, split, loops, etc.

Creating a mediator component is very challenging since ¢cbmponent must resolve various types of
mismatches, such as the following that we have identified:

A. Datalevel mismatches. e.g. data are represented as different lexical elemeuisl{ars, dates format, local
specifics, etc.); or ontological mismatches

B. Service level mismatches: e.g. a requester’s service call is realized by severaligeos services or a se-
quence of requester’s calls is realized by one providetlls same information required by the provider
is not provided by the requester; information provided bg party is not needed by the other one

C. Protocol / structural level mismatches: e.g. control flow in the requester’s process model can deeea
in different ways in the provider’'s model (e.g., sequenaehlmrealized as an unordered list of steps, etc.)

We have developed an abstract process mediation framew®kN]) showed in Figure 1. The main goal of
the APMF is a clear identification and separation of criticadctional areas which need to be addressed by
mediation components in order to effectively solve the psscmediation problem. The three key functionali-
ties, namelyprocess mediation, data mediation andservice invocation, are displayed as horizontal layers. The



process mediation layer, realized by process mediatoresonsible for resolving service level and protocol
level mismatches (categories B and C). The data mediatiger,laealized by data mediators, is responsible
for resolving data level mismatches (category A). Typicalvhen trying to achieve interoperability, process
mediators and data mediators are closely related. A nataglis to use data mediators within the process
mediation component to resolve “lower” level mismatchest tere identified during the process mediation.
The service invocation layer is responsible for interaxtiovith actual web services, which include the services
of the requester, provider and possibly other externaicesy

To address runtime incompatibilities and possible serfaderes, the mediation processes make use of
monitoring andrecovery functionalities, which are represented as vertical layerSigure 1. Finally, in dy-
namic environmentsliscovery of external services is closely related to the process mediation since external
services (e.g. a translation service between inches anershebight need to be discovered which are capable
of delivering information for resolving mismatches idéetl between two processes.

Process Mediation

Data Mediation

Bulioyuow
Alanooay
Alanoasiq

Service Invocation

Figure 1: Abstract Process Mediation Framework

We have investigated and developed concrete architecfarebe mediation components in the APMF
framework for two cases: (a) when the mediation componesntdrapl ete visibility of the process model of the
service provider and the service requester [11] or (b) whemtediation component hassibility only of the
provider’s process model but not the requester’s (we call this asymmetric visibjl§)].

In the complete visibility scenario, our solution is basedam off-line analysis of possible execution se-
guences of the requester. A planning algorithm is emplogaddntify mismatches between requester’'s exe-
cution sequences and the provider's process model, andhipute the appropriate mappings for bridging the
identified mismatches. Such mappings are used during +fmemntnediation to perform the necessary transla-
tions. In the case of asymmetric visibility, the off-lineadysis cannot be employed because the requester’s
process model is not available. Therefore, the mediatiostmaly strictly on computing the mapping during
runtime only. We have developed a process mediation agahtuies similar planning techniques as in the
complete visibility scenario except that the planning iastcained by time due to the requirement of a timely
response. Additionally, the process mediation agent pwates advanced recovery techniques to deal both
with service failures and with possible wrong choices madating the mediation.

3 Semantic Monitoring

We have developed an ontology [12] for specification of piiiaievents and a language for specification of
composite event patterns [10] based on the event algebedoged originally in the context of active databases
[3, 2]. Additionally, we have developed monitoring mectsans combined with introspection mechanisms and
error handling that we implemented as extensions of the CGBNirtual Machine [5] which is a component that
controls interactions between the clients and semanticsgelices. Specifically, the OWL-S Virtual Machine
(OVM) executes the process model of a given service by gdirmugh the process model while respecting the

3



OWL-S operational semantics [1] and invoking individualvsees represented by atomic processes. During the
execution, the OVM processes inputs provided by the requasid outputs returned by the provider’s services,
realizes the control and data flow of the composite procestemand uses the grounding to invoke WSDL based
web services when needed. The OVM is a generic executiomengiich can be used to develop applications
that need to interact with OWL-S web services. During thgiserexecution, the execution engine (OVM) emits
events specific to the state of process model execution.tét@@vents (primitive events) are instances of generic
event or fault types defined in the events ontology [12]. Ttwetent of emitted event instances describes the
execution context in the time when the event occurred anet atformation relevant to the given event type. The
content is semantically annotated by the same domain gyaoncepts that are used in the service definition
itself, which allows a more flexible events detection teghes than those derived from a simple syntactic key-
words matching. Specifically, we employ semantic reasofongletecting primitive events based on matching
their event type and the content.

The implemented monitoring extensions allow to perforrfedifint monitoring tasks such as logging, perfor-
mance measuring, execution progress tracking, execuébagtjing or evaluations of security parameters. For
many applications simple detection of individual eventdléd primitive events) emitted by various components
of the systems is a sufficient solution. However, often cax@vents patterns (called composite events) such
as co-occurrence of different events or sequence of evest$to be detected.

4 Fault Handling and Error Recovery

Currently, neither WSMO, nor OWL-S provide any support faulf handling and recovery. The ability to
handle failures correctly and to possibly be able to recénmm failures is important not only in the context
of process mediation, but for web services in general. We limveloped techniques for fault handling and
recovery for semantic web services [13] to allow specifaratf reliable, possibly adaptive process models and
S0 to increase the autonomy of web services systems. Agairfpeus primarily on dynamic environments
where cooperating services might need to be discoveredglmintime. Our approach to fault handling and
recovery shares similarities with fault handling in WS-BPHowever, WS-BPEL offers only a limited support
for recovery and the monitoring which makes it suitable eafior static scenarios.

The basic idea of our approach is to take advantage of polsafoantic monitoring techniques to define
and detect possible erroneous states. To allow a contrpitezkss recovery and gradual execution degradation
standardault handling must be augmented with mechanisms allowirdgagner to define what situations are
supposed to trigger an erroneous state. To achieve thisgrment the process model definition with constraint
violation handlersCV-handlers) for associating constraint violation conditions with egriate explicitrecov-
ery actions that resolve the violations. Such constraints can stem fpplicable SLAs or from contractual
requirements. Constraint violation conditions are treéae hard constraints that lead to an abnormal execu-
tion state. To express soft constraints that do not neasksad to an erroneous state, we wsent handlers.

A condition part of both event handlers and CV-handlers rbastxpressive and intuitive enough to allow en-
coding of SLAs and other constraints. We have employed algabra expressions [2] combined with semantic
filters [10], which are suitable for describing complex dvpatterns and allow an efficient events monitoring
and detection (described briefly in the previous sectionnil&rly to WS-BPEL, we usecompensation for
undoing effects of the partial work after a fault has ocadurrEinally, we introduceaxplicit recovery actions
(such asetry, replaceBy, replaceByEquivalent) as means of fixing problems manifested by the fault occagen
Recovery actions present means of restoring the normabigzadiow.



5 Acknowledgments

This research was supported in part by Darpa contract FABB50606 and in part by funding from France
Telecom. Research partially supported by the Czech Scieauadation project 201/05/H014 and the Czech
Ministry of Education project ME08095.

References

[1] Anupriya Ankolekar, Frank Huch, and Katia P. Sycara. €@grent semantics for the web services speci-

[2]

[3]

fication language DAML-S. In Farhad Arbab and Carolyn L. d#ticeditors, COORDINATION, volume
2315 ofLecture Notes in Computer Science, pages 14-21. Springer, 2002.

Jan Carlson and Bjorn Lisper. An event detection algdbr reactive systems. In Giorgio C. Buttazzo,
editor, EMSOFT, pages 147-154. ACM, 2004.

S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-KknK Composite events for active databases:
Semantics, contexts and detection. Rroceedings of the Twentieth International Conference on Very
Large Databases, pages 606—617, Santiago, Chile, 1994,

[4] Joel Farrell and Holger Lausen. Semantic annotation§¥8DL and XML schema, 2007.

[5]

[6]
[7]

http://ww. w3. org/ TR sawsdl /.

Massimo Paolucci, Anupriya Ankolekar, Naveen Srinavasand Katia P. Sycara. The DAML-S virtual
machine. In Dieter Fensel, Katia P. Sycara, and John Mylogoeditors,International Semantic Web
Conference, volume 2870 ot ecture Notes in Computer Science, pages 290-305. Springer, 2003.

Dumitru Roman et al. Web Service Modeling Ontolod\pplied Ontology, 1(1):77 — 106, 2005.

Katia Sycara, Massimo Paolucci, Anupriya Ankolekardadaveen Srinivasan. Automated discovery,
interaction and composition of semantic web servidesrnal of Web Semantics, 1 (1):27-46, 2004.

[8] The OWL Services CoalitionSemantic Markup for Web Services (OWL-S).

[9]

[10]

[11]

[12]

[13]

[14]

http://ww. dam . org/ services/ow -s/1.1/.

Roman Vaculin, Roman Neruda, and Katia Sycara. An affgrdsymmetric process mediation in open
environments. IrService Oriented Computing: Agents, Semantics and Engineering, pages 1032-1039.
Springer Verlag, May 12-16 2008.

Roman Vaculin and Katia Sycara. Specifying and maimtpcomposite events for semantic web services.
In The 5th |EEE European Conference on Web Services. IEEE Computer Society, November 26-28 2007.

Roman Vaculin and Katia Sycara. Towards automaticiatiexh of OWL-S process models. 2007 IEEE
International Conference on Web Services, pages 1032-1039. IEEE Computer Society, July 9-13 2007.

Roman Vaculin and Katia Sycara. Semantic web servioasitoring: An OWL-S based approach. 4hst
Hawaii International Conference on System Sciences. IEEE Computer Society Press, January 7-10 2008.

Roman Vaculin, Kevin Wiesner, and Katia Sycara. Exicephandling and recovery of semantic web
services. IrfFourth International Conference on Networking and Services. IEEE Computer Society Press,
2008.

H. Chi Wong and Katia P. Sycara. A taxonomy of middlesastgeor the internet. INCMAS, pages 465—
466. IEEE Computer Society, 2000.



