XQuery Rewrite Optimization in IBM ® DB2®pureXML ™

FatmaOzcan Normen Seemann Ling Wang
IBM Almaden Research Center IBM Silicon Valley Lab IBM Silicon Valley Lab
650 Harry Road, San Jose 555 Bailey Road, San Jose 555 Bailey Road, San Jose

Abstract

In this paper, we describe XQuery compilation and rewritéirozation in DB2 pureXML, a hybrid
relational and XML database management system. DB2 purebddlbeen designed to scale to large
collections of XML data. In such a system, effective filgeoh XML documents and efficient execution
of XML navigation are vital for high throughput. Hence theds of rewrite optimization is to consoli-
date navigation constructs as much as possible and to pugihdomparison predicates and navigation
constructs into data access to enable index usage. In tlpsmpae describe the new rewrite transfor-
mations we have implemented specifically for XQuery andaiggational constructs. We also briefly
discuss how some of the existing rewrite transformationgldped for the SQL engine are extended and
adapted for XQuery.

1 Introduction

XML has emerged in the industry as the predominant mechafasmepresenting and exchanging structured
and semi-structured information across the Internet, éetwapplications, and within an intranet. Key benefits
of XML are its vendor and platform independence and its higgilfiility. With the proliferation of XML data,
several XML management systems [7, 10, 17, 5, 4, 6, 12, 11hdvid been developed over the last couple of
years. All major database vendors have released XML exteaso their relational engines, in addition to many
native XML management systems. XQuery [18] and SQL/XML [83 ¢he two industry-standard languages
that are supported by these systems to query XML. Most ofdhent research now focuses on optimization of
XQuery and SQL/XML in these XML management systems.

In this paper, we describe XQuery rewrite optimization witthe context ofDB2 pureXML [4], which is a
hybrid relational and XML database engine that providetvea{ML storage, indexing, navigation and query
processing through both SQL/XML [9] and XQuery [18], usiig XML data type introduced by SQL/XML.
DB2 pureXML stores XML data in columns of relational tables, as instarafethe XQuery data model [19]
in a structured type-annotated tree. By storing binaryesgmtation of type-annotated tre&B2 pureXML
avoids repeated parsing and validation of documemB2 pureXML [4] query evaluation run-time contains
three major components for XML query processing: (1) XML igation engine, (2) XML index run-time and
(3) the XQuery function library. Additionally, several atlonal runtime operators have been extended to deal

Copyright 2008 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

“DB2 pureXML is a a trademark or registered trademark of lr@@onal Business Machines Corporation.

with XML data. The XML navigation engine evaluates path egsions over the native store, by traversing the
parent-child relationships in XML storage. It returns neeerences and atomic values to be further processed
by the query run-time. Unlike other approaches in which yvéPath step is modeled as separate operator
[6, 16, 5], a single navigation operation B2 pureXML can evaluate multiple XPath expressions, consisting
of multiple steps, as a whole. After parsing both SQL/XML aX@Query queries are mapped into a unified
internal representation and optimized by the hybrid quemygiler [4].

An important decision which impacted the whole XQuery cderpilesign is thaDB2 pureXML does not
require all XML documents in an XML column conform to a singlghema, or to a collection of conforming
schemas, and it does not implement static typing. Statimgyfs too restrictive for evolving schemas, as
each document insertion or change in schema may result amy@tation of applications. As a result, XPath
transformations that exploit schema information cannotpglied in DB2 pureXML. Instead, we focus on
rewrites that optimize the general data flow in a complex X®@oe SQL/XML query. In this paper, we describe
those rewrites that we developed for XQuery.

The rest of this paper is organized as follows: In Section €,provide an overview of how XQuery is
modeled inDB2 pureXML, and then in Section 3 we describe rewrite transformatioreldped for XQuery.
Finally, we conclude in Section 4.

2 XQuery Compilation in DB2 pureXML

DB2 pureXML provides a hybrid compiler, supporting both XQuery and SXQML queries. It contains several
modules: two parsers, one for XQuery and one for SQL/XML,abgl semantics module, a rewrite module,
a cost-based optimizer module, and a code-generation moekgcuted in this order. XQuery and SQL/XML
queries are first parsed using their respective parsers.ottpeit of the parsers is a unified internal represen-
tation, i.e. the QGM (Query Graph Model) graph. The rest efphocessing is common for both languages.
The rewrite module contains a rule-based transformatiginen15], as well as several transformations that
are applied before or after the rule-based engine. It appligebraic transformation to the QGM graph. The
cost-based optimizer translates the final QGM produced éydhrite module into query execution plans and
choses the optimal one. The focus of this paper is the remritgule. But, in this section, we will start with an
overview of basic QGM[15] and its extensions to XQuery, 38egy to understand the rewrites.

In its simplest form, a QGM graph consists of operations @spcand quantifiers (arcs) which represent
the data flow between operations. QGM supports arbitrarg taperations, where the inputs and outputs are
tables. Examples of operations include SELECT, GROUP BYS@M and etc. The SELECT operation node in
QGM roughly represents a SPJ query block and handles tastr{selection), projection, as well as joins. Each
operation consumes a set of input columns through its inpantfiers, and produces a set of output columns.
Quantifiers range over operation nodes or base tables, andtha input columns. There are two types of
quantifiers:ForEachand Any/All. The expression within an operation node is applied to eagle input by a
ForEachquantifier. Any/All quantifiers are used to express universally (or existéyitiqualified predicates.

XQuery [18] includes similar constructs to iterate over Xgkquences, apply predicates and sort data. We
exploit many existing features of QGM to model these XQueattires and introduce new entities to represent
and manipulate XPath expressions and XML sequences. Inaetiee result of every XQuery expression is a
sequence of items. Since XQuery sequences, i.e. XQDM (4Q@isa model) [19] is represented as a column in
DB2 pureXML, any sub QGM-graph that is created to represent a specifielQ@xpression produces a table
with a single row and a single column of type XML. FLWOR and wafifted expressions define new variables
that are in scope within their respective expressions. &p keack of these variable scopes, we model FLWOR
and quantified expressions as scalar sub-queries, witicéXpGM operation nodes defining the query blocks.
The rest of the XQuery expressions that we support are remied as scalar functions; they either have run-time
counterparts that implement them, or they are expandediettnled QGM operations later in the compiler.

Some XQuery expressions consume a sequence as a whole gdudkteons), while others require iterating
through the items in a sequence. We need to model theseetliffarays of how XML data is flown into various
XQuery expressions. For XQuery, we have introduced two nemskof ForEach quantifiers, FORandLET.

A LET quantifier aggregates the output of an operation nottedn XML sequence, whereas a FOR quantifier
unnests XML sequences output by an operation node andesemater every single item. For example, if
an operation node produces a table with two rows contaifing, c} and {d, e}, then the output of a LET
quantifier is a single row that contains all items, e, b, ¢, d, e}, whereas the output of a FOR quantifier is a
table with five rows, each row containing a single item.

2.1 Representation of XPath Expressions

XPath [18] expressions consist of a series of steps, whafe gi@p either expresses navigation, or contains
another XQuery expression, such as an XQuery built-in fancta FLWOR or a quantified expression, or a
node constructor. The focus of earlier research has beefffiore® representation and execution of XPath
expressions, which contain only navigational steps. Mystiesns [16, 5, 6, 17, 14, 11, 7], represent and execute
each step separately as selections. In other words, thayatine [20] XPath expressions into explicit FLWOR
blocks, where iteration between steps and within predicestexpressed explicitly. Some provide indexes for
efficient access to individual nodes. But, they all requirectural joins [2] to establish parent-child (or ancestor
descendant) relationships.

In DB2 pureXML, we support XPath expressions, with its full generality ahow any XQuery expression
in an XPath step or predicate. In general, we do not normIR&th expressions, except in some certain cases.
Instead, we represent XPath expressions, which may comtaity steps and branches, as a pattern tree which
computes a single variable binding. As the XML navigatiogiea of DB2 pureXML holistically computes an
XPath expression, we do not need to model each step sepaanatkive do not need structural joins to combine
the results. Later, rewrites combine multiple XPath exgimess into a single pattern tree, which computes
multiple variable bindings.

We introduce a new operation, namely tBepBox to represent XML navigation. An ExpBox contains an
annotated pattern tree, and produces tuples of XQDM bisdiAgpattern tree is a tree representation of many
co-mingled XPath expressions. A pattern tree node repiesenXPath step and has three or more positional
children. The first child of a pattern tree node represerdsattis, the second one is either a name, a kind, or
a wildcard test "*", and the third child represents the pcatit. The rest of the children of a pattern tree node
represents the next steps, and are other pattern tree rRatésn tree nodes are annotated with flags to capture
various properties. ThisExtractionflag is set tdrue, if the pattern tree node computes a variable binding that
needs to be extracted and returned to the run-time engirfartber processing. ThisFor flag is set tarue if
the pattern tree node represents the last step of a FOR findimpattern tree node can be marked as a FOR
even if it does not represent an extracted variable bindipen XPath expressions are merged to eliminate
unnecessary extractions, we need to remember the lastfstep@R binding so that navigation run-time can
apply the correct duplicate elimination and document ordegs. TheEmptyOnEmptylag signals when an
empty sequence needs to be created if there is no qualifyidg.n

2.2 Representation of FLWOR Expressions

The FOR and LET bindings in a FLWOR expression produce a stpgam, which is then filtered by téhere
clause, and thesturn clause is invoked for each surviving tuple. We model the FLRV&Xpression by using
two SELECT operations. The lower one computes the FOR andhiBdings and applies thehere clause
predicates. We create a sub-graph for each binding anceceéher a FOR or a LET quantifier over it. These
FOR and LET quantifiers, which provide the tuple stream astitpthe lower SELECT node, reflect the join
semantics of the FLWOR expression. Its output is fed to asrdBfELECT operation, which is used to model the

return clause and therder by clause, if present. Later in query rewrites these two sélexeés may be merged
depending on the properties of the expressions imtHer-by andreturn clauses.

3 XML Rewrites

The rule-based rewrite engine of DB2 provides several teviransformations for relational data [15]. Some
of these rewrites are also applicable to XQuery, as theyropdi the data flow in QGM by minimizing the
number of operations and the length of the data flow, and b@th &d XQuery are modeled with QGM. For
example, there is a rewrite which merges SELECT operatiolesi0T his rewrite is extended to deal with the new
guantifier types, which are introduced for XQuery. This tigsvenables unfolding of nested FLWOR blocks,
and minimizes the QGM graph significantly. There are otherites which would not be applicable and those
are blocked for XQuery operations.

In this section, we focus on the new set of rewrite transfeiona introduced for XQuery, namely rewrites
for optimizing XPath expressions and the new LET and FOR tfiens. The main goal of these new rewrites
is to consolidate XPath expressions into the least numbeaxifjation operation nodes possible, as well as to
bring comparisons into XPath expressions and close to bhe é&cess to enable XML index usage.

DB2 pureXML supports value indexes defined by XPath expressions. Thds&ds are used to answer
XPath expressions which contain value or general compasis®B2 pureXML employs XML indexes to
eliminate documents that do not satisfy XPath predicated,uges XPath query containment algorithms of [3]
to decide whether an index is eligible.

Most of the new rewrites work as part of the rule-based endinewe also provide some transformations
that are outside. If the transformation can fire multipleggnand interacts with other rewrites to enable them or
is enabled by them, we implement it as part of the rule-basgthe. Otherwise, it is implemented as a one-time
only transformation. The rewrites that are part of the hased engine work on one aspect, such as a quantifier
or an operation node, of the QGM graph at a time and colldgtsienplify the QGM graph.

In addition to these rewrites, we also provide a separatebated transformation engine just for XPath
expressions. The transformations in this set work on asiKflath expression, usually one XPath step at a time.
These transformations include rules that normalize XPaghessions by eliminating parent axes, converting
multiple predicates on a step into a conjunction when péssitimong others.

Note thatDB2 pure XML does not support static typing, but type information is imig@at in query optimiza-
tion. Type information can be derived from two places: frdr@a KML schema against which the document has
been validated, and from the signatures of the applied ifumeand operators. For example, fn:count() function
always returns a single integer, and fn:data() functioragiwgenerates an atomic type. We use the return data
types of functions and operators, as well as literals, teritiie data type of an operation. We exploit type
information both in index matching, as well as in some rexgritFor example, the FOR2REG rewrite, which is
explained below, will fire if the data type of the XML columnassingleton.

In the following, we describe the general conditions undaictv the rewrites will fire. The actual rules
contain more details, which we omit here due to space liroitat

3.1 LET and FOR Quantifier Rewrites

As discussed earlier, a LET quantifier requires aggregdtiagesults of the operation node it ranges over, so it
is translated into a group-by operation, and it is blockiAg=OR quantifier, on the other hand, needs to iterate
over the results of the operation node it ranges over, asdrianslated into an UNNEST operation. It desirable
to eliminate both kinds of operations, if possible. We pdeviewrites which tries to convert a LET quantifier
into a FOR and a FOR quantifier into a regular (REG) quantifike first condition we check for both rewrite
is that the operation node that the quantifier ranges oveatia nommon subexpression.

In its simplest form, we can convert a FOR quantifier into a Ri@ntifier if we can prove that the oper-
ation node it ranges over produces one singleton sequercerove this property, we may have to trace the
computation back several operations. Converting a LET tifimminto a FOR is more involved and requires
more properties to be proved. We check separate conditependliing on the operation node the LET quantifier
ranges over. Ifitis a SELECT operation, then we check whdttere is a subsequent FOR or a LET quantifier
that obliterates this LET step, ensuring that there is noaijomn in between that requires to consume the output
of the LET quantifier as a single sequence. If the operatiaten® an ExpBox, i.e. an XPath expression, then
we need to prove that this XPath expressiomfut independent We say that an XPath expressioningut
independenif its context sequence contains distinct nodes, and theemgpointed to by the nodes in the con-
text sequence do not overlap. This will be true when the com@umn is a base table column, or the XPath
expression consists of only navigational steps, and doesoméain any descendant axis or positional predicates.

3.2 XPath Merging

There are two forms of XPath merging: one rewrite transfadionawhich is part of the rule-based engine, and
another one that is applied after all rewrites. The first oreges two XPath expressiongyath, andxpaths,

if 1-) zpath, computes the context afpaths, 2-) there is no predicate on the first step, i.e. the context, s
of xpaths, 3-) the output ofrpath; is only used inxpaths as the context, and 449path; and xpathy are
compatible in their distinctness properties. When we méhgse two XPath expressions, we create a new
ExpBox containing the XPath expression that is the conaditem of xpath, andxpatho, without its context
step, and we mark the quantifier ranging over this new node santhe quantifier ranging ovepath,. Note
that if zpath, is a FOR binding, then we need to be careful to produce thecoset of results. For example,
supposerpath, is a FOR binding and produces $i &$oc//customer andzpaths is a LET binding given by
$i/accountld. If the document has multiple customers, the final outputikhbe a set of account id’s for each
customer. When we merge the two XPath expressionsS$iito,//customer /accountId and mark the final
output as a LET binding, we also mark the intermediatetomer step as a FOR step, so that our navigation
run-time produces the correct output.

The second transformation takes as input the resulting QfEv all the rewrites have been applied. It first
computes a dependency graph among the XPath expressiompianablock, i.e. a SELECT operation node.
Next, the algorithm partitions the set of XPath expressigitkin the same query block that are over the same
document into clusters, by taking into account the intéoastwith other operations in the query so as not to
sacrifice an optimal execution plan. Finally, it merges thadh expression within the same cluster, as long as
the resulting dependency graph is acyclic. This transfiomgroduces expressions which compute multiple
bindings. The details of this rewrite can be found in [1].

3.3 Resetting EmptyOnEmpty Flag

A let-clause binds its variable to the result of the assedi@xpression, even when the result of the expression
is an empty sequence. As all values of the LET bindings nebd teturned, we cannot use an XML index to
compute the expression in a LET binding, unless we can prexaio properties. We introduce a new quantifier
flag, calledEmptyOnEmptywhich signals that the quantifier needs to produce an engoyence, even if the
operation node it ranges over produces no results. When stg@éirse an XQuery expression, we create a LET
quantifier over all XQuery expressions, and over LET bindjrgecause all XQuery expressions have implied
LET semantics [18]. Later, we provide a rewrite transfoiioratvhich tries to reset this flag, enabling both index
usage and several other rewrites, most notably the one #rgies SELECT boxes.

In general, we can reset tBenptyOnEmptflag when there is where clause predicate which eliminates the
empty sequence, and there are no other consumers of thatibfifidgp Moreover, there are two other XQuery
operations which discard the empty sequences, iteratach, & FOR clauses, and sequence concatenation. If

we prove that the empty sequence is to be discarded later @todone of these operations, we can reset the
EmptyOnEmptflag.

3.4 Local Predicate Pushdown into XPath Expressions

Similar to pushing down selections in a relational query,pr@vide a rewrite which tries to push dovarcal
predicates into base column accessing XPath expressiditteit@ut unqualified data as early as possible. We
consider a predicate to becal, if it accesses only one document. Moreover, an XPath suéd@g cid can
also be considered as a local predicate by converting itfidée|cid], and can be pushed down to its context
XPath. We call thisXPath pushdown

3.4.1 XPath Pushdown

XPath itself can be considered as a local predicate, asatauigsteps are also existential tests. A set of rewrite
rules together implement XPath push down. This set mairdjudes (1) rules to push down XPath through
operations such as SELECT and UNION, base tables, and XMheazleconstruction, and (XZPIMPLY rule,
which converts XPath into a local predicate.

An XPath can be pushed down if the following conditions hdlg: The XPath expression consists of only
navigational steps, and does not have any steps contaimetjdns, such asdoc/a/fn : concat(b, c)/d. Note
that functions in predicates do not block this rewrite. ZRefie are no common subexpressions along the path
where the XPath expression will be pushed down. 3-) The X@agthession isnput independent4-) The target
operation node does not have any sorting requirements.

During push down, each rule pushes down the XPath expretigiongh one operation node at a time. The
rule engine remembers the current pushable position anésrakew copy of the pushable XPath expression.
It then recursively calls the next rewrite to further pusilwddhe XPath expression. This way we try to reach to
the base table level, where we can enable index matchinge thacule engine locates the operation node where
the XPath expression cannot be pushed down any fuXt®dMPLY rule fires and converts an XPath expression
of the form$d/steps into $d|[steps], provided that there is no other consumer for this XPathesgion.

3.4.2 Local Predicate Pushdown

This rewrites pushes downvehere clause predicate into an XPath expression. Consider tlenfiolg query:
Query I: for $cin db2 — fn : xmlcolumn("T2.DOC”) /¢, $a in $c/a where $c¢/d = 5 return $c.

The predicatésc/d = 5 in this query can be pushed down into the first XPath expressiod rewritten as:
Query II: for $cin db2 — fn : amlcolumn(®T2.DOC”)/cld = 5], $a in $¢/a return $e.

In general, avhere clause predicate can be pushed down into the context XPatlession if: 1-) Itis a
local predicate, containing general and value comparisons,embed with conjunction and/or disjunction, 2-) It
is not a predicate on an aggregation result, and 3-) ThettXigath expression is a FOR binding. This rewrite
does not work only in a single query block. Instead, when wat® such a candidate predicate, we disconnect it
from its current SELECT operation node, and try to push itiles many query blocks as possible. This rewrite
helps consolidate XPath expressions, and may enable rgesgiiurther XPath expressions. For example, for
Query ll, XPath merging rule will fire at some point, and merge the twa¥h expressions, consolidating the
whole query into a single XPath expression.

3.5 Join Pull up (Simple Decorrelation)

ConsiderQuery Ibelow, which contains an XPath expression with a correlaseible, expressing a join. There
are several problems with this query: 1-) The join order isdidue to the correlation, 2-) Only nested-loop join

method can be used, and 3-) Only an index on T1 can be usedngivtb@x on T2 cannot be exploited, because
the XPath expression on T2 needs to be executed first.

Query II:
Query I for $i in db2-fn:xmlcolumn("T2.DOC")/c,
for $i in db2-fn:xmlcolumn("T2.DOC")/c, $j in db2-fn:xmlcolumn("T1.DOC")/a
$j in db2-fn:xmlcolumn("T1.DOC”)/a[b=$i/d] where $j/b=%i/d
return $j return $j

To address these problems, we provide a rewrite, c@iadoull up, which pulls up join conditions embed-
ded in XPath expressions into timere clause, decorrelating the query. For exam@aery Iwill be converted
into Query II. This enables the optimizer to consider using both join k&dall join methods, as well as both
indexes on T1 and T2. In general, a join predicate can begufevhen all of the following conditions hold: 1-)
The quantifier ranging over the ExpBox containing the joiedicate, is either a FOR guantifier, or a LET quan-
tifier, which does not have tHemptyOnEmptylag set and which is not consumed anywhere else. 2-) The join
predicate is either a general or a value comparison. 3-Xtigidast predicate of a predicate sequence. 4-) Itis a
predicate, which maybe connected by a conjunction. Giveredigate of formep[prd1 AN D(prd20 Rprd3)),
only prd1 is considered for pull up.

3.6 Query Decorrelation Rewrites

A correlation is a reference to a variable that has been akiima previous or enclosing query block. Correlated
subqueries are quite common in XQuery. For example, mosiping queries in XQuery are expressed using
correlation. Although this a natural way of writing querigsprovides several performance bottlenecks: It
severely limits the optimizer choices, because the cdioelamposes a partial join order, and only a nested-
loop join method can be used. Moreover, in a parallel enwremnt correlation creates a synchronization point,
and becomes a bottleneck in the data flow.

As we discussed earlieDB2 pureXML query compiler already employs a variety of simplifying reev
transformations, which may decorrelate some of the simpbes, such as join-pull up rewrite. However, only
the magic decorrelation rewrite [13] addresses the mostrgeéproblem. The magic decorrelation algorithm is
closely entwined with the magic sets rewrite [8]. For corieane, we highlight the aspects of these rewrites
that need to be revisited for XML processing.

When magic processing a subquery that contains the cooreladriable, we generate a magic operation
node as a SELECT DISTINCT operation, joining all the eligiljuantifiers. Eligible predicates are pushed to
form a semi join under an adornment node, effectively filtgithe data stream. The adornments consists of the
set of conditioned, bound, and free variables which areraéted by the pushed predicates. Simply put, the
magic sets rewrite generalizes local predicate pushdoyoirigredicates. Enforcing distinctness in the magic
node is important so that we do not increase the total cdityinMagic decorrelation rewrite [13] extends the
magic sets to correlations. In this case, the magic node thtis-be-decorrelated columns.

The main challenge in decorrelating an XML-typed varialefierence is enforcing distinctness in the magic
node. There are different ways in which XML data can be coeghaOne natural way is to employ the :
data() function to retrieve a comparable value. However, this epgn can be costly since we potentially
deal with large XML-structures. Another way is to use nods (dhich are comparable) to perform equality
comparisons and GROUP BY operations. However, XML type cartain both nodes and atomic values, which
do not have id’s. If we can prove that the XML type only contaitodes, we can use the id-based approach.
But, in the general case a better solution is to ensure thaiowemt have to enforce distinctness. We can achieve
this by adding keys to the magic node and to the list of to-esdelated columns during decorrelation. We can
obtain keys from descendant nodes as follows: For basestaepull up any key defined on the table. If no
such key exists, we can use the record identifiers of the lah$est For a node which enforces distinctness, we
can pull up all of its output columns. For any join node, we pah up keys from every join operand. If we can

determine and add such keys, then we do not have to enfortgectliess on the magic node, and we do not add
any GROUP BY columns or equality predicates using any XMpety columns. Naturally, we cannot always
determine such keys. However, we observed that this appisdietter-suited and more flexible for a majority
of queries.

4 Conclusion

In this paper, we described XQuery compilation and algelbmivrite optimization within the context dB2
pureXML, a hybrid relational and XML database engine. We focusedewrnites whose main goal was to
consolidate the XPath expressions in the query into the leamber of possible navigation operations and
enable index usage. We provide other rewrites, which ardateto simplify the QGM graphs generated for
XQuery and SQL/XML, in addition to the rewrites we descriliete. We omit those due to space limitations.

References

[1] A. Balmin and F.Ozcan and A. Singh and E. Ting. Grouping and optimization ®& expressions in DB2
pureXML. In Proc. of SIGMOD 2008.
[2] S. Al-Khalifa et al. Structural Joins: A Primitive for ffient XML Query Pattern Matching. IRroc. of ICDE 2002.

[3] A. Balmin, F.Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh. A framewarksimg materialized XPath views in
XML query processing. IfProc. of VLDB Toronto, Canada, 2004.
[4] K. Beyer et al. System RX: One part relational, one partlXNh Proc. of ACM SIGMODpages 347—-358, 2005.
[5] C. Re and J. Simeon and M.F. Fernandez. A Complete anddzffidlgebraic Compiler for XQuery. I®roc. of
ICDE, 2006.
[6] D. Florescu et al. The BEA Streaming XQuery ProcesstDB Journal 13(3):294-315, 2004.
[7] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Host®ra. of VLDB Toronto, Canada, 2004.
[8] I. S. Mumick and H. Pirahesh. Implementation of Magitssa a Relational Database SystemPiioc. of SIGMOD
pages 103-114, 1994.
[9] International Organization for Standardization (ISOnformation Technology-Database Language SQL-Part 14:
XML-Related Specifications (SQL/XML), ANSI/ISO/IEC 90754:2006.
[10] H. V. Jagadish et al. TIMBER: A Native XML Databasél.DB JOurnaj 11(1):274—-291, 2002.
[11] Z.H. Liu, M. Krishnaprasad, and V. Arora. Native XQueryocessing in Oracle XMLDB. Ifroc. of SIGMOD
pages 828-833, 2005.
[12] M. J. Carey. Data Delivery in a Service-oriented Worlche BEA Aqualogic Data Services Platform. Proc. of
SIGMOD, pages 695-705, 2006.
[13] P. Seshadri, H. Pirahesh and T. Y. C. Leung. Complex @Decorrelation. IrProc. of ICDE 1996.
[14] S. Pal et al. XQuery Implementation in a Relational atse System. IRroc. of VLDB 2005.
[15] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extep#itlle Based Query Rewrite Optimization in Starburst. In
Proc. of SIGMOD pages 39-48, 1992.
[16] J. Shanmugasundaram et al. Querying XML Views of Refatl Data. InProc.of VLDB pages 261-270, Roma,
Italy, September 2001.
[17] T.Fiebig et al. Anatomy of a Native XML Base Managemeystem.VLDB JOurnal 11(4), 2002.
[18] XQuery 1.0: An XML Query Languagéanuary 2007. W3C Recommendation, 8eep: / / www. wW3. or g/ TR/
xquery.
[19] XQuery 1.0 and XPath 2.0 Data Mogdanuary 2007. W3C Recommendation, 8eep: / / www. w3. or g/ TR/
xpat h- dat anodel .
[20] XQuery 1.0 Formal Semanticslanuary 2007. W3C Recommendation, See p://www. w3. or g/ TR/
guery-senmanti cs.

