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Abstract

Yahoo! is building a set of scalable, highly-available datarage and processing services, and de-
ploying them in a cloud model to make application develograed ongoing maintenance significantly
easier. In this paper we discuss the vision and requiremastsvell as the components that will go into
the cloud. We highlight the challenges and research questibat arise from trying to build a com-
prehensive web-scale cloud infrastructure, emphasizatg dtorage and processing capabilities. (The
Yahoo! cloud infrastructure also includes components fovigioning, virtualization, and edge content
delivery, but these aspects are only briefly touched on.)

1 Introduction

Every month, over half a billion different people check themnail, post photos, chat with their friends, and
do a myriad other things on Yahoo! sites. We are constantipvating by evolving these sites and building
new web sites, and even sites that start small may quicklprbecvery popular. In addition to the websites
themselves, Yahoo! has built services (such as platformsdoial networking) that cut across applications.
Sites have typically solved problems such as scaling, datitipning and replication, data consistency, and
hardware provisioning individually.

In the cloud services model, all Yahoo! offerings should bitlon top of cloud services, and only those
who build and run cloud services deal directly with machines moving to a cloud services model, we are
optimizing for human productivity (across developmentlidy assurance, and operations): it should take but a
few people to build and rapidly evolve a Web-scale applicatn top of the suite of horizontal cloud services. In
the end-state, the bulk of our effort should be on rapidlyettgying application logic; the heavy-lifting of scaling
and high-availability should be done in the cloud servieg®l, rather than at the application layer, as is done
today. Observe that while there are some parallels with #iresgo be had by building and re-using common
software platforms, the cloud services approach goes aartan step further: developers are insulated from
the details of provisioning servers, replicating datapwvecing from failure, adding servers to support more load,
securing data, and all the other details of making a neat pglication into a web-scale service that millions of
people can rely on.
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In this paper, we describe the requirements, how the pieicéke aloud fit together, and the research chal-
lenges, especially in the areas of data storage and proged8e note that while Yahoo!’s cloud can be used to
support externally-facing cloud services, our first go#bigrovide a common, managed, powerful infrastructure
for Yahoo! sites and services, i.e., to support internaettmers. It is also our goal to open source as many com-
ponents of the cloud as possible. Some components (suchda®plaare already in open source. This would
allow others outside of Yahoo! to build their own cloud seed, while contributing fixes and enhancements that
make the cloud more useful to Yahoo!

2 Requirements

Yahoo! has been providing several centrally managed dateagement services for years, and while these
services are not properly “cloud services” they have manghefcharacteristics. For example, our database
of user profiles is run as a central service. Accessing thedaabase requires only the proper permissions
and a client library, avoiding the need to set up and managparate user information repository for every

application. Experience with these “proto-cloud” sergi¢gave helped inform the set of requirements we laid
out for our cloud:

Multitenancy We must be able to support many applications (tenants) osdhee hardware and software
infrastructure. These tenants must be able to share infanmbut have their performance isolated from one
another, so that a big day for Yahoo! Mail does not result ipikesin response time for Yahoo! Messenger
users. Moreover, adding a new tenant should require littlecoeffort beyond ensuring that enough system
capacity has been provisioned for the new load.

Elasticity The cloud infrastructure is sized based on the estimatesnaint requirements, but these require-
ments are likely to change frequently. We must be able toktyuiand gracefully respond to requests from
tenants for additional capacity, e.g., a growing site askadlditional storage and throughput.

Scalability We must be able to support very large databases, with velhyremuest rates, at very low latency.
The system should be able to scale to take on new tenants dietgnowing tenants without much effort beyond
adding more hardware. In particular, the system must betalgletomatically redistribute data to take advantage
of the new hardware.

Load and Tenant Balancing We must be able to move load between servers so that hardeganerces do not
become overloaded. In particular, in a multi-tenant emrinent, we must be able to allocate one application’s
unused or underused resources to another to provide even &usorption of load spikes. For example, if a
major event is doubling or quadrupling the load on one of ggtesns (as the 2008 Olympics did for Yahoo!
Sports and News), we must be able to quickly utilize sparadgpto support that extra load.

Availability The cloud must always be on. If a major component of the clopeences an outage, it will not
just be a single application that suffers but likely all aétf. Although there may be server or network failures,
and even a whole datacenter may go offline, the cloud serwicess continue to be available. In particular, the
cloud will be built out of commodity hardware, and we must bi&do tolerate high failure rates.

Security A security breach of the cloud will impact all of the applicais running on it; security is therefore
critical.

Operability The systems in the cloud must be easy to operate, so thatraldeaim can manage them at scale.
Moreover, the interconnections between cloud systems atsstoe easy to operate.
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Figure 1: Components of the Yahoo! data and processing cloud
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Metering We must be able to monitor the cloud usage of individual &pfgibns. This information is important
to make provisioning decisions. Moreover, the cloud willdaed for by those applications that use it, so usage
data is required to properly apportion cost.

Global Yahoo! has users all over the world, and providing a good esperience means locating services in
datacenters near our users. This means that cloud serviggsspan continents, and deal with network delays,
partitions and bottlenecks as they replicate data andceevo far flung users.

Simple APIs We must expose simple interfaces to ease the developmenofcasing the cloud, and avoid
exposing too many parameters that must be tuned in ordegriant applications to get good performance.

3 Overall architecture

Yahoo!'s cloud focuses on “horizontal services,” which eoenmon platforms shared across a variety of appli-
cations. Those applications may themselves be “vertiqaicas,” which are task-specific applications shared
by a variety of end users. For example, we view Yahoo! Mail asréical service, while a blob store (such as
our MODbStor system) is a horizontal service that can stdeelatnents from Mail, photos from Flickr, movie
trailers from Yahoo! Movies, and so on.

Figure 1 shows a block diagram of the main services in ourctlds the figure shows, there are three tiers
of services: core services; messaging; and edge servicage We bottom tier provides the heavy lifting for
server-side data management, the edge services help redielcey and improve delivery to end users. These
edge services include edge caching of content as well asauge routing of requests to the nearest server and
around failures. The messaging tier helps tie disparatécesrtogether. For example, updates to an operational
store may result in a cache invalidation, and the messagingdrries the invalidation message to the cache.

The bottom tier of core services in Figure 1 is further suloldig into three groups of systems. Batch
processing systems manage CPU cycles on behalf of largikebgoias. Specifically, we have deployed Hadoop,
an open source version of MapReduce [3], and its HDFS filerysOperational storage systems manage the
storage and querying of data on behalf of applications. &ppbns typically have two kinds of operational
data: structured records and unstructured blobs. In owastriicture, structured data is managed by Sherpa



(also known as PNUTS [2]), while blobs are stored in MObSEmovisioning systems manage the allocation
of servers for all of the other service components. One waydwision servers is to deploy them as virtual
machines, and our provisioning framework includes thatsitit deploy either to a VM or to a “bare” machine.

The horizontal services in our cloud provide platforms toest process and effectively deliver data to users.
A typical vertical application will likely combine multipl horizontal services to satisfy all of its data needs. For
example, Flickr might store photos in MObStor and photo tagdherpa, and use Hadoop to do offline analysis
to rank photos in order of popularity or “interestingnes3.he computed ranks may then be stored back in
Sherpa to be used when responding to user requests. A keateatalre question as we move forward deploying
the cloud is how much of this “glue” logic combining diffeterioud services should be a part of the cloud as
well.

In the rest of this article, we focus on the operational gferand batch computation components, and
examine these components in more detalil.

4 Pieces of the cloud

4.1 Hadoop

Hadoop [1] is an open source implementation of the MapRegacallel processing framework [3]. Hadoop
hides the details of parallel processing, including disiing data to processing nodes, restarting subtasks after
a failure, and collecting the results of the computationisTframework allows developers to write relatively
simple programs that focus on their computation problertinerathan on the nuts and bolts of parallelization.
Hadoop data is stored in the Hadoop File System (HDFS), an sperce implementation of the Google File
System (GFS) [4].

In Hadoop, developers write their MapReduce program in,Javd divide the logic between two compu-
tation phases. In the Map phase, an input file is fed to a takiGhaproduces a set of key-value pairs. For
example, we might want to count the frequency of words in a eralwl; the map phase will parse the HTML
documents and output a recdrtler m 1) for each occurrence of a term. In the Reduce phase, all reeatd
the same key are collected and fed to the same reduce predesh,produces a final set of data values. In the
term frequency example, all of the occurrences of a givem f@ay, “cloud”) will be fed to the same reduce
task, which can count them as they arrive to produce the fomattc

The Hadoop framework is optimized to run on lots of commodityvers. Both the MapReduce task pro-
cesses and the HDFS servers are horizontally scalablengddbre servers adds more compute and storage
capacity. Any of these servers may fail at any time. If a MaReduce task fails, it can be restarted on another
live server. If an HDFS server fails, data is recovered freplicas on other HDFS servers. Because of the high
volume of inter-server data transfer necessary for MapBehbs, basic commodity networking is insufficient,
and extra switching resources must be provisioned to gétegformance.

Although the programming paradigm of Hadoop is simple, &t#as many complex programs to be written.
Hadoop jobs are used for data analysis (such as analyzisgidoind system problems), data transformation
(such as augmenting shopping listings with geographidalrimation), detecting malicious activity (such as
detecting click fraud in streams of ad clicks) and a wideetstrof other activities.

In fact, for many applications, the data transformatiok tasufficiently complicated that the simple frame-
work of MapReduce can become a limitation. For these agjgits, the Pig language [5] can be a better frame-
work. Pig provides relational-style operators for progagsiata. Pig programs are compiled down to Hadoop
MapReduce jobs, and thus can take advantage of the sdglaiti fault tolerance of the Hadoop framework.



4.1.1 Hadoop in thecloud

Hadoop runs on a large cluster of centrally managed seméh&iYahoo! cloud. Although users can download
and run their own Hadoop instance (and often do for developrmparposes) it is significantly easier to run
Hadoop jobs on the centrally managed processing clusteiactnthe convenience of storing and processing
data in the cloud means that much of the data in our clusteadoblp from birth to death: the data is stored
in HDFS at collection time, processed using MapReduce, atidesied to consumers without being stored in
another filesystem or database. Other applications find iie raffective to transfer their data between Hadoop
and another cloud service. For example, a shopping applicatight receive a feed of items for sale and store
them in Sherpa. Then, the application can transfer largalkechof listings to Hadoop for processing (such as
geocoding or categorization), before being stored in Shagain to be served for web pages.

Hadoop is being used across Yahoo by multiple groups foeptejsuch as response prediction for advertis-
ing, machine learned relevance for search, content oz, spam reduction and others. The Yahoo! Search
Webmap is a Hadoop application that runs on a more than 1@®@0Linux cluster and produces data that is
now used in every Yahoo! Web search query. This is the latgadbop application in production, processing
over a trillion page links, with over 300 TB of compressedadathe results obtained were 33 percent faster
than the pre-Hadoop process on a similar cluster. This andrdar of other production system deployments
in Yahoo! and other organizations demonstrate how Hadoagheadle truly Internet scale applications in a
cost-effective mannér

42 MObStor

Almost every Yahoo! application uses mass storage to séwge| unstructured data files. Examples include
Mail attachments, Flickr photos, restaurant reviews fono@ Local, clips in Yahoo! Video, and so on. The
sheer number of files that must be stored means they are tobetsome to store and organize on existing
storage systems; for example, while a SAN can provide enstayhge, the simple filesystem interface layered
on top of a SAN is not expressive enough to manage so manyMiesover, to provide a good user experience,
files should be stored near the users that will access them.

The goal of MObStor is to provide a scalable mass storageisoluThe system is designed to be scalable
both in terms of total data stored, as well as the number ofeglg per second for that data. At its core, MObStor
is a middleware layer which virtualizes mass storage, atiguhe underlying physical storage to be SAN, NAS,
shared nothing cluster filesystems, or some combinatiohasfe. MObStore also manages the replication of
data between storage clusters in geographically disaibdatacenters. The application can specify fine-grained
replication policies, and the MObStor layer will replicatata according to the policies.

Applications create collections of files, and each file ismtdeed with a URL. This URL can be embedded
directly in a web page, enabling the user’'s browser to nedrides from the MObStore system directly, even if
the web page itself is generated by a separate HTTP or afipficserver. URLs are also virtualized, so that
moving or recovering data on the back end filesystem doesreaklihe URL. MObStor also provides services
for managing files, such as expiring old data or changing émmijssions on a file.

421 MObStor inthecloud

As with the other cloud systems, MObStor is a centrally madaggrvice. Storage capacity is pre-provisioned,

and new applications can quickly create new collectionskagin storing and serving data. Mobstor uses a flat
domain based access model. Applications are given a unigmaid and can organize their data in any format

they choose. A separate metadata store provides filesysesemantics: users can create, list and delete files
through the REST interface.

Thanks to Ajay Anand from the Hadoop team for these stasistic



Mobstor is optimized for serving data to internet users &odd scale. A key component of the architecture
is a caching layer that also supports streaming. This esdb&esystem to offload hot objects to the caching
infrastructure, allowing the 1/0 subsystem to scale. Likieeo cloud services, Mobstor strives to locate data
close to users to reduce latency. However due to the costafitierlying storage and the fact that users are less
sensitive to latency with large files, Mobstor does not haveuipport the same level of replication as the other
cloud services.

There are many Yahoo! applications currently using MOhSEeamples include:

Display ads for the APT platform
Tile images for Yahoo! Maps
Files shared between Yahoo! Mail users

Configuration files for some parts of the Yahoo! homepage
e Social network invites for the Yahoo! Open platform

Each of these use cases benefits from the ability to scal&édily and replicate a large number of unstructured
objects and to serve them with low latency and high throughpu

4.3 Sherpa

The Sherpa system, also called PNUTS in previous publicatjg, 6], presents a simplified relational data
model to the user. Data is organized into tables of records attributes. In addition to typical data types,
“blob” is a valid data type, allowing arbitrary structureside a record, but not necessarily large binary objects
like images or audio; MObStor is a more appropriate storsdch data. We observe that blob fields, which are
manipulated entirely in application logic, are used extextg in practice. Schemas are flexible: new attributes
can be added at any time without halting query or updateigtand records are not required to have values for
all attributes. Sherpa allows applications to declareetabd be hashed or ordered, supporting both workloads
efficently.

The query language of Sherpa supports selection and dovjdodm a single table. We designed our query
model to avoid operations (such as joins) which are simplydaxpensive in a massive scale system. While
restrictive compared to relational systems, our queridadhprovide very flexible access that covers most of
the web workloads we encounter. The system is designed piyrifiar online serving workloads that consist
mostly of queries that read and write single records or sgrallips of records. Thus, we expect most scans to
be of just a few tens or hundreds of records, and optimizerdowy. Scans can specify predicates which are
evaluated at the server. Similarly, we provide a “multiggteration which supports retrieving multiple records
(from one or more tables) in parallel by specifying a set afnjpry keys and an optional predicate, but again
expect that the number of records retrieved will be a few $aod at most.

While selections can be by primary key or specify a rangeatesdand deletes must specify the primary key.
Consider a social networking application: A user may updigeown record, resulting in access by primary
key. Another user may scan a set of friends in order by narsaltieg in range access.

Data in Sherpa is replicated to globally distributed datéees. This replication is done asynchronously:
updates are allowed to a given replica, and success is eetimthe user before the update is propagated to
other replicas. To ensure the update is not lost, it is writtemultiple disks on separate servers in the local
datacenter.

Asynchronously replicated data adds complexity for thesttgyer. Sherpa provides a consistency model to
simplify the details of reading and writing possibly stakgal and to hide the details of which replica is being
accessed from the applciation.



4.3.1 Sherpain thecloud

Sherpa is a hosted service, and the software and serversaasmad by a central group. Applications that wish
to use Sherpa can develop against a single-server staedalstance. However, all production data is served
from cloud servers. This allows application developersotus on their application logic, and leave the details
of designing, deploying and managing a data architectusesmecialized group. In order to support this hosted
model, the Sherpa operations group must provision enouggcis to support all the applications that will use
it. Currently, we work with customers to estimate their cafyaneeds and then pre-provision servers for their
use. We are moving to a model with extra servers in a “free,pantl if an application’s load on Sherpa begins
to increase, we can automatically move servers from thepioekinto active use for that application.

Sherpa is designed to work well with the other cloud servidesr example, Hadoop can use Sherpa as
a data store instead of the native HDFS, allowing us to runRéalce jobs over Sherpa data. We also have
implemented a bulk loader for Sherpa which runs in Hadodpwatg us to transfer data from HDFS into a
Sherpa table. Similarly, Sherpa can be used as a recordfstarther cloud services. As an example, MObStor
is investigating using Sherpa to store metadata about files.

5 Open questions

Many research questions have arisen as we build the clotidabthe level of individual components and across
components. In this section, we discuss some key questhahspan cloud components. Although many of our
cloud components are in production or nearing completimesa questions will have to be resolved in order for
the cloud to reach its full potential.

Interacting with the cloud How do users interact with the cloud? One possibility is #eath application
chooses individual cloud systems, and manages their attena at the application level. For example, suppose
a user has a record-oriented data set and an OLTP workloadthdfefore loads it into a Sherpa database.
Periodically, he does extensive OLAP work. At these times|dads the data set from Sherpa to HDFS, and
runs Hadoop jobs.

However, one of the advantages of using the cloud is thahijpcavide seamless integration between mul-
tiple services. The job of the developer is easier if he da#shave to explicitly manage data storage. For
applications that will use multiple services, a nicer adxdion may be that data is placed “in the cloud” and is
accessible to any service the application needs. In thecabrample, the data may be stored in Sherpa, but
when an OLAP job is submitted, the cloud software decidestivdreto move the data to HDFS or to run a
MapReduce job directly over Sherpa. This approach makesltiuel more complex, as it is an optimization
problem which must take into account the query workload dbagenformation about the current capabilities
and load on each of the services; the profile of future qudriea the same application; the load from other
services; and so on.

Another way we can make it easier for developers to use clendces is to provide a common API for
the various services. For example, we may develop a quegudage which spans multiple services (e.g.,
some combination of Pig, SQL, and the simple Sherpa and M®l8tess languages) which then compiles to
operations on individual services as well as actions to niata between them. If we hide many of the data
placement and service selection decisions behind a déetaguery language, we may not always make the
best decisions without at least some input from the develde will likely need a mechanism for profiling the
performance of the system, so that developers can readityifyg which components are becoming a bottleneck.
Such a mechanism will need to monitor an entire applicatiit mteracts across multiple cloude services. In
addition, a hint mechanism will be needed which allows thaliegtion to guide data placement and allocation
decisions based on observations of the bottlenecks.



Quality of service A key question for any shared infrastructure is how we cafaieahe performance of
different applications. Applications will place variablead on the cloud, and a spike in one application’s
workload will affect other applications sharing the samedteare. One approach to this problem is to place
guotas on applications’ resource usage. This approacl isfiexible, since spare resources cannot be used to
absorb load spike beyond an application’s quota. We coslalade some version of weighted fair sharing (like
that used in networking systems), which allows spare ressuio be allocated to needy applications. However,
the infrastructure needed to monitor and dynamically aleaesources is complex. A third approach is to
have a small number (e.g. two) of application classes. “Gajgplications can use as many resources as they
like, while “bronze” applications are served by the rem@gnresources in a best effort manner. This moves
resource allocation decisions into the hands of the busipesple, who must carefully choose just a few gold
applications. Whatever approach we use will have to effelstienforce QoS for an application, even as it
crosses over between Sherpa, Hadoop and MObStor, and otheooents of the cloud.

Other openissues There are several other issues which we are investigating:

e Automating operations Our central operations group will be managing many servaeny different
services, and many applications. Tools and processes vahitthmate things like failover and resource
allocation will make their jobs significantly easier.

e Growth- Applications which start small can grow to become quitgdarAlthough our cloud services are
designed to scale elastically, we must investigate howthelf tolerate growth of one, two or more orders
of magnitude.

e Privacy- Each system in the cloud has its own data model and thus itsno@del of enforcing privacy
for that data. When data starts moving between systems, vgé engure that the change to a different
data model does not cause a privacy breach. Moreover, weansigte that multi-tenant applications can
only see each other’s data if doing so does not violate thesysgvacy.

e Capacity managementlt is difficult to know how much hardware to dedicate to theur to meet the
anticipated load. Even if one resource (e.g. CPU) is plantifnother resource (e.g. in-memory cache
space) may be scarce. Similarly, a shift in the load, such s\ from sequential to random record
access, can create a new bottleneck in a previously plerggource. We need to develop effective and
comprehensive models for planning the capacity needs afltiugl.

6 Conclusion

We believe that the Yahoo! cloud will be a key to both lowertscend increased innovation. The Cloud
Computing and Data Infrastructure division has the chaotelevelop cloud services such as Hadoop, MObStor
and Sherpa, make them elastic, robust and reliable, argratéethem into a comprehensive cloud infrastructure.
Many cloud components are already adopted widely, and wsesiag further rapid growth on the horizon.
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