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Abstract

Cloud computing is Internet based system development chudrige scalable computing resources
are provided “as a service” over the Internet to users. Thaaapt of cloud computing incorporates
web infrastructure, software as a service (SaaS), Web 2d0odéiner emerging technologies, and has
attracted more and more attention from industry and resea@mmunity. In this paper, we describe our
experience and lessons learnt in construction of a cloudprdimg platform. Specifically, we design a
GFS compatible file system with variable chunk size to fatdlimassive data processing, and introduce
some implementation enhancement on MapReduce to impmewsyskem throughput. We also discuss
some practical issues for system implementation. In aggogiof the China web archive (Web InfoMall)
which we have been accumulating since 2001 (now it contaies three billion Chinese web pages),
this paper presents our attempt to implement a platform fdomain specific cloud computing service,
with large scale web text mining as targeted applicationd Aopefully researchers besides our selves
will benefit from the cloud when it is ready.

1 Introduction

As more facets of work and personal life move online and theriret becomes a platform for virtual human
society, a new paradigm of large-scale distributed compulias emerged. Web-based companies, such as
Google and Amazon, have built web infrastructure to dedh #ine internet-scale data storage and computation.
If we consider such infrastructure as a “virtual computéiemonstrates a possibility of new computing model,
i.e., centralize the data and computation on the “super ctenpwith unprecedented storage and computing
capability, which can be viewed as a simplest form of cloushpuoting.

More generally, the concept of cloud computing can incaf®rarious computer technologies, including
web infrastructure, Web 2.0 and many other emerging tedgmes. People may have different perspectives from
different views. For example, from the view of end-user, ¢feud computing service moves the application
software and operation system from desktops to the clowg] silich makes users be able to plug-in anytime
from anywhere and utilize large scale storage and computisgurces. On the other hand, the cloud computing
service provider may focus on how to distribute and schethdeeomputer resources. Nevertheless, the storage
and computing on massive data are the key technologies foud computing infrastructure.

Google has developed its infrastructure technologiesléardccomputing in recent years, including Google
File System (GFS) [8], MapReduce [7] and Bigtable [6]. GFSiscalable distributed file system, which
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emphasizes fault tolerance since it is designed to run onaseially scalable but inevitably unreliable (due
to its sheer scale) commodity hardware, and delivers higfofgeance service to a large number of clients.
Bigtable is a distributed storage system based on GFS foctated data management. It provides a huge
three-dimensional mapping abstraction to applicationsl lzas been successfully deployed in many Google
products. MapReduce is a programming model with associatptémentation for massive data processing.
MapReduce provides an abstraction by defining a “mapper’admdducer”. The “mapper” is applied to every
input key/value pair to generate an arbitrary number ofrmegliate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate key nergée output key/value pairs. MapReduce is an
easy-to-use programming model, and has sufficient expressapability to support many real world algorithms
and tasks. The MapReduce system can partition the input stettedule the execution of program across a set
of machines, handle machine failures, and manage therimaehine communication.

More recently, many similar systems have been developedsmiksFS [3] is an open source GFS-Like
system, which supports strict POSIX interface. Hadoop $24n active Java open source project. With the
support from Yahoo, Hadoop has achieved great progressesge ttwo years. It has been deployed in a large
system with 4,000 nodes and used in many large scale dategsing tasks.

In Oct 2007, Google and IBM launched “cloud computing initi@” programs for universities to promote
the related teaching and research work on increasinglylapfarge-scale computing. Later in July 2008, HP,
Intel and Yahoo launched a similar initiative to promote destelop cloud computing research and education.
Such cloud computing projects can not only improve the pErabmputing education, but also promote the
research work such as Internet-scale data managemengspnog and scientific computation. Inspired by this
trend and motivated by a need to upgrade our existing worlhave implemented a practical web infrastructure
as cloud computing platform, which can be used to store laogde web data and provide high performance
processing capability. In the last decade, our researclsysidm development focus is on Web search and Web
Mining, and we have developed and maintained two public wstems, i.e.TianwangSearch Engine [4] and
Web Archive systenwWeb infomall[1] as shown in Figure 1.
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Figure 1: Search engine and Chines web archive developdavaivsgroup of PKU

During this period, we have accumulated more than 50 TB wed, dailt a PC cluster consisting of 100+
PCs, and designed various web application softwares sualelagage text analysis and processing. With the
increase of data size and computation workload in the systamrfound the cloud computing technology is a
promising approach to improve the scalability and proditgtiof the system for web services. Since 2007, we



started to design and develop our web infrastructure systamed “Tplatform”, including GFS-like file system
“TFS” [10] and MapReduce computing environment. We belieuwe practice of cloud computing platform
implementation could be a good reference for researcheesgineers who are interested in this area.

2 TPlatform: A Cloud Computing Platform

In this section, we briefly introduce the implementation aodnponents of our cloud computing platform,
named “Tplatform”. We first present the overview of the systéollowed by the detailed system implementation
and some practical issues.
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Figure 2: The System Framework of Tplatform

Fig 2 shows the overall system framework of the “Tplatformhich consists of three layers, i.e., PC cluster,
infrastructure for cloud computing platform, and data psing application layer. The PC cluster layer provides
the hardware and storage devices for large scale data pneged he application layer provides the services to
users, where users can develop their own applications, au@tleb data analysis, language processing, cluster
and classification, etc. The second layer is the main focosiiofvork, consisting of file system TFS, distributed
data storage mechanism BigTable, and MapReduce progragnminlel. The implementation of BigTable is
similar to the approach presented in [6], and hence we ortaildd discussion here.

2.1 Implementation of File System

The file system is the key component of the system to suppossireadata storage and management. The
designed TFS is a scalable, distributed file system, and BaSlctluster consists of a single master and multiple
chunk servers and can be accessed by multiple client.



2.1.1 TFSArchitecture

In TES, files are divided into variable-size chunks. Eaché&tis identified by an immutable and globally unique
64 bit chunk handle assigned by the master at the time of chredtion. Chunk servers store the chunks on
the local disks and read/write chunk data specified by a clhanklle and byte range. For the data reliability,
each chunk is replicated on multiple chunk servers. By defae maintain three replicas in the system, though
users can designate different replication levels for diifi files.

The master maintains the metadata of file system, whichdeslthe namespace, access control information,
the mapping from files to chunks, and the current locationshoinks. It also controls system-wide activities
such as garbage collection of orphaned chunks, and chuniatioig between chunk servers. Each chunk server
periodically communicates with the master in HeartBeatsagss to report its state and retrieve the instructions.

TFS client module is associated with each application grating the file system API, which can commu-
nicate with the master and chunkservers to read or writeaatzehalf of the application. Clients interact with
the master for metadata operations, but all data-bearingremication goes directly to the chunkservers.

The system is designed to minimize the master’s involvenmdiiie accessing operations. We do not provide
the POSIX API. Besides providing the ordinary read and woperations, like GFS, we have also provided
an atomic record appending operation so that multiple iean append concurrently to a file without extra
synchronization among them. In the system implementati@observe that the record appending operation is
the key operation for system performance. We design our gate interaction mechanism which is different
from GFS and yields better record appending performance.

2.1.2 Variable Chunk Size

In GFS, afile is divided into fixed-size chunks (e.g., 64 MBhé&M a client uses record appending operation to
append data, the system checks whether appending the teci@ last chunk of a certain file may make the
chunk overflowed, i.e., exceed the maximum size. If so, islthe replica of the chunk to the maximum size,
and informs the client that the operation should be contrarethe new chunk. (Record appending is restricted
to be at most one-fourth of the chunk size to keep worst caggfentation at an acceptable level.) In case of
write failure, this approach may lead to duplicated recents$ incomplete records.

In our TFS design, the chunks of a file are allowed to have bhriaizes. With the proposed system in-
teraction mechanism, this strategy makes the record apmeogeration more efficient. Padding data, record
fragments and record duplications are not necessary inysters. Although this approach brings some extra
cost, e.g., every data structure of chunk needs a chunk grdgute, the overall performance is significantly
improved, as the read and record appending operations ar@othinating operations in our system and can
benefit from this design choice.

2.1.3 FileOperations

We have designed different file operations for TFS, such ad, reecord append and write. Since we allow
variable chunk size in TFS, the operation strategy is difiefrom that of GFS. Here we present the detailed
implementation of read operation to show the differenceunfapproach.

To read a file, the client exchanges messages with the mgsterthe locations of chunks it wants to read
from, and then communicates with the chunk servers to vettiee data. Since GFS uses the fixed chunk size,
the client just needs to translate the file name and bytetdffsea chunk index within the file, and sends the
master a request containing the file name and chunk index.mEster replies with the corresponding chunk
handle and locations of the replicas. The client then semelgugest to one of the replicas, most likely the closest
one. The request specifies the chunk handle and a byte ratige thiat chunk. Further reads of the same chunk
do not require any more client-master interaction unlesstithed information expires or the file is reopened.



In our TFS system, the story is different due to the variablgnk size strategy. The client can not translate
the byte offset into a chunk index directly. It has to knowtladl sizes of chunks in the file before deciding which
chunk should be read. Our solution is quite straightforwarden a client opens a file using read mode, it gets
all the chunks’ information from the master, including ckurandle, chunk size and locations, and use these
information to get the proper chunk. Although this stratéggetermined by the fact of variable chunk size,
its advantage is that the client only needs to communicatte tivé master once to read the whole file, which is
much efficient than GFS’ original design. The disadvantaghat when a client has opened a file for reading,
later appended data by other clients is invisible to thisntli But we believe this problem is negligible, as the
majority of the files in web applications are typically cre@dtand appended once, and read by data processing
applications many times without modifications. If in anyaiion this problem becomes critical, it can be easily
overcome by set an expired timestamp for the chunks’ inftionand refresh it when invalid.

The TFS demonstrates our effort to build an infrastructareldrge scale data processing. Although our
system has the similar assumptions and architectures agtEH&y difference is that the chunk size is variable,
which makes our system able to adopt different system ictierss for record appending operation. Our record
appending operation is based on chunk level, thus the aagregcord appending performance is no longer
restricted by the network bandwidth of the chunk serversdtme the last chunk of the file. Our experimental
evaluation shows that our approach significantly improvesdoncurrent record appending performance for
single file by 25%. More results on TFS have been reportedQh [W/e believe the design can apply to other
similar data processing infrastructures.

2.2 Implementation of MapReduce

MapReduce system is another major component of the cloughatimg platform, and has attracted more and
more attentions recently [9, 7, 11]. The architecture ofimyslementation is similar to Hadoop [2], which is
a typical master-worker structure. There are three rolésarsystem: Master, Worker and User. Master is the
central controller of the system, which is in charge of datdifioning, task scheduling, load balancing and fault
tolerance processing. Worker runs the concrete tasks afftacessing and computation. There exist many
workers in the system, which fetch the tasks from Masterceesthe tasks and communicate with each other
for data transfer. User is the client of the system, implesiéme Map and Reduce functions for computation
task, and controls the flow of computation.

2.2.1 Implementation Enhancement

We make three enhancements to improve the MapReduce parfoenn our system. First, we treat intermediate
data transfer as an independent task. Every computati&nnasides map and reduce subtasks. In a typical
implementation such as Hadoop, reduce task starts theneatkate data transfer, which fetches the data from
all the machines conducting map tasks. This is an uncoabiellall-to-all communication, which may incur
network congestion, and hence degrade the system perfoembmour design, we split the transfer task from the
reduce task, and propose a “Data transfer module” to executeschedule the data transfer task independently.
With appropriate scheduling algorithm, this method camicedhe probability of network congestion. Although
this approach may aggravate the workload of Master whenuhwber of transfer tasks is large, this problem can
be alleviated by adjusting the granularity of transfer t@sét integrating data transfer tasks with the same source
and target addresses. In practice, our new approach cdficgsigtly improve the data transfer performance.
Second, task scheduling is another concern on MapRedutarsy®hich helps to commit resources be-
tween a variety of tasks and schedule the order of task émecuto optimize the system resource utility, we
adopt multi-level feedback queue scheduling algorithmundaesign. Multiple queues are used to allocate the
concurrent tasks, and each of them is assigned with a cemtiairity, which may vary for different tasks with
respect to the resources requested. Our algorithm can dgaliymadjust the priority of running task, which



balances the system workload and improves the overall gjimut.

The third improvement is on data serialization. In MapRediramework, a computation task consists of
four steps: map, partition, group and reduce. The data tireay map operation, intermediate data is gener-
ated and transferred in the system, and finally the reswdtexgorted by reduce operation. There exist frequent
data exchanges between memory and disk which are genecatiynplished by data serialization. In our imple-
mentation of MapReduce system, we observed that the sinatilerdata type is frequently used in many data
processing applications. Since memory buffer is widelyduseost of the data already reside in the memory
before they are de-serialized into a new data object. Irratleds, we should avoid expensive de-serialization
operations which consume large volume of memory space agihdie the system performance. To alleviate
this problem, we define the data type for key and value as vpaifter. If we want to de-serialize the data
with native data type, a simple pointer assignment operatan replace the de-serialization operation, which
is much more efficient. With this optimization, we can alsd $loe data directly in the memory without data
de-serialization. This mechanism can significantly imerthe MapReduce performance, although it introduces
some cost overhead for buffer management.

2.2.2 Performance Evaluation on MapReduce

Due to the lack of benchmark which can represent the typjgali@tions, performance evaluation on MapRe-
duce system is not a trivial task. We first use PennySort asithple benchmark. The result shows that the
performance of intermediate data transfer in the shuffles@hsthe bottle neck of the system, which actually
motivated us to optimize the data transfer module in MapRed&urthermore, we also explore a real applica-
tion for text mining, which gathers statistics of Chineseavfsequency in webpages. We run the program on a
200GB Chinese Web collection. Map function analyzes theesdrof web page, and produces every individual
Chinese word as the key value. Reduce function sums up akggtpd values and exports the frequencies. In
our testbed with 18 nodes, the job was split into 3385 maysiékreduce tasks and 101550 data transfer tasks,
the whole job was successfully completed in about 10 houng;wis very efficient.

2.3 Practical Issuesfor System Implementation

The data storage and computation capability are the magborka of the cloud computing platform, which
determine how well the infrastructure can provide servioemnd users. We met some engineering and technical
problems during the system implementation. Here we dissoisege practical issues in our work.

2.3.1 System Design Criteria

In the system design, our purpose is to develop a system wghstalable, robust, high-performance and easy to
be maintained. However, some system design issues may beteoh which places us in a dilemma in many
cases. Generally, we take three major criteria into coraiim for system design: 1) For a certain solution,
what is bottleneck of the procedure which may degeneratsystem performance? 2) Which solution has better
scalability and flexibility for future change? 3) Since netlwbandwidth is the scarce resource of the system,
how to fully utilize the network resource in the implemeia® In the following, we present an example to
show our considerations in the implementation.

In the MapReduce system, fault tolerance can be conducteithigr master or workers. Master takes the
role of global controller, maintains the information of tole system and can easily decide whether a failed
task should be rerun, and when/where to be rerun. Workesskadp local information, and take charge of
reporting the status of running tasks to Master. Our designhbines the advantages of these two factors. The
workers can rerun a failed task for a certain number of tirard,are even allowed to skip some bad data records
which cause the failure. This distributed strategy is motmist and scalable than centralized mechanism, i.e.,
only re-schedule failed tasks in the Master side.



2.3.2 Implementation of Inter-machine Communication

Since the implementation of cloud computing platform isdshen the PC cluster, how to design the inter-
machine communication protocol is the key issue of programgnm the distributed environment. The Remote
Procedure Call (RPC) middle ware is a popular paradigm fptementing the client-server model of distributed
computing, which is an inter-process communication tetdgythat allows a computer program to cause a
subroutine or procedure to execute on another computer i@ aldster without the programmer explicitly
coding the details for this remote interaction. In our systall the services and heart-beat protocols are RPC
calls. We exploit Internet Communications Engine (ICE)jakhs an object-oriented middleware that provides
object-oriented RPC, to implement the RPC framework. Our@gch performs very well under our system
scale and can support asynchronous communication model.n@fwvork communication performance of our
system with ICE is comparable to that of special asynchrermotocols with socket programming, which is
much more complicated for implementation.

2.3.3 System Debug and Diagnosis

Debug and Diagnosis in distributed environment is a biglehgke for researchers and engineers. The overall
system consists of various processes distributed in nktveord these processes communicate each other to
execute a complex task. Because of the concurrent comntiamisan such system, many faults are generally
not easy to be located, and hence can hardly be debuggedefditeerwe record complete system log in our
system. In All the server and client sides, important soféA@undaries such as APl and RPC interfaces are all
logged. For example, log for RPC messages can be used toiciegiality of protocol, log for data transfer can
be used to validate the correctness of transfer. In addii@record performance log for performance tuning.
In our MapReduce system, log in client side records the ldetéidata read-in time, write-out time of all tasks,
time cost of sorting operation in reduce task, which arertyifiactors of our system design.

In our work, the recorded log not only helps us diagnose tlolpms in the programs, but also helps
find the performance bottleneck of the system, and hence wamaove system implementation accordingly.
However, distributed debug and diagnosis are still low igffitand labor consuming. We expect better tools and
approaches to improve the effectiveness and efficiencymigiand diagnosis in large scale distributed system
implementation.

3 Conclusion

Based on our experience with Tplatform, we have discusseeraepractical issues in the implementation
of a cloud computing platform following Google maodel. It ibserved that while GFS/MapReduce/BigTable
provides a great conceptual framework for the software obeecloud and Hadoop stands for the most popular
open source implementation, there are still many intergstnplementation issues worth to explore. Three are
identified in this paper.

e The chunksize of a file in GFS can be variable instead of fixeith @areful implementation, this design
decision delivers better performance for read and appeeacabpns.

e The data transfer among participatory nodes in reduce s@gde made "schedulable” instead of "un-
controlled”. The new mechanism provides opportunity fooiding network congestions that degrade
performance.

¢ Data with native types can also be effectively serializedifda access in map and reduce functions, which
presumably improves performance in some cases.



While Tplatform as a whole is still in progress, namely thelementation of BigTable is on going, the
finished parts (TFS and MapReduce) are already useful. &espplications have shown the feasibility and
advantages of our new implementation approaches. Theesoade of Tplatform is available from [5].
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