
Implementation Issues of A Cloud Computing Platform

Bo Peng, Bin Cui and Xiaoming Li
Department of Computer Science and Technology, Peking University

{pb,bin.cui,lxm}@pku.edu.cn

Abstract

Cloud computing is Internet based system development in which large scalable computing resources
are provided “as a service” over the Internet to users. The concept of cloud computing incorporates
web infrastructure, software as a service (SaaS), Web 2.0 and other emerging technologies, and has
attracted more and more attention from industry and research community. In this paper, we describe our
experience and lessons learnt in construction of a cloud computing platform. Specifically, we design a
GFS compatible file system with variable chunk size to facilitate massive data processing, and introduce
some implementation enhancement on MapReduce to improve the system throughput. We also discuss
some practical issues for system implementation. In association of the China web archive (Web InfoMall)
which we have been accumulating since 2001 (now it contains over three billion Chinese web pages),
this paper presents our attempt to implement a platform for adomain specific cloud computing service,
with large scale web text mining as targeted application. And hopefully researchers besides our selves
will benefit from the cloud when it is ready.

1 Introduction

As more facets of work and personal life move online and the Internet becomes a platform for virtual human
society, a new paradigm of large-scale distributed computing has emerged. Web-based companies, such as
Google and Amazon, have built web infrastructure to deal with the internet-scale data storage and computation.
If we consider such infrastructure as a “virtual computer”,it demonstrates a possibility of new computing model,
i.e., centralize the data and computation on the “super computer” with unprecedented storage and computing
capability, which can be viewed as a simplest form of cloud computing.

More generally, the concept of cloud computing can incorporate various computer technologies, including
web infrastructure, Web 2.0 and many other emerging technologies. People may have different perspectives from
different views. For example, from the view of end-user, thecloud computing service moves the application
software and operation system from desktops to the cloud side, which makes users be able to plug-in anytime
from anywhere and utilize large scale storage and computingresources. On the other hand, the cloud computing
service provider may focus on how to distribute and schedulethe computer resources. Nevertheless, the storage
and computing on massive data are the key technologies for a cloud computing infrastructure.

Google has developed its infrastructure technologies for cloud computing in recent years, including Google
File System (GFS) [8], MapReduce [7] and Bigtable [6]. GFS isa scalable distributed file system, which

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



emphasizes fault tolerance since it is designed to run on economically scalable but inevitably unreliable (due
to its sheer scale) commodity hardware, and delivers high performance service to a large number of clients.
Bigtable is a distributed storage system based on GFS for structured data management. It provides a huge
three-dimensional mapping abstraction to applications, and has been successfully deployed in many Google
products. MapReduce is a programming model with associatedimplementation for massive data processing.
MapReduce provides an abstraction by defining a “mapper” anda “reducer”. The “mapper” is applied to every
input key/value pair to generate an arbitrary number of intermediate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate key to generate output key/value pairs. MapReduce is an
easy-to-use programming model, and has sufficient expression capability to support many real world algorithms
and tasks. The MapReduce system can partition the input data, schedule the execution of program across a set
of machines, handle machine failures, and manage the inter-machine communication.

More recently, many similar systems have been developed. KosmosFS [3] is an open source GFS-Like
system, which supports strict POSIX interface. Hadoop [2] is an active Java open source project. With the
support from Yahoo, Hadoop has achieved great progress in these two years. It has been deployed in a large
system with 4,000 nodes and used in many large scale data processing tasks.

In Oct 2007, Google and IBM launched “cloud computing initiative” programs for universities to promote
the related teaching and research work on increasingly popular large-scale computing. Later in July 2008, HP,
Intel and Yahoo launched a similar initiative to promote anddevelop cloud computing research and education.
Such cloud computing projects can not only improve the parallel computing education, but also promote the
research work such as Internet-scale data management, processing and scientific computation. Inspired by this
trend and motivated by a need to upgrade our existing work, wehave implemented a practical web infrastructure
as cloud computing platform, which can be used to store largescale web data and provide high performance
processing capability. In the last decade, our research andsystem development focus is on Web search and Web
Mining, and we have developed and maintained two public web systems, i.e.,TianwangSearch Engine [4] and
Web Archive systemWeb infomall[1] as shown in Figure 1.

(a) Tianwang (b) Web infomall

Figure 1: Search engine and Chines web archive developed at SEWM group of PKU

During this period, we have accumulated more than 50 TB web data, built a PC cluster consisting of 100+
PCs, and designed various web application softwares such aswebpage text analysis and processing. With the
increase of data size and computation workload in the system, we found the cloud computing technology is a
promising approach to improve the scalability and productivity of the system for web services. Since 2007, we

2



started to design and develop our web infrastructure system, named “Tplatform”, including GFS-like file system
“TFS” [10] and MapReduce computing environment. We believeour practice of cloud computing platform
implementation could be a good reference for researchers orengineers who are interested in this area.

2 TPlatform: A Cloud Computing Platform

In this section, we briefly introduce the implementation andcomponents of our cloud computing platform,
named “Tplatform”. We first present the overview of the system, followed by the detailed system implementation
and some practical issues.

Figure 2: The System Framework of Tplatform

Fig 2 shows the overall system framework of the “Tplatform”,which consists of three layers, i.e., PC cluster,
infrastructure for cloud computing platform, and data processing application layer. The PC cluster layer provides
the hardware and storage devices for large scale data processing. The application layer provides the services to
users, where users can develop their own applications, suchas Web data analysis, language processing, cluster
and classification, etc. The second layer is the main focus ofour work, consisting of file system TFS, distributed
data storage mechanism BigTable, and MapReduce programming model. The implementation of BigTable is
similar to the approach presented in [6], and hence we omit detailed discussion here.

2.1 Implementation of File System

The file system is the key component of the system to support massive data storage and management. The
designed TFS is a scalable, distributed file system, and eachTFS cluster consists of a single master and multiple
chunk servers and can be accessed by multiple client.

3



2.1.1 TFS Architecture

In TFS, files are divided into variable-size chunks. Each chunk is identified by an immutable and globally unique
64 bit chunk handle assigned by the master at the time of chunkcreation. Chunk servers store the chunks on
the local disks and read/write chunk data specified by a chunkhandle and byte range. For the data reliability,
each chunk is replicated on multiple chunk servers. By default, we maintain three replicas in the system, though
users can designate different replication levels for different files.

The master maintains the metadata of file system, which includes the namespace, access control information,
the mapping from files to chunks, and the current locations ofchunks. It also controls system-wide activities
such as garbage collection of orphaned chunks, and chunk migration between chunk servers. Each chunk server
periodically communicates with the master in HeartBeat messages to report its state and retrieve the instructions.

TFS client module is associated with each application by integrating the file system API, which can commu-
nicate with the master and chunkservers to read or write dataon behalf of the application. Clients interact with
the master for metadata operations, but all data-bearing communication goes directly to the chunkservers.

The system is designed to minimize the master’s involvementin file accessing operations. We do not provide
the POSIX API. Besides providing the ordinary read and writeoperations, like GFS, we have also provided
an atomic record appending operation so that multiple clients can append concurrently to a file without extra
synchronization among them. In the system implementation,we observe that the record appending operation is
the key operation for system performance. We design our own system interaction mechanism which is different
from GFS and yields better record appending performance.

2.1.2 Variable Chunk Size

In GFS, a file is divided into fixed-size chunks (e.g., 64 MB). When a client uses record appending operation to
append data, the system checks whether appending the recordto the last chunk of a certain file may make the
chunk overflowed, i.e., exceed the maximum size. If so, it pads all the replica of the chunk to the maximum size,
and informs the client that the operation should be continued on the new chunk. (Record appending is restricted
to be at most one-fourth of the chunk size to keep worst case fragmentation at an acceptable level.) In case of
write failure, this approach may lead to duplicated recordsand incomplete records.

In our TFS design, the chunks of a file are allowed to have variable sizes. With the proposed system in-
teraction mechanism, this strategy makes the record appending operation more efficient. Padding data, record
fragments and record duplications are not necessary in our system. Although this approach brings some extra
cost, e.g., every data structure of chunk needs a chunk size attribute, the overall performance is significantly
improved, as the read and record appending operations are the dominating operations in our system and can
benefit from this design choice.

2.1.3 File Operations

We have designed different file operations for TFS, such as read, record append and write. Since we allow
variable chunk size in TFS, the operation strategy is different from that of GFS. Here we present the detailed
implementation of read operation to show the difference of our approach.

To read a file, the client exchanges messages with the master,gets the locations of chunks it wants to read
from, and then communicates with the chunk servers to retrieve the data. Since GFS uses the fixed chunk size,
the client just needs to translate the file name and byte offset into a chunk index within the file, and sends the
master a request containing the file name and chunk index. Themaster replies with the corresponding chunk
handle and locations of the replicas. The client then sends arequest to one of the replicas, most likely the closest
one. The request specifies the chunk handle and a byte range within that chunk. Further reads of the same chunk
do not require any more client-master interaction unless the cached information expires or the file is reopened.

4



In our TFS system, the story is different due to the variable chunk size strategy. The client can not translate
the byte offset into a chunk index directly. It has to know allthe sizes of chunks in the file before deciding which
chunk should be read. Our solution is quite straightforward, when a client opens a file using read mode, it gets
all the chunks’ information from the master, including chunk handle, chunk size and locations, and use these
information to get the proper chunk. Although this strategyis determined by the fact of variable chunk size,
its advantage is that the client only needs to communicate with the master once to read the whole file, which is
much efficient than GFS’ original design. The disadvantage is that when a client has opened a file for reading,
later appended data by other clients is invisible to this client. But we believe this problem is negligible, as the
majority of the files in web applications are typically created and appended once, and read by data processing
applications many times without modifications. If in any situation this problem becomes critical, it can be easily
overcome by set an expired timestamp for the chunks’ information and refresh it when invalid.

The TFS demonstrates our effort to build an infrastructure for large scale data processing. Although our
system has the similar assumptions and architectures as GFS, the key difference is that the chunk size is variable,
which makes our system able to adopt different system interactions for record appending operation. Our record
appending operation is based on chunk level, thus the aggregate record appending performance is no longer
restricted by the network bandwidth of the chunk servers that store the last chunk of the file. Our experimental
evaluation shows that our approach significantly improves the concurrent record appending performance for
single file by 25%. More results on TFS have been reported in [10]. We believe the design can apply to other
similar data processing infrastructures.

2.2 Implementation of MapReduce

MapReduce system is another major component of the cloud computing platform, and has attracted more and
more attentions recently [9, 7, 11]. The architecture of ourimplementation is similar to Hadoop [2], which is
a typical master-worker structure. There are three roles inthe system: Master, Worker and User. Master is the
central controller of the system, which is in charge of data partitioning, task scheduling, load balancing and fault
tolerance processing. Worker runs the concrete tasks of data processing and computation. There exist many
workers in the system, which fetch the tasks from Master, execute the tasks and communicate with each other
for data transfer. User is the client of the system, implements the Map and Reduce functions for computation
task, and controls the flow of computation.

2.2.1 Implementation Enhancement

We make three enhancements to improve the MapReduce performance in our system. First, we treat intermediate
data transfer as an independent task. Every computation task includes map and reduce subtasks. In a typical
implementation such as Hadoop, reduce task starts the intermediate data transfer, which fetches the data from
all the machines conducting map tasks. This is an uncontrollable all-to-all communication, which may incur
network congestion, and hence degrade the system performance. In our design, we split the transfer task from the
reduce task, and propose a “Data transfer module” to executeand schedule the data transfer task independently.
With appropriate scheduling algorithm, this method can reduce the probability of network congestion. Although
this approach may aggravate the workload of Master when the number of transfer tasks is large, this problem can
be alleviated by adjusting the granularity of transfer taskand integrating data transfer tasks with the same source
and target addresses. In practice, our new approach can significantly improve the data transfer performance.

Second, task scheduling is another concern on MapReduce system, which helps to commit resources be-
tween a variety of tasks and schedule the order of task execution. To optimize the system resource utility, we
adopt multi-level feedback queue scheduling algorithm in our design. Multiple queues are used to allocate the
concurrent tasks, and each of them is assigned with a certainpriority, which may vary for different tasks with
respect to the resources requested. Our algorithm can dynamically adjust the priority of running task, which

5



balances the system workload and improves the overall throughput.
The third improvement is on data serialization. In MapReduce framework, a computation task consists of

four steps: map, partition, group and reduce. The data is read in by map operation, intermediate data is gener-
ated and transferred in the system, and finally the results are exported by reduce operation. There exist frequent
data exchanges between memory and disk which are generally accomplished by data serialization. In our imple-
mentation of MapReduce system, we observed that the simple native data type is frequently used in many data
processing applications. Since memory buffer is widely used, most of the data already reside in the memory
before they are de-serialized into a new data object. In other words, we should avoid expensive de-serialization
operations which consume large volume of memory space and degrade the system performance. To alleviate
this problem, we define the data type for key and value as void*pointer. If we want to de-serialize the data
with native data type, a simple pointer assignment operation can replace the de-serialization operation, which
is much more efficient. With this optimization, we can also sort the data directly in the memory without data
de-serialization. This mechanism can significantly improve the MapReduce performance, although it introduces
some cost overhead for buffer management.

2.2.2 Performance Evaluation on MapReduce

Due to the lack of benchmark which can represent the typical applications, performance evaluation on MapRe-
duce system is not a trivial task. We first use PennySort as thesimple benchmark. The result shows that the
performance of intermediate data transfer in the shuffle phase is the bottle neck of the system, which actually
motivated us to optimize the data transfer module in MapReduce. Furthermore, we also explore a real applica-
tion for text mining, which gathers statistics of Chinese word frequency in webpages. We run the program on a
200GB Chinese Web collection. Map function analyzes the content of web page, and produces every individual
Chinese word as the key value. Reduce function sums up all aggregated values and exports the frequencies. In
our testbed with 18 nodes, the job was split into 3385 map tasks, 30 reduce tasks and 101550 data transfer tasks,
the whole job was successfully completed in about 10 hours, which is very efficient.

2.3 Practical Issues for System Implementation

The data storage and computation capability are the major factors of the cloud computing platform, which
determine how well the infrastructure can provide servicesto end users. We met some engineering and technical
problems during the system implementation. Here we discusssome practical issues in our work.

2.3.1 System Design Criteria

In the system design, our purpose is to develop a system whichis scalable, robust, high-performance and easy to
be maintained. However, some system design issues may be conflicted, which places us in a dilemma in many
cases. Generally, we take three major criteria into consideration for system design: 1) For a certain solution,
what is bottleneck of the procedure which may degenerate thesystem performance? 2) Which solution has better
scalability and flexibility for future change? 3) Since network bandwidth is the scarce resource of the system,
how to fully utilize the network resource in the implementation? In the following, we present an example to
show our considerations in the implementation.

In the MapReduce system, fault tolerance can be conducted byeither master or workers. Master takes the
role of global controller, maintains the information of thewhole system and can easily decide whether a failed
task should be rerun, and when/where to be rerun. Workers only keep local information, and take charge of
reporting the status of running tasks to Master. Our design combines the advantages of these two factors. The
workers can rerun a failed task for a certain number of times,and are even allowed to skip some bad data records
which cause the failure. This distributed strategy is more robust and scalable than centralized mechanism, i.e.,
only re-schedule failed tasks in the Master side.

6



2.3.2 Implementation of Inter-machine Communication

Since the implementation of cloud computing platform is based on the PC cluster, how to design the inter-
machine communication protocol is the key issue of programming in the distributed environment. The Remote
Procedure Call (RPC) middle ware is a popular paradigm for implementing the client-server model of distributed
computing, which is an inter-process communication technology that allows a computer program to cause a
subroutine or procedure to execute on another computer in a PC cluster without the programmer explicitly
coding the details for this remote interaction. In our system, all the services and heart-beat protocols are RPC
calls. We exploit Internet Communications Engine (ICE), which is an object-oriented middleware that provides
object-oriented RPC, to implement the RPC framework. Our approach performs very well under our system
scale and can support asynchronous communication model. The network communication performance of our
system with ICE is comparable to that of special asynchronous protocols with socket programming, which is
much more complicated for implementation.

2.3.3 System Debug and Diagnosis

Debug and Diagnosis in distributed environment is a big challenge for researchers and engineers. The overall
system consists of various processes distributed in network, and these processes communicate each other to
execute a complex task. Because of the concurrent communications in such system, many faults are generally
not easy to be located, and hence can hardly be debugged. Therefore, we record complete system log in our
system. In All the server and client sides, important software boundaries such as API and RPC interfaces are all
logged. For example, log for RPC messages can be used to checkintegrality of protocol, log for data transfer can
be used to validate the correctness of transfer. In addition, we record performance log for performance tuning.
In our MapReduce system, log in client side records the details of data read-in time, write-out time of all tasks,
time cost of sorting operation in reduce task, which are tuning factors of our system design.

In our work, the recorded log not only helps us diagnose the problems in the programs, but also helps
find the performance bottleneck of the system, and hence we can improve system implementation accordingly.
However, distributed debug and diagnosis are still low efficient and labor consuming. We expect better tools and
approaches to improve the effectiveness and efficiency of debug and diagnosis in large scale distributed system
implementation.

3 Conclusion

Based on our experience with Tplatform, we have discussed several practical issues in the implementation
of a cloud computing platform following Google model. It is observed that while GFS/MapReduce/BigTable
provides a great conceptual framework for the software coreof a cloud and Hadoop stands for the most popular
open source implementation, there are still many interesting implementation issues worth to explore. Three are
identified in this paper.

• The chunksize of a file in GFS can be variable instead of fixed. With careful implementation, this design
decision delivers better performance for read and append operations.

• The data transfer among participatory nodes in reduce stagecan be made ”schedulable” instead of ”un-
controlled”. The new mechanism provides opportunity for avoiding network congestions that degrade
performance.

• Data with native types can also be effectively serialized for data access in map and reduce functions, which
presumably improves performance in some cases.

7



While Tplatform as a whole is still in progress, namely the implementation of BigTable is on going, the
finished parts (TFS and MapReduce) are already useful. Several applications have shown the feasibility and
advantages of our new implementation approaches. The source code of Tplatform is available from [5].

Acknowledgment

This work was Supported by 973 Project No. 2007CB310902, IBM2008 SUR Grant for PKU, and National
Natural Science foundation of China under Grant No.60603045 and 60873063.

References

[1] China Web InfoMall. http://www.infomall.cn, 2008.

[2] The Hadoop Project. http://hadoop.apache.org/, 2008.

[3] The KosmosFS Project. http://kosmosfs.sourceforge.net/, 2008.

[4] Tianwang Search. http://e.pku.edu.cn, 2008.

[5] Source Code of Tplatform Implementation. http://net.pku.edu.cn/˜ webg/tplatform, 2009.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for structured data. InOSDI ’06: Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation, pages 15–15, 2006.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. InOSDI ’04: Proceed-
ings of the 5th USENIX Symposium on Operating Systems Designand Implementation, pages 137–150,
2004.

[8] G. Sanjay, G. Howard, and L. Shun-Tak. The google file system. InProceedings of the 17th ACM Sympo-
sium on Operating Systems Principles, pages 29–43, 2003.

[9] H. Yang, A. Dasdan, R. Hsiao, and D. S. Parker. Map-reduce-merge: simplified relational data processing
on large clusters. InSIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 1029–1040, 2007.

[10] Z. Yang, Q. Tu, K. Fan, L. Zhu, R. Chen, and B. Peng. Performance gain with variable chunk size in
gfs-like file systems. InJournal of Computational Information Systems, pages 1077–1084, 2008.

[11] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving mapreduce performance in
heterogeneous environments. InOSDI ’07: Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, pages 29–42, 2007.

8


