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Abstract

Cloud computing provides services to potentially numereasote users with diverse requirements. Al-
though predictable performance can be obtained throughptbgision of carefully delimited services,
it is straightforward to identify applications in which actld might usefully host services that support
the composition of more primitive analysis services or trewation of complex data analysis requests.
In such settings, a service provider must manage complexuapcedictable workloads. This paper
describes how utility functions can be used to make expifieidesirability of different workload evalu-
ation strategies, and how optimization can be used to sekegteen such alternatives. The approach is
illustrated for workloads consisting of workflows or quatie

1 Introduction

Cloud computing essentially provides services; sharedpatational resources execute potentially diverse re-
guests on behalf of users who may have widely differing etgiimns. In such a setting, someplace in the
architecture, decisions have to be made as to which reqfrestswhich users are to be executed on which
computational resources, and when. From the perspective afervice provider, such decision making may be
eased through the provision of restrictive interfaces dodlservices, as discussed for cloud data services in the
Claremont Report on Database Research [1]:

Early cloud data services offer an API that is much moreictstt than that of traditional database
systems, with a minimalist query language and limited ®iascy guarantees. This pushes more
programming burden on developers, but allows cloud prositie build more predictable services,
and to offer service level agreements that would be harddwige for a full-function SQL data
service. More work and experience will be needed on severats to explore the continuum
between today’s early cloud data services and more fulitffaned but probably less predictable
alternatives.

This paper explores part of this space, by describing ancapprto workload execution that is applicable
to different types of workload and that takes account ofth@ properties of the workload; (ii) the nature of the
service level agreement associated with user tasks; anddinpetition for the use of finite, shared resources.
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Figure 1: High level architecture.

In so doing, we explore functionalities that in future mayso@ported within a cloud, rather than by layering
rich application functionality over lean cloud interfacas in Brantneet al. [4].

Wherever services are provided, service users have expestaService Level Agreements (SLAs) make
explicit what expectations users can realistically plac@service provider [16], and may be associated with a
charging model that determines the remuneration assdortl certain Qualities of Service (QoS). Whether
or not formal agreements are in place, decisions must nelesth be made that influence the behaviors users
experience, and service providers must put in place mestmarnhat make such decisions.

In this paper, we assume the abstract architecture ilkestia Figure 1, where aautonomic workload map-
per provides workload evaluation services implemented withitloud. For the moment, we are non-specific
about the nature of these services, but in due course defitlilse provided about support for workloads con-
sisting of collections of queries or workflows. Thatonomic workload mappedaptively assigns tasks in the
workload to execution sites. Given some objective, suclo asihimize total execution times or, more gener-
ally, to optimize for some QoS target (whether these ohjestare imposed by an SLA or not), the autonomic
workload mapper must determine which tasks to assign to eftie available execution sites, revising the as-
signment during workload execution on the basis of feedloaicthe overall progress of the submitted requests.

In this paper, we investigate the useubdlity functions[9] to make explicit the desirability of the state of a
system at a point in time. In essence, a utility function megush possible state of a system to a common scale;
the scale may represent response times, numbers of QoSmgeglsncome based on some charging model
for the requests, etc. In this setting, it is the goal of almonomic workload mappédp explore the space of
alternative mappings with a view to maximizing utility as asared by the utility function. We propose that
utility functions, combined with optimization algorithnikat seek to maximize utility for a workload given
certain resources, may provide an effective paradigm foragismg workload execution in cloud computing.

The remainder of this paper is structured as follows. Seiaescribes a methodology for developing
utility based autonomic workload execution. Sections 3 4antkscribe the application of the methodology to
workloads consisting of sets of workflows and queries, retgay. Section 5 presents some conclusions.

2 Utility Driven Workload Execution

When a utility-based approach is adopted, the followingstre followed by designers; instantiations of each
of these steps are detailed for workloads consisting of fAawis and queries in Sections 3 and 4, respectively.

Utility Property Selection: Identify the property that it would be desirable to maximizeseful utility mea-



sures may be cast in terms of response time, number of Qo8dargt, profit, etc.

Utility Function Definition: Define a functionUtility(w, a) that computes the utility of an assignmenof
tasks to execution sites for a workloadexpressed in terms of the chosen property — for workload map-
ping, such a function can be expected to include expressiogisvariables, that describe the environ-
ment and the assignmednthat characterizes the mapping for the components fobm abstract requests
to tasks executing on specific execution sites.

Cost Model Development: Develop a cost model that predicts the performance of th&laad given the in-
formation about the environment and assignment, taking into account the costs associated with adap-
tations.

Representation Design:Design a representation for the assignmermtf workload components to computa-
tional resources, where adaptations to the assignmentecaadh as modifications to this representation.
For example, if a workload consists of a collection of tasken an assignmentof tasks to sites may be
represented as a vectowhere each element represents task and each element value represents the
execution site to which the task is assigned.

Optimization Algorithm Selection: Select an optimization algorithm that, given values #gy searches the
space of possible assignmentwith a view to maximizing the utility function; one benefit thfe utility-
based approach is that standard optimization algorithmsbeaused to explore the space of alternative
mappings. Note that one benefit of the methodology is thaedbdples the problem of meeting certain
objectives under certain constraints into a modeling mwobfi.e., to come up with a utility function) and
an optimization problem (where standard mathematicahigcies can be used).

Control Loop Implementation: Implement an autonomic controller [8] thatnonitors the progress of the
workload and/or properties of the environment of relevandbe utility function;analysedhe monitored
information to identify possible problems or opportursti®r adaptationplansan alternative workload
execution strategy, by seeking to maximiZeility(w, a) in the context of the monitored values fay;
andupdateghe workload execution strategy where planning has idedtdin assignment that is predicted
to increase utility.

Several researchers have reported the use of utility fumetin autonomic computing, typically to support
systems management tasks (e.g. [19, 3]); to the best of @erstanding this is the first attempt to provide a
methodology for the use of utility functions for adaptivenkload execution.

3 Autonomic Workflow Execution

A cloud may host computational services in a specific domfmngxample, the CARMEN e-Science cloud
provides a collection of data and analysis services for asmience, and applications are constructed using
workflow enactment engines hosted within the cloud [20]. uohsa setting, autonomic workflow execution
must determine how best to map workflows to the resourcesdaad\by the cloud.

3.1 Problem Statement

A workloadw consists of a set of workflow instancgseach of which consists of a collection of tasksgsks,
and is evaluated through an allocation of tasks to a set afutim sites. The role of the autonomic workload
mapper is to adaptively assign the tasks to specific sites.



3.2 Methodology Application

The methodology from Section 2 can be applied in this exampl®llows.

Utility Property Selection: Two utility properties are considered here, nam&gponse timend profit. In
practice, a single utility function is used by an autonomimrkioad mapper, but alternatives are shown
here to illustrate how the approach can be applied to addiieeent system goals.

Utility Function Definition: A utility function is defined for each of the properties undensideration. For
response timge have:

Utility," (w,a) = 1/(SiewPRTy (i, a;))

where,w is the set of workflowsg is a set of assignments for the workflows instancasw, a; is the
assignment for workflow instan@geand P RT,, estimates the predicted response time of the workflow for
the given assignment.

For profit we have:

Utilitygmﬁt(w, a) = Yiew(Income(i,a;) — EvaluationCost(i,a;))

where Income estimates the income that will be received as a result oliatialy: using allocatior;,
and FvaluationCost(w, a) estimates the financial cost of the resources used to egaluatthis utility
function, we assume that income is generated by evaluatorgflews within a response time target, but
that anFvaluationCost is incurred for the use of the resources to evaluate the vawvkfl As the income
depends on the number of QoS targets met, which in turn dependeponse time, the definition of
Income is defined in terms oP RT,,. In cloud computing, the evaluation cost could reflect tiot fhat

at times of low demand all requests can be evaluated usiag@nsive) resources within the cloud, but
that at times of high demand it may be necessary to purchaper(sive) cycles from another cloud in
order to meet QoS targets.

Cost Model Development: The cost model must impleme®RT,,(i,a;); the predicted response time of a
workflow depends on the predicted execution times of eachenfdsks on their assigned execution site,
the time taken to move data between execution sites, the asggnments of workflows iw, etc. The
description of a complete cost model is beyond the scopei®fotiper, but cost models for workflows
have been widely studied (e.g. [12, 18, 21]).

Representation Design:For each workflow instance € w, the assignment of the tasksasks can be rep-
resented by a vectar where each element represents task and each element value represents the
execution site to which the task is assigned.

Optimization Algorithm Selection: The optimization algorithm seeks to maximiZeility(w, a) by exploring
the space of alternative assignmemtsAs the assignments are represented as collections ofocaisg
variables, each representing the assignment of a task exdisgxecution site, an optimization algorithm
must be chosen for searching such discrete spaces (e.g. [2])

Control Loop Implementation: In autonomic workflow management [13], there is a requirdnterinalt an
existing workflow, record information on the results progddo date, deploy the revised workflow in
such a way that it can make use of results produced to datescemichue with the evaluation.



In practice, the utility functions described above priagtdifferent behaviors, and effective optimization
can be expected to yield results that reflect those prisritieor examplel/tility® (w, a) will always seek
the fastest available solution, even if this involves the 0§ costly computational resources. As a result,
Utilityl,"" (w, a) will typically yield response times that are slower thansiobtained by/tility (w, a),
as it will only use expensive resources when these are peeldio give net benefits when considered together
with the income they make possible. A detailed descriptibntidity-based workflow execution in computa-
tional grids, including an experimental comparison of ledrg exhibited by different utility functions, is given

by Leeet al. [12].

4 Autonomic Query Workload Execution

Early cloud data services are typically associated withyfaestrictive data access models with a view to en-
abling predictable behaviors, and do not provide full guevgluation [1]. However, more comprehensive data
access services could provide access either to arbitrany gwaluation capabilities or to parameterized queries,
thus giving rise to a requirement for query workload managmwhere collections of query evaluation re-
guests can be managed by [11]: (i) admission controller which seeks to identify and disallow access to
potentially problematic requests; (ii)qaery schedulemwhich determines when jobs are released from a queue
for execution; and (iii) amxecution controllerwhich determines the level of resource allocated to gqeevigle
they are executing. In this paper we discuss how utility fioms can be used to direct the behavior ofexn
ecution controller In comparison with recent work on workload management,ildytdriven approach can
provide relatively fine-grained control over queries; faample, Krompassgt al. [10] describe an execution
controller in which the actions carried out at query runtiane job-level (i.e., reprioritize, kill and resubmit),
whereas here the optimization makes global decisionsngakito account all the queries in the workload) that
adaptively determine the resource allocations of indi@idyueries on the basis of (fine-grained, collected per
query) progress and load data.

4.1 Problem Statement

A workload w consists of a set of queriese w, each of which are evaluated on a collection of executi@ssit
potentially exploiting both partitioned and pipelined @léglism. Each query is associated with a distribution
policy dp(q), of the form[vy, vz, ..., vig], whered < v; < 1 and(ELi‘le—) € {0, 1} where|S] is the number of
available execution sites. If the sumfyields 1 then eachy; represents the fraction of the workload that is to
be evaluated on thi¢h site using partitioned parallelism, and if the surfi this represents the suspension of the
plan. Wherey; is 0 for somei this represents the fact that execution sitenot being used fag. The role of the
autonomic workload mapper in Figure 1 is to adaptively complistribution policies for each of the queries in
the workload.

4.2 Methodology Application

The methodology from Section 2 can be applied in this exampl®llows.

Utility Property Selection: Two utility properties are considered here, nhamegponse timand number of
QoS targets metn the second case, we assume that each query is assocititedrasponse time target.

Utility Function Definition: A utility function is defined for each of the properties undensideration. For
response timge have:

Utility[ (w, dp) = (1/SqewPRTy(q, dp(q)))
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where,w is the set of queriesip is a distribution policy for the querieg € w, and PRT;, estimates the
predicted response time of the query for the given distidoupolicy.

For quality of servicenve have:
Utility,?os(w, a) = Xgew@QoSEstimate(q, dp(q))

whereQoS Estimate(q, dp(q)) estimates the likelihood that the query will meet its Qo§eausing the
given distribution policy from its predicted response tif&T;,. In practice,QoS Estimate(q, dp(q))
can be modeled using a curve such as that illustrated in &iguwhich gives a score near tdfor all
gueries estimated to be significantly within the target oesp time, and a score neartdor all queries
estimated to take significantly longer than their targepoese time [3].

Cost Model Development: The cost model must implemefRT,(q, dp(q)) for queries during their evalua-
tion, and can build on results on query progress monitogs (B, 7]).

Representation Design:For each query € w, the distribution policy can be represented by a vectathere
each element; represents the fraction of the work fethat is to be assigned to execution gite

Optimization Algorithm Selection: The optimization algorithm seeks to maximize the utilitpétion by ex-
ploring the space of distribution policiel. As the assignments are represented as fractions, eaeh repr
senting the portion of the work to be assigned to a specificudian site, an optimization technique must
be chosen for searching such spaces (e.g., sequentiabtjogaogramming [6]).

Control Loop Implementation: The implementation of the control loop must be able to susperevaluating
query, relocate operator state to reflect changes to thebdisbn policy, and continue evaluation using
the updated plan. A full description of such a protocol isvted in the paper on Flux [17].

As an example of the behaviors exhibited by workflow executi@nagement techniques, we have experi-
mentally evaluated several such techniques using a siondég parallel query evaluation engine [15]. Figure
3 shows results for five different strategiddo Adapt in which no runtime adaptation takes plaéelapt 1in
which workloads are managed using action based contraegtes (i.e.if-thenrules based on Flux [17]) that
seek to minimize response times by adapting whenever loadlance is detectedddapt 2in which utility
functions are used to minimize response times, aét'ﬂm'tyfT; Adapt 3in which Adapt 2is applied only when
it is predicted that response time targets will be missed;fohapt 4in which which utility functions are used
to maximize the number of response time targets met, ﬁEtz'h'ty(?OS. In this experiment, four queries each
containing a single join are submitted at the same time tasted containingl2 execution sites, where one
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Figure 3: Numbers of Quality of Service Targets met by adeggchniques [15].

of the sites is subject to periodic interference from otladsjbroadly half of the time. In the experiment, the
gueries are associated with varying QoS targets (showneohdtizontal axis, with the more stringent targets to
the left), and the number of queries meeting their repomse targets is illustrated on the vertical axis.

The following can be observed: (i) Where no runtime workleadcution adaptation takes place, no queries
meet their QoS targets expressed in terms of response timeQueries managed bf[ftility?os continue
to meet (some) stringent QoS targets where the other mefhdds this is because optimization selectively
discriminates against some queries where this is necessaryable others to meet their targets. (iii) Queries
managed b)Utz‘lz‘tyfT meet more QoS targets than the action based strategiessbdbt@&uoptimizer considers
the combined costs or benefits of collections of adaptaiimasway that is not considered by the action-based
approaches. A broader and more detailed description ofghmaches and associated experiments is provided
by Patoret al. [15]. For the purposes of this paper, we note that optinopaiased on a utility function that aims
to maximize the number of QoS targets met has been shown {oeoiarm action-based strategies and ultility
based strategies that target different goals, thus idtisg how utility based technigues can target application
requirements.

5 Conclusion

This paper presents a utility-based approach for adaptirklaad execution, and has illustrated its application
to workloads consisting of workflows or queries. Recent agde that explicitly focuses on data intensive
cloud computing has addressed issues such as evaluatioitiy@s (e.g. [14]) or the development of layered
architectures (e.g. [4]). However, results from many défe parts of the database community may usefully be
revisited in the context of clouds; this paper considersklead management [11], and in particular the use of
utility functions for coordinating workload execution. this setting, a utility-based approach has been shown
to be applicable to different types of workload, and utiligsed techniques can be applied both to coordinate
adaptations at different granularities and to addressegbspecific optimization goals. These context-specific
goals allow utility functions to direct system behavior imway that reflects the requirements of the contracts or
SLAs that are likely to be prominent in cloud computing.
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