
Supporting Transactional Atomicity in Flash Storage Devices

Woon-Hak Kang† Sang-Won Lee† Bongki Moon‡

Gi-Hwan Oh† Changwoo Min†

†College of Info. and Comm. Engr. ‡School of Computer Science and Engineering
Sungkyunkwan University Seoul National University

Suwon 440-746, Korea Seoul, 151-744, Korea
{woonagi319, swlee,wurikiji,multics69}@skku.edu bkmoon@snu.ac.kr

Abstract

Flash memory does not allow data to be updated in place, and the copy-on-write strategy is adopted
by most flash storage devices. The copy-on-write strategy in modern FTLs provides an excellent oppor-
tunity for offloading the burden of guaranteeing the transactional atomicity from a host system to flash
storage and for supporting atomic update propagation. This paper presents X-FTL as a model case of
exploiting the opportunity in flash storage to achieve the transactional atomicity in a simple and efficient
way. X-FTL drastically improves the transactional throughput almost for free without resorting to costly
journaling schemes. We have implemented X-FTL on an SSD development board called OpenSSD, and
modified SQLite and ext4 file system minimally to make them compatible with the extended abstrac-
tions provided by X-FTL. We demonstrate the effectiveness of X-FTL using real and synthetic SQLite
workloads for smartphone applications.

1 Introduction

An update action in a database system may involve multiple pages, and each of the pages in turn usually involves
multiple disk sectors. A sector write is done by a slow mechanical process and can be interrupted by a power
failure. If a failure occurs in the middle of a sector write, the sector might be only partially updated. A sector
write is thus considered non-atomic by most contemporary database systems [3, 11].

Atomic propagation of one or more pages updated by a transaction can be implemented by shadow paging or
physical logging. However, the cost will be considerable during normal processing. Although some commercial
database systems adopt a solution based on physiological logging for I/O efficiency and and flexible locking
granularity, others still rely on costlier but less sophisticated mechanisms based on redundant writing to limit the
scale of its code base. For example, InnoDB uses a double-write-buffer strategy, and SQLite runs with rollback
or write-ahead journaling for transactional atomic updates.

Most contemporary mobile devices, if not all, use flash memory as storage media to store data persistently.
Since flash memory does not allow any page to be overwritten in place, a page update is commonly carried out
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by leaving the existing page intact and writing the new content into a clean page at another location [5, 9]. This
strategy is called copy-on-write (CoW). Whether it is intended or not, the net effect of copy-on-write operations
by a flash memory drive remarkably resembles what the shadow paging mechanism achieves [10]. This provides
an excellent opportunity for supporting atomic update propagation almost for free.

This paper presents X-FTL [6] as a model case of exploiting the opportunity in flash storage to achieve
the transactional atomicity in a simple and efficient way. We describe the X-FTL approach and its extended
abstractions, and sketch how X-FTL can be implemented in an SSD using a development board called OpenSSD.
As use cases of X-FTL, we explain how SQLite and ext4 file system can be minimally modified so as to make
them compatible with X-FTL, and demonstrate the effectiveness of X-FTL using real and synthetic SQLite
workloads for smartphone applications.

2 Transactional Support in SQLite

In the era of smartphones and mobile computing, many popular applications such as Facebook, twitter, Gmail,
and even Angry birds game manage their data using SQLite. This is mainly due to the development productivity
and solid transactional support provided by the SQL interface.

In order to support transactional atomicity, SQLite processes a page update by copying the original content
to a separate rollback file or appending the new content to a separate write-ahead log. This is often cited as the
main cause of tardy responses in smartphone applications [7, 8]. According to a recent survey [8], approximately
70% of all write requests are for SQLite databases and related files. Considering the increasing popularity of
smart mobile platforms, improving the I/O efficiency of SQLite is a practical and critical problem that should be
addressed immediately.
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Figure 1: SQLite Journal Modes

SQLite adopts force and steal policies for buffer
management. When a transaction commits, all the
pages updated by the transaction are force-written to
a stable storage using the fsync command. When
the buffer runs out of free pages, even uncommitted
updates can be written to a stable storage.

In order to support the atomicity of transaction
execution without the atomicity of a sector write,
SQLite operates usually in either rollback mode [3]
or write-ahead log mode [4]. If a transaction updates
a page in rollback mode, the original content of the
page is copied to the rollback journal before updat-
ing it in the database, so that the change can always
be undone if the transaction aborts. The opposite is
done in write-ahead log mode. If a transaction up-
dates a page in write-ahead log mode, the original
content is preserved in the database and the modi-
fied page is appended to a separate log, so that any
committed change can always be redone by copying
it from the log. The change is then later propagated
to the database by periodical checkpointing. The de-
layed propagation in write-ahead log mode allows a
transaction to maintain its own snapshot of the database and enable readers to run fast without being blocked by
a writer.

The I/O behaviors of SQLite, as depicted in Figure 1, depend on which mode it runs in. If SQLite runs in
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rollback mode, a journal file is created and deleted whenever a new transaction begins and ends. This increases
I/O activities significantly for updating metadata. If SQLite runs in write-ahead log mode, a log file is reused
and shared by many transactions until the log file is cleared by a checkpointing operation. Thus, the overhead of
updating metadata is much lower when SQLite run in write-ahead log mode. Another aspect of I/O behaviors is
how frequently files are synced. SQLite invokes fsync system calls more often when it runs in rollback mode
than in write-ahead log mode. Since the header page of a journal file requires being synced separately from data
pages, SQLite needs to invoke at least one more fsync call for each committing transaction.

SQLite relies heavily on the use of rollback journal files and write-ahead log as well as frequent file sync
operations for transactional atomicity and durability. The I/O inefficiency of this strategy is the main cause
of tardy responses of applications running on SQLite. Our goal is to achieve I/O efficient, database-aware
transactional support at the flash based storage level so that SQLite and similar applications can simplify their
logics for transaction support and hence run faster. We have developed a new flash translation layer (FTL) called
X-FTL. With X-FTL, SQLite and other upper layer applications such as a file system can achieve transactional
atomicity and durability as well as metadata journaling with minimum overhead and redundancy.

3 X-FTL for Transactional Atomicity

This section provides a brief overview of the design principles and the abstractions of X-FTL. X-FTL supports
atomic page updates at the flash based storage level, so that upper layers such as SQLite and a file system can
be freed from the burden of heavy redundancy of duplicate page writes. Also, we present the performance
evaluation carried out to analyze the impact of X-FTL on SQLite.

3.1 Design Principles

The design objectives of X-FTL are threefold. First, X-FTL takes advantage of the copy-on-write mechanism
adopted by most flash-based storage devices [5], so that it can achieve transactional atomicity and durability
at low cost with no more redundant writes than required by the copy-on-write operations themselves. This
is especially important for SQLite that adopts the force policy for buffer management at commit time of a
transaction.

Second, X-FTL aims at providing atomic propagation of page updates for individual pages separately or
as a group without being limited to SQLite or any specific domain of applications. So the abstractions of X-
FTL must introduce minimal changes to the standards such as SATA, and the changes must not disrupt existing
applications.

Third, SQLite and other upper layer applications should be able to use X-FTL services without considerable
changes in their code. In particular, required changes, if any, must be limited to the use of extended abstractions
provided by X-FTL.

This approach is novel in that it attempts to turn the weakness of flash memory (i.e., being unable to update
in place) into a strong point (i.e., inherently atomic propagation of changes). Unlike the existing FTLs with
support for atomic write [12, 13, 14], X-FTL supports atomicity of transactions without contradicting the steal
policy of database buffer management at no redundant writes. This enables low-cost transactional support as
well as minimal write amplification, which extends the life span of a flash storage device.

3.2 X-FTL Architecture and Abstractions

In the core of X-FTL is the transactional logical-to-physical page mapping table (or X-L2P in short) as shown
in Figure 2. The X-L2P table is used in combination with a traditional page mapping table (or L2P in short)
maintained by most FTLs. The L2P and X-L2P tables appear in the left and right sides of Figure 2, respectively.
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Figure 2: X-FTL Architecture: an FTL for Transactional Atomicity

In order to provide transactional support at the storage level, we add to it more information such as the trans-
action id of an updater, the physical address of a page copied into a new location, and the status of the updater
transaction. This will allow us to have full control over which pages can be reclaimed for garbage collection.
Specifically, an old page invalidated by a transaction will not be garbage-collected as long as the updater trans-
action remain active, because the old page may have to be used to rollback the changes in case the transaction
gets aborted. If the updater transaction commits successfully, the information on the old page can be released
from the X-L2P table so that it can be reclaimed for garbage collection.

Obviously the additional information on transactions must be passed from transactions themselves to the
flash-based storage, but it cannot be done through the standard storage interface such as SATA. We have extended
the SATA interface so that the transaction id can be passed to the storage device by read and write commands.
Besides, two new commands, commit and abort, have been added to the SATA interface so that the change
in the status of a transaction can also be passed. The extensions we have made to the SATA interface are
summarized below.

write(tid t, page p) The write command of SATA is augmented with an id of a transaction t that writes a logical
page p. This command writes the content of p into a clean page in flash memory and add a new entry
(t, p, paddr, active) into the X-L2P table, where paddr is the physical address of the page the content of
p is written into.

read(tid t, page p) The read command of SATA is also augmented with an id of a transaction t that reads a
logical page p. This command reads the copy of p from the database snapshot of transaction t. Depending
on whether t is the transaction that updated p most recently or not, a different version of p may be returned.

commit(tid t) This is a new command added to the SATA interface. When a commit command is given by a
transaction t, the physical addresses of new content written by t become permanent and the old addresses
are released so that the old page can be reclaimed for garbage collection.

abort(tid t) This is a new command added to the SATA interface. When an abort command is given by a
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transaction t, the physical addresses of new content written by t are abandoned and those pages can be
reclaimed for garbage collection.

Note that the SATA command set is not always available for SQLite and other applications that access
files through a file system. Instead of invoking the SATA commands directly from SQLite, we have extended
the ioctl and fsync system calls so that the additional information about transactions can be passed to the
storage device through the file system.

3.3 X-FTL Advantages for SQLite

With X-FTL that supports atomic page updates at the storage device level, the runtime overhead of SQLite can
be reduced dramatically. First, SQLite does not have to write a page (physically) more than once for each
logical page write. Second, a single invocation of fsync call will be enough for each committing transaction
because all the updates are made directly to the database file. Consequently, the I/O efficiency and the transaction
throughput of SQLite can improve significantly for any workload with non-trivial update activities.

The current version (3.7.10) of SQLite supports the atomicity of a transaction that updates multiple database
files but it is awkward or incomplete [3, 4]. When a transaction updates two or more database files in rollback
mode, a master journal file, in addition to regular journal files, should be created to guarantee the atomic prop-
agation of the entire set of updates made against the database files [3]. With X-FTL, in contrast, SQLite keeps
trace of the multi-file updates in the X-L2P table under the same transaction id and supports the atomicity of the
transaction without additional effort.

3.4 Performance Evaluation

In order to understand the impact of X-FTL on SQLite, we have implemented X-FTL on an SSD development
board called OpenSSD, and modified SQLite and ext4 file system minimally to make them compatible with
the extended abstractions provided by X-FTL.

Using two different database workloads, we ran SQLite in rollback and write-ahead log modes on top of
the (unchanged) ext4 file system with the OpenSSD board running the original FTL. We also ran the modified
SQLite on top of the ext4 file system with the changed system calls with the OpenSSD board running X-FTL.
The workloads are a synthetic workload, a set of traces from four popular Android benchmarks.

3.4.1 Experimental Setup

The OpenSSD development platform [2] is equipped with Samsung K9LCG08U1M flash memory chips. These
flash memory chips are of MLC NAND type with 8KB pages and 128 pages per block. The host machine is
a Linux system with 3.5.2 kernel running on Intel core i7-860 2.8GHz processor and 2GB DRAM. We used
the ext4 file system in ordered mode for metadata journaling when SQLite ran in rollback or write-ahead log
mode. When SQLite ran on X-FTL, the file system journaling was turned off but the changes we added to the
file system were enabled. The version of SQLite used in this paper was 3.7.10, which supports both rollback and
write-ahead log modes. The page size was set to 8KB to match the page size of the flash memory chips installed
on the OpenSSD board.

3.4.2 Run-Time Performance

This section demonstrates the effectiveness of X-FTL by comparing the performance of SQLite with and without
X-FTL. We use the RBJ, WAL and X-FTL symbols to denote the execution of SQLite in rollback mode, write-
ahead log mode and with X-FTL enabled, respectively. Each performance measurement presented in this section
was an average of five runs or more.
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Figure 3: SQLite Performance (x1,000 Synthetic Transactions)

Mode
Host-side FTL-side

SQLite File System Total Counts fsync calls Write Read GC EraseDB Journal
RBJ 6,230 7,222 15,987 29,439 2,999 243,639 9,792 756 2,044
WAL 3,523 5,754 3,646 12,923 1,013 92,979 3,472 409 897

X-FTL 5,211 0 994 6,205 994 33,239 2,011 115 243

Table 4: I/O Count (# of updated pages per transaction = 5, GC validity = 50%)

3.4.2.1 Synthetic workload The synthetic workload consists of a partsupply table created by the dbgen
tool of the TPC-H benchmark. This table contains 60,000 tuples of 220 bytes each. Each transaction reads a
fixed number of tuples using random partkey values, updates the supplycost field of each tuple, and
commits. In the synthetic workload, we varied the number of updates requested by a transaction from one to 20,
and 1,000 transactions were executed for each fixed number of updates.

To evaluate the effect of garbage collections by FTL, we controlled aging of the OpenSSD flash memory
chips such that the ratio of valid pages carried over by garbage collection was approximately 30% or 50%.
Garbage collection is always done for an individual flash memory block. When a flash memory block is picked
up for garbage collection, the pages marked as valid in the block are copied into a new block, while invalid ones
are simply discarded. For instance, if the ratio of valid pages is 50%, 64 out of 128 pages will be copied from
the victim block to a new block, and the new block will contain just 64 free pages. This implies the garbage
collection will leave just half of the block available for use after all the cost of erasing a block and copying 64
pages.

Figure 3 shows the elapsed times of SQLite when it ran in rollback or write-ahead log mode and when it
ran in off mode with X-FTL. In Figure 3(a), under GC validity 30%, X-FTL helped SQLite process transactions
much faster than write-ahead log and rollback modes by 2.7 and 9.7 times, respectively. In Figure 3(b), under
GC validity 50%, the improvement ratios were even higher, 3.2 and 11.7 times, respectively. The considerable
gain in performance was direct reflection of reductions in the number of write operations and fsync system
calls. Recall that, with the force policy, SQLite force-writes all the updated pages when a transaction commits.

Table 4 compares rollback and write-ahead log modes with X-FTL with respect to the number of writes and
fsync calls. In the case of rollback, in particular, both numbers were very high. This is because SQLite had
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to create and delete a journal file for each transaction and consequently had to use fsync call very frequently.
In write-ahead log mode, SQLite wrote twice as many pages as running it with X-FTL, because it had to write
pages to both log and database files. Table 4 drills down the I/O activities further for the case when the number
of pages updated per transaction was five. In the ‘Host-side’ columns, we counted the number of page writes
requested by SQLite and the number of metadata page writes requested by the file system separately as well as
the total number of fsync calls.

In the ‘FTL-side’ columns, we counted the number of pages written and read (including those copied-back
internally in the flash memory chips) as well as the frequencies of garbage collection (GC) and block erase
operations. The write and block erase counts in Table 4 include the data pages and blocks garbage collected and
the metadata blocks erased by FTL.
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Figure 4: Smartphone Workload Performance

3.4.2.2 Android Smartphone Workload An-
droid Smartphone workload consists of traces
obtained by running four popular applications on an
Android 4.1.2 Jelly Bean SDK, namely, RL Bench-
mark [1], Gmail, Facebook, and a web browser. RL
Benchmark is a popular benchmark used for perfor-
mance evaluation of SQLite on Android platforms.
We modified the source code of SQLite to capture all
the transactions and their SQL statements.

In Figure 4, we measured the elapsed time taken
by SQLite to process each workload completely.
Since the performance gap between the rollback and
write-ahead log modes was similar to that observed in
the synthetic workload, we did not include the elapsed
time of rollback mode for the clarity of presentation.
Across all the four traces, SQLite performed 2.4 to
3.0 times faster when it ran with X-FTL than when it ran in write-ahead log mode. These results match the
elapsed times and the trend of I/O activities observed in the synthetic workloads (shown in Figure 3(b)).

4 Concluding Remarks

X-FTL is a novel transactional FTL which can efficiently support atomic propagation of one or more pages
updated by transactional applications (e.g., SQLite databases and NoSQL key-value stores) to a flash memory
storage device. The main contributions of the X-FTL scheme are: (1) it realizes low-cost atomic update for
individual pages, (2) it provides the awareness of database semantics in page updates to support the atomicity of
transactions, and (3) it exposes an extended abstraction (and APIs) to upper layer applications such as SQLite.

There are many non-database applications that require the semantics of transactional atomicity semantics
(i.e., the atomic propagation of a group of data pages) without a sophisticated recovery mechanism. X-FTL
provides an effective means for transactional support as well as a simple storage abstraction with extended
functionality. X-FTL also demonstrates that advanced storage devices could offload essential functions from the
host system to the devices and help simplify the software stack of the host system.
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