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Abstract

Latency to end-users and regulatory requirements push large companies to build data centers all around
the world. The resulting data is “born” geographically distributed. On the other hand, many Machine
Learning applications require a global view of such data in order to achieve the best results. These types
of applications form a new class of learning problems, which we call Geo-Distributed Machine Learning
(GDML). Such applications need to cope with: 1) scarce and expensive cross-data center bandwidth,
and 2) growing privacy concerns that are pushing for stricter data sovereignty regulations.

Current solutions to learning from geo-distributed data sources revolve around the idea of first cen-
tralizing the data in one data center, and then training locally. As Machine Learning algorithms are
communication-intensive, the cost of centralizing the data is thought to be offset by the lower cost of
intra-data center communication during training.

In this work, we show that the current centralized practice can be far from optimal, and propose a
system architecture for doing geo-distributed training. Furthermore, we argue that the geo-distributed
approach is structurally more amenable to dealing with regulatory constraints, as raw data never leaves
the source data center. Our empirical evaluation on three real datasets confirms the general validity of
our approach, and shows that GDML is not only possible but also advisable in many scenarios.

1 Introduction

Modern organizations have a planetary footprint. Data is created where users and systems are located, all around
the globe. The reason for this is two-fold: 1) minimizing latency between serving infrastructure and end-users,
and 2) respecting regulatory constraints, that might require data about citizens of a nation to reside within the
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Figure 1: Centralized vs Geo-distributed Learning.

nation’s borders. On the other hand, many machine learning applications require access to all that data at once
to build accurate models. For example, fraud prevention systems benefit tremendously from the global picture
in both finance and communication networks, recommendation systems rely on the maximum breadth of data to
overcome cold start problems, and the predictive maintenance revolution is only possible because of data from
all markets. These types of applications that deal with geo-distributed datasets belong to a new class of learning
problems, which we call Geo-Distributed Machine Learning (GDML).

The state-of-the-art approach to Machine Learning from decentralized datasets is to centralize them. As
shown in the left-side of Figure 1, this involves a two-step process: 1) the various partitions of data are copied
into a single data center (DC)—thus recreating the overall dataset in a central location, and 2) learning takes place
there, using existing intra-data center technologies. Based on conversations with practitioners at Microsoft, we
gather that this centralized approach is predominant in most practical settings. This is consistent with reports
on the infrastructures of other large organizations, such as Facebook [1], Twitter [2], and LinkedIn [3]. The
reason for its popularity is two-fold, on the one hand, centralizing the data is the easiest way to reuse existing
ML frameworks [4–6]), and on the other hand, Machine Learning algorithms are notoriously communication-
intensive, and thus assumed to be non-amenable to cross-data center execution—as we will see, in many practical
settings, we can challenge this assumption.

The centralized approach has two key shortcomings:

1. It consumes large amounts of cross-data center (X-DC) bandwidth (in order to copy the raw data to a
single location). X-DC bandwidth has been shown to be scarce, expensive, and growing at a slower pace
than most other intra-data center (in-DC) resources [7–10].

2. It requires raw data to be copied across data centers, thus potentially across national borders. While in-
ternational regulations are quickly evolving, the authors of this paper speculate that the growing concerns
regarding privacy and data sovereignty [11, 12] might become a key limiting factor to the applicability of
centralized learning approaches.

We hypothesize that both challenges will persist or grow in the future [13, 14].
In this paper, we propose the geo-distributed learning approach (right-side of Figure 1), where raw data is

kept in place, and learning tasks are executed in a X-DC fashion. We show that by leveraging communication-
efficient algorithmic solutions [15] together with a distributed resource management fabric, this approach can
achieve orders of magnitude lower X-DC bandwidth consumption in practical settings. Moreover, as the geo-
distributed learning approach does not require to copy raw data outside their native data center (only statistics
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and estimates are copied), it is structurally better positioned to deal with evolving regulatory constraints. A
detailed study of this legal aspect of the geo-distributed approach is beyond the scope of this paper.

The solution we propose serves as an initial stand-in for a new generation of geo-distributed learning systems
and algorithms, and allows us to present the first study on the relative efficiency of centralized vs. distributed
approaches. In this paper, we concentrate on two key metrics: X-DC bandwidth consumption and learning
runtime. We show experimentally that properly designed centralized solutions can achieve faster learning times
(when the data copy latency is hidden by streaming data as it becomes available), but that distributed solutions
can achieve much lower X-DC bandwidth utilization, and thus substantially lower cost for large-scale learning.

Note that while the above two metrics are of great practical relevance, many other dimensions (e.g., resilience
to catastrophic DC failures) are worth considering when comparing alternative approaches. In §6, we briefly list
these and other open problems that emerge when considering this new class of learning tasks: Geo-Distributed
Machine Learning (GDML).

Summarizing, our main contributions are:

• We introduce GDML, an important new class of learning system problems that deals with geo-distributed
datasets, and provide a study of the relative merits of state-of-the-art centralized solutions vs. novel geo-
distributed alternatives.

• We propose a system that builds upon Apache Hadoop YARN [16] and Apache REEF [17], and extends
their functionality to support multi-data center ML applications. We adopt a communication-sparse learn-
ing algorithm [15], originally designed to accelerate learning, and leverage it to lower the bandwidth
consumption (i.e., cost) for geo-distributed learning.

• We present empirical results from both simulations and a real deployment across continents, which show
that under common conditions distributed approaches can trade manageable penalties in training latency
(less than 5×) for massive bandwidth reductions (multiple orders of magnitude).

• Finally, we highlight that GDML is a tough new challenge, and that many problems, such as WAN fault-
tolerance, regulatory compliance, privacy preservation, X-DC scheduling coordination, latency minimiza-
tion, and support for broader learning tasks remain open.

The remainder of this paper presents these findings as follows: §2 formalizes the problem setting, §3 intro-
duces our approach, §3.1 introduces the algorithmic solution, and §3.2 describes our system implementation.
We explain the evaluation setup and show the experimental results in §4. Finally, we discuss related work in §5,
open problems in §6 and conclusions in §7.

2 Problem Formulation

In order to facilitate a study of the state-of-the-art centralized approach in contrast to potential geo-distributed
alternatives, we formalize the problem below in two dimensions: 1) we specify assumptions about the data, its
size and partitioning, and 2) we restrict the set of learning problems to the well known Statistical Query Model
(SQM [18]) class.

2.1 Data distribution

We assume the dataset D of N examples (xi, yi), where xi ∈ Rd denotes the feature vector and yi ∈ {−1, 1}
denotes the label of example i, to exist in p ∈ {1, . . . , P} partitions Dp, each of which is generated in one of P
data centers. Those P partitions consist of np examples each, with N =

∑
p np. Let d be the dimensionality of

the feature vectors and d̄ the average sparsity (number of non-zeros) per example. The total size of each partition
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can be (roughly) estimated as sp = np · d̄. Although this approximation serves our purposes, in order to have
a more precise estimate of the partition sizes, we should not rely on a single d̄ value (average instance sparsity
across the entire data). This is because the sparsity of instance vectors may depend on the data center location.
For example, in the case of a recommendation application, the US data center might have more dense feature
vectors (user profiles) than those in a data center in South America.

Further, let p∗ be the index of the largest partition, i.e., p∗ = argmaxp np. Then, the total X-DC transfer
needed to centralize the dataset is:

TC = (N − np∗) d̄ (1)

The goal here is to transfer all instances to the data center that holds the largest subset of instances. Data
compression is commonly applied to reduce this size, but only by a constant factor.

2.2 Learning Task

For any meaningful discussion of the relative merits of the centralized approach when compared to alternatives,
we need to restrict the set of learning problems we consider. Here, we choose those that fit the Statistical Query
Model (SQM) [18]. This model covers a wide variety of important practical machine learning models, including
K-Means clustering, linear and logistic regression, and support vector machines.

The beauty of algorithms that fit into the SQM model is that they can be written in a summation form, which
allows them to be easily parallelized [19]. In SQM, the learning algorithm is allowed to obtain estimates of
statistical properties of the examples (e.g., sufficient statistics, gradients) but cannot see the examples them-
selves [20]. In other words, the algorithm can be phrased purely in terms of statistical queries over the data, and
those statistical queries decompose into the sum of a function applied to each example [19].

Let that function be denoted by fq ∈ {f1, f2, . . . fQ}. A query result Fq is then computed as Fq =∑N
i=1 fq(xi, yi). With the data partitioning, this can be rephrased as

Fq =
P∑

p=1

np∑
i=1

fq(xi, yi) (2)

In other words, the X-DC transfer per statistical query is the size of the output of its query function fq, which
we denote as sq. The total X-DC transfer then depends on the queries and the number of such queries issued,
nq, as part of the learning task, both of which depend on the algorithm executed and the dataset. Let us assume
we know these for a given algorithm and dataset combination. Then, we can estimate the total X-DC transfer
cost of a fully distributed execution as:

TD = (P − 1)

Q∑
q=1

nq sq (3)

Note that this relies on the cumulative and associative properties of the query aggregation: we only need to
communicate one result of size sq per data center. The data center that aggregates the results does not need to
communicate any data over the X-DC network, thus the P − 1 term in (3).

With this formalization, the current state-of-the-art approach of centralizing the data relies on the assump-
tion that TC ≪ TD. However, it is not obvious why this should always be the case: the X-DC transfer of
the centralized approach TC grows linearly with the dataset size, whereas the X-DC transfer of a distributed
approach TD grows linearly with the size and number of the queries. Additionally, relatively large partitions
per DC typically yield more meaningful statistics per DC. This in turn means that the learning algorithm needs
fewer queries to converge, lowering TD as the dataset size grows given a fixed number of partitions. Hence, it is
apparent that the assumption that TC ≪ TD holds for some, but not all regimes. All things being equal, it seems
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that larger datasets would favor the distributed approach. Similarly, all things being equal, larger query results
and algorithms issuing more queries seem to favor the centralized approach.

In order to study this more precisely, we need to restrict the discussion to a concrete learning problem for
which the queries q, their functions fq and their output sizes sq are known. Further, the number of such queries
can be bounded by invoking the convergence theorems for the chosen learning algorithm. Here, we choose
linear modeling to be the learning problem for its simplicity and rich theory. In particular, we consider the l2
regularized linear learning problem.

Let l(w xi, yi) be a continuously differentiable loss function with Lipschitz continuous gradient, where
w ∈ Rd is the weight vector. Let Lp(w) =

∑
i∈Dp

l(w xi, yi) be the loss associated with data center p, and
L(w) =

∑
p Lp(w) be the total loss over all data centers. Our goal is to find w that minimizes the following

objective function, which decomposes per data center:

f(w) =
λ

2
||w||2 + L(w) =

λ

2
||w||2 +

∑
p

Lp(w) (4)

where λ > 0 is the regularization constant. Depending on the loss chosen, this objective function covers im-
portant cases such as linear support vector machines (hinge loss) and logistic regression (logistic loss). Learning
such model amounts to optimizing (4). Many optimization algorithms are available for the task, and in §3.1 we
describe the one we choose.

It is important to note that one common statistical query of all those algorithms is the computation of the
gradient of the model in (4) with respect to w. The size of that gradient (per partition and globally) is d. Hence, sq
for this class of models can be approximated by d. This allows us to rephrase the trade-off mentioned above. All
things being equal, datasets with more examples (xi, yi) would tend to favor the distributed approach. Similarly,
all things being equal, datasets with higher dimensionality d would generally lean towards the centralized setting.

3 Approach

In order to study the problem described above, we need two major artifacts: 1) a communication-efficient
algorithm to optimize (4), and 2) an actual geo-distributed implementation of that algorithm. In this section, we
describe both of these items in detail.

3.1 Algorithm

We focus on the X-DC communication costs. Hence, we need a communication-efficient algorithm capable of
minimizing the communication between the data centers. It is clear from (3) that such an algorithm should try
to minimize the number of queries whose output size is very large. In the case of (4), this means that the number
of X-DC gradient computations should be reduced.

Recently, many communication-efficient algorithms have been proposed that trade-off local computation
with communication [18, 21–24]. Here, we use the algorithm proposed by Mahajan et al. [25] to optimize (4),
shown in Algorithm 1. We choose this algorithm because experiments show that it performs better than the
aforementioned algorithms, both in terms of communication and running time [25]. The algorithm was initially
designed for running in a traditional distributed Machine Learning setting, i.e., single data center.1 In this work,
we adapt it for X-DC training, a novel application that was not originally intended for.

The main idea of the algorithm is to trade-off in-DC computation and communication with X-DC commu-
nication. The minimization of the objective function f(w) is performed using an iterative descent method in

1We confirmed this with the first author as per 11/2017.
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which the r-th iteration starts from a point wr, computes a direction dr, and then performs a line search along
that direction to find the next point wr+1 = wr + t dr.

We adapt the algorithm to support GDML in the following manner. Each node in the algorithm now becomes
a data center. All the local computations like gradients and loss function on local data now involves both
computation as well as in-DC communication among the nodes in the same data center. On the other hand, all
global computations like gradient aggregation involves X-DC communication. This introduces the need for two
levels of communication and control, described in more detail in §3.2.

In a departure from communication-heavy methods, this algorithm uses distributed computation for gener-
ating a good search direction dr in addition to the gradient gr. At iteration r, each data center has the current
global weight vector wr and the gradient gr. Using its local data Dp, each data center can form an approxima-
tion f̂p of f . To ensure convergence, f̂p should satisfy a gradient consistency condition, ∇f̂p(wr) = gr. The
function f̂p is approximately2 optimized using a method M to get the local weight vector wp, which enables the
computation of the local direction dp = wp − wr. The global update direction is chosen to be dr = 1

P

∑
p dp,

followed by a line search to find wr+1.
In each iteration, the computation of the gradient gr and the direction dr requires communication across data

centers. Since each data center has the global approximate view of the full objective function, the number of
iterations required are significantly less than traditional methods, resulting in orders of magnitude improvements
in terms of X-DC communication.

The algorithm offers great flexibility in choosing f̂p and the method M used to optimize it. A general form
of f̂p for (4) is given by:

f̂p(w) =
λ

2
||w||2 + L̃p(w) + L̂p(w) (5)

where L̃p is an approximation of the total loss Lp associated with data center p, and L̂p(w) is an approx-
imation of the loss across all data centers except p, i.e., L(w) − Lp(w) =

∑
q ̸=p Lq(w). Among the possible

choices suggested in [25], we consider the following quadratic approximations3 in this work:

L̃p(w) = ∇Lp(w
r)(w − wr) +

1

2
(w − wr)THr

p(w − wr) (6)

L̂p(w) = (∇L(wr)−∇Lp(w
r))(w − wr) +

P − 1

2
(w − wr)THr

p(w − wr) (7)

where Hr
p is the Hessian of Lp at wr. Replacing (6) + (7) in (5) we have the following objective function:

f̂p(w) =
λ

2
||w||2 + gr · (w − wr) +

P

2
(w − wr)THr

p(w − wr) (8)

We use the conjugate gradient (CG) algorithm [26] to optimize (8). Note that each iteration of CG involves a
statistical query with output size d to do a hessian-vector computation. However, this query involves only in-DC
communication and computation, whereas for traditional second order methods like TRON [27], it will involve
X-DC communication.

Discussion Let Touter be the number of iterations required by the algorithm to converge. Each iteration re-
quires two queries with output size sq = d for the gradient and direction computation, and few queries of output

2Mahajan et al. [25] proved linear convergence of the algorithm even when the local problems are optimized approximately.
3One can simply use L̃p = Lp, i.e., the exact loss function for data center p. However, Mahajan et. al [25] showed better results if

the local loss function is also approximated.
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Algorithm 1 Functional Approximation based Distributed Learning Algorithm (FADL)
Choose w0

for r = 0, 1... do
Compute gr (X-DC communication)
Exit if ||gr|| ≤ ϵg||g0||
for p = 1, ..., P (in parallel) do

Construct f̂p(w) ((8))
wp ← Optimize f̂p(w) (in-DC communication)

end for
dr ← 1

P

∑
pwp − wr (X-DC communication)

Line Search to find t (negligible X-DC communication)
wr+1 ← wr + t dr

end for

size sq = 1 for the objective function computation in the line search. Since d≫ 1, we can ignore the X-DC com-
munication cost for the objective function computation. Hence, we can rewrite (3) as TD = 2 (P − 1) d Touter.
Hence, for TD to be less than TC the following must hold:

2 (P − 1) d Touter < (N − np∗) d̄ (9)

In practice, the typical value of P (data centers) is relatively small (in the 10s). Since there are few data
centers (i.e., few partitions of the data), the above algorithm will take only few (5-20) outer iterations to converge.
In fact, in all our experiments in §4, the algorithm converges in less than 7 iterations. This means that as long
as the total size of the data is roughly more than 2 − 3 orders of magnitude greater than the dimensionality d,4

doing geo-distributed learning would reduce the X-DC transfers compared to the centralized approach.

3.2 Distributed Implementation

We need a flexible system that can run in two regimes, i.e., in-DC and X-DC, without requiring two separate
implementations. Here, we describe such system. Note that our system is not tied to the specific algorithm
described above, rather, it exposes a generic framework suitable for geo-distributed and centralized implemen-
tations of, at least, the algorithms expressible in the Statistical Query Model.

SQM can be implemented using only Broadcast and Reduce operators (including the algorithm described
in §3.1). As part of this work, we add X-DC versions of those to Apache REEF, which provides the basic
control flow for our implementation. Moreover, our system needs to obtain resources (CPU cores, RAM) across
different data centers in a uniformly basis. We manage those resources using Apache Hadoop YARN. Finally,
our system leverages YARN’s new federation feature (released as part of Apache Hadoop YARN 2.9) to view
multiple data centers as a single one. We extend Apache REEF with support for that. Below, we provide more
details on our three-layer architecture, from bottom to top.5

3.2.1 Resource Manager: Apache Hadoop YARN

A resource manager (RM) is a platform that dynamically leases resources, known as containers, to various
competing applications in a cluster. It acts as a central authority and negotiates with potentially many Application
Masters (AM) the access to those containers [17]. The most well known implementations are Apache Hadoop

4Note that for large datasets this is typically the case.
5All changes to Apache REEF and Apache Hadoop YARN have been contributed back to the projects where appropriate.

47



MG	
  

… 
M1	
  

… S11	
   S12	
   S1m	
  

MP	
  

… SP1	
   SP2	
   SPm	
  

DC-P 
 M2	
  

… S21	
   S22	
   S2m	
  

DC-2 
 

DC-1 
 

DC-1 
 

Figure 2: Multi-Level Master/Slave Communication Tree with P data centers, each with its own data center
master (Mi) and slaves (Sij). The global master MG is physically located in DC-1. The solid and dashed lines
refer to in-DC and X-DC links respectively. Our current implementation supports recovery from slave failures.
Fault-tolerance at the master levels is left for future work.

YARN [16], Apache Mesos [28] and Google Omega [29]. All of these systems are designed to operate within
one DC and multiplex applications on a collection of shared machines.

In our setting, we need a similar abstraction, but it must span multiple DCs. We build our solution on top of
Apache Hadoop YARN. As part of our effort to scale-out YARN to Microsoft-scale clusters (tens of thousands
of nodes), we have been contributing to Apache a new architecture that allows to federate multiple clusters [30].
This effort was not originally intended to operate in a X-DC setting, and as such, was focused on hiding from
the application layer the different sub-clusters. It is worth mentioning that single DC federation is deployed in
production at scale at Microsoft. As part of this work, we have been experimenting and extending this system,
leveraging its transparency yet providing enough visibility of the network topology to our application layer
(Apache REEF). As a result, we can run a single application that spans different data centers in an efficient
manner.

3.2.2 Control Flow: Apache REEF

Apache REEF [17] provides a generalized control plane to ease the development of applications on resource
managers. REEF provides a control flow master called Driver to applications, and an execution environment for
tasks on containers called Evaluator. Applications are expressed as event handlers for the Driver to perform task
scheduling (including fault handling) and the task code to be executed in the Evaluators. As part of this work,
we extend REEF to support geo-federated YARN, including scheduling of resources to particular data centers.

REEF provides a group communications library that exposes Broadcast and Reduce operators similar to
Message Passing Interface (MPI) [31]. Like MPI, REEF’s group communications library is designed for the
single data center case. We expand it to cover the X-DC case we study here.

3.2.3 GDML Framework

Statistical Query Model algorithms, such as the one introduced in §3.1, can be implemented using nothing more
than Broadcast and Reduce operators [19], where data partitions reside in each machine, and the statistical query
is Broadcast to those, while its result is computed on each machine and then aggregated via Reduce.

Both Broadcast and Reduce operations are usually implemented via communication trees in order to max-
imize the overall throughput of the operation. Traditional systems, such as MPI [31] implementations, derive
much of their efficiency from intelligent (and fast) ways to establish these trees. Different from the in-DC
environment where those are typically used, our system needs to work with network links of vastly different
characteristics. X-DC links have higher latency than in-DC ones, whereas the latter have usually higher band-
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widths [32]. Further, X-DC links are much more expensive than in-DC links, as they are frequently rented or
charged-for separately, in the case of the public cloud.

In our system, we address these challenges with a heterogeneous, multi-level communication tree.
Figure 2 shows an example of the multi-level communication tree we use. A global Broadcast originates

from MG to the data center masters Mi, which in turn do a local Broadcast to the slave nodes Sij in their own
data centers. Conversely, local Reduce operations originate on those slave nodes, while the data center masters
Mi aggregate the data prior to sending it to MG for global aggregation.

To make this happen, the underlying implementation creates multiple communication groups. The global
master MG together with the data centers masters Mi, form the global communication group (GCG), where the
global Broadcast / Reduce operations are performed, and used in the outer loop of Algorithm 1. Likewise, the
slave nodes within each data center and their masters Mi form the local communication groups (LCG), where
the local Broadcast / Reduce operations execute, and are used to optimize the local approximations f̂p of (8).

Summary Overall, our system enables popular resource managing frameworks (Apache Hadoop YARN and
Apache REEF) to be used effectively in the management of algorithms running in a geo-distributed fashion.
Note that our framework can work with any algorithm that can be implemented using Broadcast and Reduce
primitives. The specific changes our system embraces, perhaps surprising to software engineers but not to
algorithm developers, make the geo-distribution less transparent in order for the algorithm author to explicitly
control what to run in-DC and what to run across data centers.

4 Evaluation

The algorithm and system presented above allow us to evaluate the state-of-the-art of centralizing the data before
learning in comparison with truly distributed approaches. In this section, we describe our findings, starting with
the setup and definition of the different approaches used, followed by experimental results from both simulated
and real deployments.

4.1 Experimental Setup

We report experiments on two deployments: a distributed deployment on Microsoft Azure across two data
centers, and a large centralized cluster on which we simulate a multi-data center setup (2, 4, and 8 data centers).
This simulated environment is our main test bench, and we mainly use it for multi-terabyte scale experiments,
which are not cost-effective on public clouds. We use 256 slave nodes divided into 2-8 simulated datacenters in
all our simulations. Further, all the experiments are done with the logistic loss function.

We ground and validate the findings from the simulations on a real cross-continental deployment on Mi-
crosoft Azure. We establish two clusters, one in a data center in Europe and the other on the U.S. west coast.
We deploy two DS12 VMs into each of these clusters. Each of those VMs has 4 CPU cores and 28GB of RAM.
We establish the site-to-site connectivity through a VPN tunnel using a High Performance VPN Gateway.6

4.2 Data

We use three datasets of user behavior data in web sites for our evaluation, two of which are publicly available.
All of them are derived from click logs. Table 1 summarizes their statistics. CRITEO and KAGGLE are publicly
available [33, 34]. The latter is a small subset of the former, and we use it for the smaller scale experiments in
Azure. WBCTR is an internal Microsoft dataset. We vary the number of features in our experiments using
hashing kernels as suggested in [35].

6https://azure.microsoft.com/en-us/documentation/articles/vpn-gateway-about-vpngateways/
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Dataset Examples Features Size
(N) (d) Model Dataset

CRITEO 4B

5M 20MB 1.5TB
10M 40MB 1.5TB
50M 200MB 1.6TB

100M 400MB 1.7TB

WBCTR 730M

8M 32MB 347GB
16M 64MB 362GB
80M 320MB 364GB

160M 640MB 472GB

KAGGLE 46M

0.5M 2MB 8.5GB
1M 4MB 8.5GB
5M 20MB 9GB

Table 1: Datasets statistics. Dataset sizes reported are after compression. Weights in the models are represented
in single-precision floating-point format (32 bits) with no further compression. Note that the average sparsity
(number of non-zeros) of each of the dataset versions are very similar, thus we do not observe a significant size
change after increasing the number of features.

The dataset sizes reported in Table 1 refer to compressed data. The compression/decompression is done
using Snappy,7 which enables high-speed compression and decompression with reasonable compression size.
In particular, we achieve compression ratios of around 62-65% for the CRITEO and WBCTR datasets, and 50%
for KAGGLE. Following current practice in large scale Machine Learning, our system performs all computations
using double precision arithmetic, but communicates single precision floats. Hence, model sizes in Table 1 are
reported based on single-precision floating point numbers.

In our experiments, we assume the datasets are randomly partitioned across the data centers, i.e., we assume
each data center keeps an approximately equal number of instances. Note that although this is a strong assump-
tion, as data in different data centers can be distributed differently, it holds true in some important production use
cases we observe. In such cases, load balancing across data centers forces data to be “randomly” spread across
them. However, this is not fully general, as other important GDML workloads require data to be close to the
users (to achieve low latency interactions), thus strong geographically biases emerge. Besides the dataset sizes,
in practice, data centers can also vary significantly in terms of their bandwidth and computational resources. We
plan on addressing all these issues in future work.

4.3 Methods

We contrast the state-of-the-art approach of centralizing the data prior to learning with several alternatives, both
within the regime requiring data copies and truly distributed:

centralized denotes the current state-of-the art, where we copy the data to one data center prior to training.
Based on the data shipping model used, two variants of this approach arise:

centralized-stream refers to a streaming copy model where the data is replicated as it arrives. When
the learning job is triggered in a particular data center, the data has already been transferred there,
therefore, no copy time is included in the job running time, and

7https://github.com/xerial/snappy-java
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centralized-bulk refers to a batch replication scheme where the data still needs to be copied by the time
the learning process starts, therefore, the copy time has an impact on the job running time, i.e., the
job needs to wait until the transfer is made to begin the optimization.

We observe both flavors occur in practice. We simply refer to centralized when no distinction between its
variants is required. This approach (and its variants) only performs compressed data transfers, and uses
the algorithm described in §3.1 for solving the l2 regularized linear classification problem mentioned in
§2.

distributed builds the multi-level master/slave tree for X-DC learning, but does not use the communication-
efficient algorithm in §3.1 to optimize (4), instead, it optimizes using TRON [27].

distributed-fadl uses the algorithm introduced in §3.1 to optimize (4), and similarly to distributed, it performs
the optimization in a geo-distributed fashion, i.e., it leaves the data in place and runs a single job that spans
training across data centers.

Both distributed and distributed-fadl methods represent the furthest departure from the current state-of-the-
art as their execution is truly geo-distributed. Studying results from both allows us to draw conclusions about the
relative merits of the system enabling truly geo-distributed training (distributed) as well as the system together
with a communication-sparse algorithm (distributed-fadl).

4.4 Results

In this section we present measurements from the methods introduced above, using the datasets described in §4.2.
We focus on two key metrics: 1) total X-DC transfer size, and 2) latency to model.

4.4.1 Simulation

X-DC Transfer Figure 3 illustrates the total X-DC transfer of the different methods for different numbers
of data centers. We only show two versions of CRITEO and WBCTR for space limitations, though the others
follow the same patterns. In general, X-DC transfers increase with the number of data centers as there are
more X-DC communication paths. As expected, increasing the model dimensionality also impacts the transfers
in the distributed versions. In Figure 3b, the efficient distributed approach (distributed-fadl) performs at least
one order of magnitude better than centralized in every scenario, achieving the biggest difference (2 orders of
magnitude) for 2 data centers. In this setting, centralized (any variant) transfers half of the compressed data
(870 GB) through the X-DC link before training, whereas distributed-fadl just needs 9 GBs worth of transfers to
train the model. Likewise, in the WBCTR dataset (Figure 3d), we see the biggest difference in the 2 data centers
scenario (1 order of magnitude). When the data is spread across 8 data centers, centralized transfers almost the
same as distributed. In general, even the non communication-efficient distributed baseline also outperforms the
current practice, centralized, on both datasets.

Objective / X-DC Transfer Trade-off Commercial deployments of Machine Learning systems impose dead-
lines and resource boundaries on the training process. This can make it impossible to run the algorithm till
convergence. Hence, it is interesting to study the performance of the centralized and distributed approaches in
relationship to their resource consumption. Figure 4 shows the relative objective function over time as a function
of X-DC transfers for 2 and 8 data centers on the CRITEO and WBCTR datasets. We use the relative difference
to the optimal function value, calculated as (f − f∗)/f∗, where f∗ is the minimum value obtained across meth-
ods. X-DC transfers remain constant in the centralized (any variant) method as it starts the optimization after the
data is copied, i.e., no X-DC transfers are made while training. In general, distributed-fadl achieves lower ob-
jective values much sooner in terms of X-DC transfers, which means that this method can get some meaningful
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Figure 3: X-DC transfer (in GB) versus number of data centers for two versions of CRITEO and WBCTR
datasets (y-axis is in log scale). The method distributed-fadl consumes orders of magnitude less X-DC band-
width than any variant (stream or bulk) of the compressed centralized approach. Moreover, a naive algorithm
that does not economize X-DC communication, as is the case of the distributed method, also reduces transfers
with respect to the current centralized state-of-the-art.

results faster. If an accurate model is not needed (e.g., 10−2 relative objective function value), distributed-fadl
gives a quicker response. As we increase the number of data centers, X-DC communication naturally increases,
which explains the right shift trend in the plots (e.g., Figures 4a and 4b).

Storage As the number of data centers increases, centralized (any variant) requires more space on disk. In
particular, assuming the data is randomly partitioned across data centers, centralized stores at least 1.5× more
data than the distributed versions, with a maximum difference of almost 2× when considering 8 data centers.
On the other hand, both distributed and distributed-fadl only need to store the original dataset (1×) throughout
the different configurations.

4.4.2 Real Deployment

X-DC Transfer To validate our simulation, we include Figure 5, which shows the relative objective function
with respect to the X-DC bandwidth for the KAGGLE dataset in 2 Azure DCs (Western US and Western Europe).
These experiments completely match our findings in the simulated environment. For the centralized approach,
we transfer the data from EU to US, and run the optimization in the latter data center. Similar to Figure 4, the
increase in the number of features expectedly causes more X-DC transfers (right shift trend in the plots). The
efficient geo-distributed method distributed-fadl still communicates the least amount of data, almost 2 orders of
magnitude less than the centralized (any variant) approach for the 500K model (Figure 5a).

Runtime Figure 6 shows the relative objective function over time for the 2 Azure data centers using the
KAGGLE dataset. We normalize the time to the centralized-stream approach, calculated as t/t∗, where t∗ is the
overall time taken by centralized-stream. This method performs the fastest in every version of the dataset (500K,
1M, and 5M features) as the data has already been copied by the time it starts, i.e., no copy time overhead is
added, and represents the lower bound in terms of running time.

Although the centralized approach always transfers compressed data, we do not take into account the com-
pression/decompression time for computing the centralized-bulk runtime, which would have otherwise tied the
results to the choice of the compression library. Figures 6a, 6b, and 6c show that centralized-bulk pays a high
penalty for copying the data, it runs in approximately 8× or more of its stream counterpart.

The communication-efficient distributed-fadl approach executes in 1.3×, 2.4×, and 7.4× of the centralized-
stream baseline for 500K, 1M, and 5M models respectively, which is a remarkable result given that it transfers
orders of magnitude less data (Figure 5), and executes in a truly geo-distributed manner, respecting potentially
strict regulatory constraints. Moreover, if we consider the relative objective function values commonly used
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Figure 4: Relative objective function (compared to the best) versus X-DC transfer (in GB) for 2 and 8 DCs for
two versions of CRITEO and WBCTR datasets (both axis are in log scale). The method distributed-fadl achieves
lower objective values much sooner in terms of X-DC transfers than the other methods. The centralized objective
remains constant with respect to X-DC transfers throughout the optimization as it starts once the data has been
transferred. The distributed method does incur in more transfers than distributed-fadl, although it also reduces
the overhead of the centralized approach. Increasing the models dimensionality, naturally increases the X-DC
transfers. Note that centralized refers to both of its variants (stream and bulk), and we only report compressed
data transfers for this method.
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(c) KAGGLE 5M

Figure 5: Relative objective function (compared to the best) versus X-DC transfer (in GB) for the KAGGLE
dataset in 2 Azure data centers (both axis are in log scale). The increase in the model size explains the right
shift trend in the plots. The method distributed-fadl consumes the least amount of X-DC bandwidth, at least
1 order less in every scenario, and 2 when using the 500K model. The objective/transfer pattern is similar to
Figure 4. Both distributed methods transfer much less X-DC data than the centralized state-of-the-art. Note that
centralized refers to both of its flavors (stream and bulk), and only transfers compressed data.
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Figure 6: Relative objective function (compared to the best) over time (relative to the centralized-stream method)
for the KAGGLE dataset in 2 Azure data centers (y-axis is in log scale). The method distributed-fadl beats
every approach but centralized-stream. This latter method is the best case scenario, where the data has already
been copied and is available in a single data center when the job is executed. The distributed-fadl method lies
very close to the optimum (centralized-stream), especially in low-dimensional models and when considering
commonly accepted objective function values (10−4, 10−5). Both distributed and distributed-fadl performance
degrades when the model size increases (as expected), but distributed does so much worse (6c), which further
shows that in order to do Geo-Distributed Machine Learning, a communication-efficient algorithm is needed.

in practice to achieve accurate models (10−4, 10−5), this method’s convergence time lies in the same ballpark
as the lower bound centralized-stream in terms of running time. Still, distributed-fadl is way ahead in terms
of X-DC transfers (orders of magnitude of savings in X-DC bandwidth), while at the same time it potentially
complies with data sovereignty regulations.

Figure 6a shows that distributed-fadl performs very close to the best scenario, matching the intuition built
in §2 that this method does very well on tasks with (relatively) small models and (relatively) large number of
examples. Furthermore, this efficient method also runs faster than distributed in every setting, which further
highlights the importance and benefits of the algorithm introduced in §3.1.

Finally, distributed performance degrades considerably as the model size increases. In particular, this
method does a poor job when running with 5M features (Figure 6c), which concurs with the intuition behind
the state-of-the-art centralized approach: copying the data offsets the communication-intensive nature of (naive)
Machine Learning algorithms. We see that this intuition does not hold true for the efficient algorithm described
in §3.1.

5 Related Work

Prior work on systems that deal with geographically distributed datasets exists in the literature.
The work done by Vulimiri et al. [8, 13] poses the thesis that increasing global data and scarce WAN band-

width, coupled with regulatory concerns, will derail large companies from executing centralized analytics pro-
cesses. They propose a system that supports SQL queries for doing X-DC analytics. Unlike our work, they
do not target iterative machine learning workflows, neither do they focus on jobs latency. They mainly discuss
reducing X-DC data transfer volume.

Pu et al. [36] proposes a low-latency distributed analytics system called Iridium. Similar to Vulimiri et al.,
they focus on pure data analytics and not on Machine Learning tasks. Another key difference is that Iridium
optimizes task and data placement across sites to minimize query response time, while our system respects
stricter sovereignty constraints and does not move raw data around.

JetStream [7] is a system for wide-area streaming data analysis that performs efficient queries on data stored
“near the edge”. They provide different approximation techniques to reduce the data size transfers at the ex-
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pense of accuracy. One of such techniques is dropping some fraction of the data via sampling. Similar to our
system, they only move important data to a centralized location for global aggregation (in our case, we only
move statistics and models), and they compute local aggregations per site prior to sending (in our case, we
perform local optimizations per data center using the algorithm described in §3.1). Another streaming applica-
tion is distributed monitoring, which has focused on continuous tracking of complex queries over collections of
physically distributed data streams. Effective solutions in their setting also need to guarantee communication
efficiency over the underlying network [37].

Another line of research has focused on multi-site distributed search engines [38,39]. Such work has shown
to reduce the resource consumption in query processing as well as user perceived latency when compared to
single-site centralized search engines [40, 41]. It bears some resemblance to our work but in the context of
information retrieval.

Other existing Big Data processing systems, such as Parameter Server, Graphlab, or Spark [4–6, 42], effi-
ciently process data in the context of a single data center, which typically employs a high-bandwidth, relatively
low-cost network. To the best of our knowledge, they have not been tested in multi-data center deployments
(and were not designed for it), where scarce WAN bandwidth makes it impractical to naively communicate
parameters between locations. Instead, our system was specifically optimized to perform well on this X-DC
setting.

Since our initial work on GDML systems [43, 44], other studies have emerged in the area. Among the most
prominent ones we find Gaia [45], which also focuses on leveraging intelligent communication mechanisms,
with more emphasis on reducing training times rather than X-DC transfers. Further, the work by Konec̆ný et
al. [46–48] introduces the concept of Federated Optimization, where the idea is to train a global model with
data residing in users’ mobile devices, instead of DCs. Their setting is very similar to GDML in the sense that
communication efficiency is of utmost importance, but the cardinality is quite different (millions of devices as
opposed to tens of DCs). This poses other research questions, e.g., what sample of devices to choose at a given
point in time, how to alleviate the fact that mobile devices are frequently offline, etc.

Besides the systems solutions, the design of efficient distributed Machine Learning algorithms has also been
the topic of a broad research agenda [21–25, 49–52]. In general, all these algorithms perform more complex
computations to decrease the overall number of communication rounds. Some recent work uses model quantiza-
tion (i.e., reduce the number of bits of the model parameters at the expense of potentially losing some accuracy)
to reduce the communication cost [53]. The Terascale method [21] might be the best representative method
from the Statistical Query Model class and is considered a state-of-the-art solver. CoCoA [24] represents the
class of distributed dual methods that, in each outer iteration, solve (in parallel) several local dual optimization
problems. Alternating Direction Method of Multipliers (ADMM) [22, 23] is a dual method different from the
primal method we use here, however, it also solves approximate problems in the nodes and iteratively reaches
the full batch solution. Recent follow up work [25] shows that the algorithm described in §3.1 performs better
than the aforementioned ones, both in terms of communication rounds and running time.

6 Discussion and Future Work

GDML is an interesting, challenging and open area of research. Although we have proposed an initial and novel
geo-distributed approach that shows substantial gains over the centralized state-of-the-art in many practical
settings, many open questions remain, both from a systems and a Machine Learning perspective.

Perhaps, the most crucial aspect is fault tolerance. With data centers distributed across continents, consistent
network connectivity is harder to ensure than within a single data center, and network partitioning is more likely
to occur. On the other hand, a DC-level failure might completely compromise the centralized approach (if
the primary DC is down), while the geo-distributed solution might continue to operate on the remaining data
partitions. There has been some initial work [54] to make ML algorithms tolerant to missing data (e.g., machine
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failures). This work assumes randomly distributed data across partitions. Hence, a failure removes an unbiased
fraction of the data. In production settings, this is the case when multi-DC deployments are created for load-
balancing (e.g., within a region)—we are aware of multiple such scenarios within Microsoft’s infrastructure.
However, cross-region deployments are often dictated by latency-to-end-user considerations. In such settings,
losing a DC means losing a heavily biased portion of the population (e.g., all users residing in Western US).
Coping with faults and tolerating transient or persistent data unavailability, as well as understanding the impact
of different data distributions in convergence speeds are still open problems that will likely require both systems
and ML contributions.

In this work we have restricted ourselves to linear models with l2 regularization, and shown results on
logistic regression models. It would be interesting to validate similar observations in other regularizers (e.g., l1).
More broadly, studying geo-distributed solutions that can minimize X-DC transfers for other complex learning
problems such as trees, deep neural networks, etc., is still an open area of research.

Further, a truly geo-distributed approach surely does no worse than a centralized method when analyzed
from regulatory and data sovereignty angles. Questions in this area arise not only at the global scale, where
different jurisdictions might not allow raw data sharing, but also at the very small scale, e.g., between data
stored in a private cluster and data shared in the cloud. We believe that studying the setup presented here from a
privacy-preserving and regulatory-compliance angle will yield important improvements, and potentially inform
regulators.

One aspect we did not cover is related to the work-cycle of these global data repositories and its impact in
the efficacy of geo-distributed learning. If the data gets crunched by X algorithms once it is gathered into a
single DC, including, perhaps, by algorithms that depend on each others inputs and/or encompass interactive
workflows, the centralized methodology might be more effective than the geo-distributed one. This latter ap-
proach would increase communication by X-fold, whereas the centralized method would not incur in any extra
communication. We consider that a more in-depth study of which approach (centralized or geo-distributed) is
more adequate for different problem settings is still missing. Even more, we have not yet addressed the issue
of whether a hybrid method that combines both centralized and geo-distributed learning could be more suitable
under certain circumstances.

Besides presenting early results in this area, this paper is intended as an open invitation to researchers and
practitioners from both systems and ML communities. We foresee the need for substantial advances in theory,
algorithms and system design, as well as the engineering of a whole new practice of Geo-Distributed Machine
Learning (GDML). To that end, we contributed back all the changes done to Apache Hadoop YARN and Apache
REEF as part of this work.

7 Conclusions

Large organizations have a planetary footprint with users scattered in all continents. Latency considerations and
regulatory requirements motivate them to build data centers all around the world. From this, a new class of
learning problems emerge, where global learning tasks need to be performed on data “born” in geographically
disparate data centers, which we call Geo-Distributed Machine Learning (GDML).

To the best of our knowledge, this aspect of Machine Learning has not been studied in great detail before,
despite being faced by practitioners on a daily basis.

In this work, we introduce and formalize this problem, and challenge common assumptions and practices.
Our empirical results show that a geo-distributed system, combined with communication-parsimonious algo-
rithms, can deliver a substantial reduction in costly and scarce cross data center bandwidth. Further, we speculate
distributed solutions are structurally better positioned to cope with the quickly evolving regulatory frameworks.

To conclude, we acknowledge this work is just a first step of a long journey, which will require significant
advancements in theory, algorithms and systems.
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