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Abstract

Developing parallel graph algorithms with correctness guarantees is nontrivial even for experienced
programmers. Is it possible to parallelize existing sequential graph algorithms, without recasting the
algorithms into a parallel model? Better yet, can the parallelization guarantee to converge at correct
answers as long as the sequential algorithms provided are correct? GRAPE tackles these questions, to
make parallel graph computations accessible to a large group of users. This paper presents (a) the par-
allel model of GRAPE, based on partial evaluation and incremental computation, and (b) a performance
study, showing that GRAPE achieves performance comparable to the state-of-the-art systems.

1 Introduction
The need for graph computations is evident in transportation network analysis, knowledge extraction, Web
mining, social network analysis and social media marketing, among other things. Graph computations are,
however, costly in real-life graphs. For instance, the social graph of Facebook has billions of nodes and trillions
of edges [16]. In such a graph, it is already expensive to compute shortest distances from a single source, not to
mention graph pattern matching by subgraph isomorphism, which is intractable in nature.

To support graph computations in large-scale graphs, several parallel systems have been developed, e.g.,
Pregel [23], GraphLab [22], Giraph++ [29], GraphX [15], GRACE [33], GPS [27] and Blogel [34], based on
MapReduce [8] and (variants of) BSP (Bulk Synchronous Parallel) models [30]. These systems, however, do
not allow us to reuse existing sequential graph algorithms, which have been studied for decades and are well
optimized. To use Pregel [23], for instance, one has to “think like a vertex” and recast existing algorithms into
a vertex-centric model; similarly when programming with other systems, e.g., [34], which adopts vertex-centric
programming by treating blocks as vertices. The recasting is nontrivial for people who are not very familiar with
the parallel models. This makes parallel graph computations a privilege of experienced users only.

Is it possible to make parallel graph computations accessible to users who only know conventional graph
algorithms covered in undergraduate textbooks? Can we have a system such that given a graph computation
problem, we can “plug in” its existing sequential algorithms for the problem as a whole, without recasting or
“thinking in parallel”, and the system automatically parallelizes the computation across multiple processors?
Moreover, can the system guarantee that the parallelization terminates and converges at correct answers as long
as the sequential algorithms plugged in are correct? Furthermore, can the system inherit optimization techniques
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well developed for sequential graph algorithms, such as indexing and pruning? Better yet, despite the ease of
programming, can the system achieve performance comparable to the state-of-the-art parallel graph systems?

These questions motivate us to develop GRAPE, a parallel GRAPh Engine [13]. GRAPE advocates a parallel
model based on simultaneous fixpoint computation that starts with partial evaluation and takes incremental
computation as the intermediate consequence operator. It answers all the questions above in the affirmative. As
a proof of concept, we have developed a preliminary implementation of GRAPE [12].

This paper presents (a) a brief introduction to the parallel model of GRAPE, and (b) a performance study of
the system, using real-life larger than those that [13] experimented with.

2 Parallelizing Sequential Graph Algorithms
We present the programming model and parallel computation model of GRAPE, illustrating how GRAPE paral-
lelizes sequential graph algorithms. We encourage the interested reader to consult [13] for more details.

2.1 Programming Model
Consider a graph computation problem Q. Using our familiar terms, we refer to an instance Q of Q as a query
of Q. To answer queries Q ∈ Q with GRAPE, a user only needs to specify three functions as follows.

PEval: an algorithm for Q that given a query Q ∈ Q and a graph G, computes the answer Q(G) to Q in G.

IncEval: an incremental algorithm for Q that given Q, G, Q(G) and updates ∆G to G, computes changes ∆O
to the old outputQ(G) such thatQ(G⊕∆G) = Q(G)⊕∆O, whereG⊕∆G denotes graphG updated by ∆G.

Assemble: a function that collects partial answers computed locally at each worker by PEval and IncEval (see
Section 2.2), and assembles them into complete answer Q(G). It is typically straightforward.

The three functions PEval, IncEval and Assemble are referred to as a PIE program for Q. Here PEval and
IncEval are existing sequential (incremental) algorithms for Q, with the following additions to PEval.

• Update parameters. PEval declares status variables ~x for a set of nodes and edges. As will be seen
shortly, these variables are the candidates to be updated by incremental steps IncEval.
• Aggregate function. PEval specifies a function faggr, e.g., min, max, to resolve conflicts when multiple

workers attempt to assign different values to the same update parameter.

The update parameters and aggregate function are specified in PEval and are shared by IncEval.
From these we can see that programming with GRAPE is as simple as MapReduce, if not simpler. Indeed,

GRAPE asks the users to provide three functions, where PEval and IncEval are existing sequential algorithms
without recasting them into a new model, unlike MapReduce, and Assemble is typically a simple function.

Graph partition. GRAPE supports data-partitioned parallelism. It allows users to pick an (existing) graph
partition strategy P registered in GRAPE, and partitions a (possibly big) graph G into smaller fragments.

More specifically, we consider graphs G = (V,E,L), directed or undirected, where (1) V is a finite set of
nodes; (2) E ⊆ V ×V is a set of edges; (3) each node v in V (resp. edge e ∈ E) carries label L(v) (resp. L(e)),
indicating its content, as found in social networks and property graphs.

Given a numberm, strategyP partitionsG into fragmentsF = (F1, . . . , Fm) such that eachFi = (Vi, Ei, Li)
is a subgraph of G, E =

⋃
i∈[1,m]Ei, and V =

⋃
i∈[1,m] Vi. Here Fi is a subgraph of G if Vi ⊆ V , Ei ⊆ E, and

for each node v ∈ Vi (resp. edge e ∈ Ei), Li(v) = L(v) (resp. Li(e) = L(e)).
Here P can be any partition strategy, e.g., vertex-cut [20] or edge cut [6]. When P is edge-cut, denote by

• Fi.I the set of nodes v ∈ Vi such that there is an edge (v′, v) incoming from a node v′ in Fj (i 6= j);
• Fi.O the set of nodes v′ such that there exists an edge (v, v′) in E, v ∈ Vi and v′ is in Fj (i 6= j); and
• F .O =

⋃
i∈[1,m] Fi.O, F .I =

⋃
i∈[1,m] Fi.I; F .O = F .I .

For vertex-cut, F .O and F .I correspond to exit vertices and entry vertices, respectively.
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Figure 1: Workflow of GRAPE

2.2 Parallel Model
Given a partition strategy P and a PIE program ρ (PEval, IncEval, Assemble) for Q, GRAPE parallelizes ρ as
follows. It first partitions G into (F1, . . . , Fm) with P , and distributes fragments Fi’s across m shared-nothing
virtual workers (P1, . . . , Pm). It maps m virtual workers to n physical workers. When n < m, multiple virtual
workers mapped to the same worker share memory. Graph G is partitioned once for all queries Q ∈ Q on G.

Partial evaluation and incremental computation. We start with basic ideas behind GRAPE parallelization.
Given a function f(s, d) and the s part of its input, partial evaluation is to specialize f(s, d) w.r.t. the known

input s [19]. That is, it performs the part of f ’s computation that depends only on s, and generates a partial
answer, i.e., a residual function f ′ that depends on the as yet unavailable input d. For each worker Pi in GRAPE,
its local fragment Fi is its known input s, while the data residing at other workers accounts for the yet unavailable
input d. As will be seen shortly, given a query Q ∈ Q, GRAPE computes Q(Fi) in parallel as partial evaluation.

Workers exchange changed values of their local update parameters with each other. Upon receiving message
Mi that consists of changes to the update parameters at fragment Fi, worker Pi treats Mi as updates to Fi, and
incrementally computes changes ∆Oi to Q(Fi) such that Q(Fi ⊕ Mi) = Q(Fi) ⊕ ∆Oi. This is often more
efficient than recomputing Q(Fi ⊕Mi) starting from scratch, since in practice Mi is often small, and so is Oi.
Better still, the incremental computation may be bounded: its cost can be expressed as a function in |Mi|+|∆Oi|,
i.e., the size of changes in the input and output, instead of |Fi|, no matter how big Fi is [11, 26].

Model. Following BSP [30], given a query Q ∈ Q at master P0, GRAPE answers Q in the partitioned graph G.
It posts the same query Q to all the workers, and computes Q(G) in three phases as follows, as shown in Fig. 1.

(1) Partial evaluation (PEval). In the first superstep, upon receiving Q, each worker Pi applies function PEval
to its local fragment Fi, to compute partial results Q(Fi), in parallel (i ∈ [1,m]). After Q(Fi) is computed,
PEval generates a message at each worker Pi and sends it to master P0. The message is simply the set of update
parameters at fragment Fi, denoted by Ci.x̄. More specifically, Ci.x̄ consists of status variables associated with
a set Ci of nodes and edges within d-hops of nodes in Fi.O. Here d is an integer determined by query Q only,
specified in function PEval. In particular, when d = 0, Ci is Fi.O.

For each i ∈ [1,m], master P0 maintains update parameters Ci.x̄. It deduces a message Mi to worker Pi

based on the following message grouping policy. (a) For each status variable x ∈ Ci.x̄, it collects the set Sx of
values for x from all messages, and computes xaggr = faggr(Sx) by applying the aggregate function faggr. (b)
Message Mi includes only those xaggr’s such that xaggr 6= x, i.e., only changed parameter values.

(2) Incremental computation (IncEval). GRAPE iterates the following supersteps until it terminates. Following
BSP, each superstep starts after the master P0 receives messages (possibly empty) from all workers Pi for
i ∈ [1,m]. A superstep has two steps itself, one at P0 and the other at the workers.

(a) Master P0 routes (nonempty) messages from the last superstep to workers, if there exists any.
(b) Upon receiving message Mi, worker Pi incrementally computes Q(Fi⊕Mi) by applying IncEval, and by

treating Mi as updates, in parallel for i ∈ [1,m].
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At the end of the process of IncEval, Pi sends a message to P0 that encodes updated values of Ci.x̄, if any. Upon
receiving messages from all workers, master P0 deduces message Mi to each worker Pi following the message
grouping policy given above; it sends message Mi to worker Pi in the next superstep.

(3) Termination (Assemble). At each superstep, master P0 checks whether for all i ∈ [1,m], Pi is inactive, i.e.,
Pi is done with its local computation, and there exists no more change to any update parameter of Fi. If so,
GRAPE pulls partial results from all workers, and applies Assemble to group together the partial results and get
the final result at P0, denoted by ρ(Q,G). It returns ρ(Q,G) and terminates.

Fixpoint. The GRAPE parallelization of the PIE program can be modeled as a simultaneous fixpoint operator
φ(R1, . . . , Rm) defined on m fragments. It starts with PEval for partial evaluation, and conducts incremental
computation by taking IncEval as the intermediate consequence operator, as follows:

R0
i = PEval(Q,F 0

i [x̄i]),

Rr+1
i = IncEval(Q,Rr

i , F
r
i [x̄i],Mi),

where i ∈ [1,m], r indicates a superstep, Rr
i denotes partial results in step r at worker Pi, fragment F 0

i = Fi,
F r
i [x̄i] is fragment Fi at the end of superstep r carrying update parameters x̄i, and Mi is a message indicating

changes to x̄i. More specifically, (1) in the first superstep, PEval computes partial answers R0
i (i ∈ [1,m]). (2)

At step r + 1, the partial answers Rr+1
i are incrementally updated by IncEval, taking Q, Rr

i and message Mi as
input. (3) The computation proceeds until Rr0+1

i = Rr0
i at a fixpoint r0 for all i ∈ [1,m]. Function Assemble is

then invoked to combine all partial answers Rr0
i and get the final answer ρ(Q,G).

Convergence. To characterize the correctness of the fixpoint computation, we use the following notations. (a) A
sequential algorithm PEval for Q is correct if given all queries Q ∈ Q and graphs G, it terminates and returns
Q(G). (b) A sequential incremental algorithm IncEval for Q is correct if given all Q ∈ Q, graphs G, old
output Q(G) and updates ∆G to G, it computes changes ∆O to Q(G) such that Q(G⊕∆G) = Q(G)⊕∆O.
(c) Assemble is correct for Q w.r.t. P if when GRAPE with PEval, IncEval and P terminates at superstep r0,
Assemble(Q(F1[x̄

r0
1 ]), . . . , Q(Fm[x̄r0m ])) = Q(G), where x̄r0i denotes the values of parameters Ci.x̄i at round

r0. (d) We say that GRAPE correctly parallelizes a PIE program ρ with a partition strategy P if for all queries
Q ∈ Q and graphs G, GRAPE guarantees to reach a fixpoint such that ρ(Q,G) = Q(G).

It is shown [13] that under BSP, GRAPE correctly parallelizes a PIE program ρ for a graph computation
problem Q if (a) its PEval and IncEval are correct sequential algorithms for Q, and (b) Assemble correctly
combines partial results, and (c) PEval and IncEval satisfy a monotonic condition. The condition is as follows:
for all variables x ∈ Ci.x̄, i ∈ [1,m], (a) the values of x are computed from the active domain of G and (b)
there exists a partial order px on the values of x such that IncEval updates x in the order of px. That is, x draws
values from a finite domain (condition (a)), and x is updated “monotonically” following px (condition (b)).

Example 1: We show how GRAPE parallelizes the computation of Single Source Shortest Path (SSSP), a
common graph computation problem. Consider a directed graph G = (V,E,L) in which for each edge e, L(e)
is a positive number. The length of a path (v0, . . . , vk) in G is the sum of L(vi−1, vi) for i ∈ [1, k]. For a pair
(s, v) of nodes, denote by dist(s, v) the distance from s to v, i.e., the length of a shortest path from s to v. Given
graph G and a node s in V , SSSP computes dist(s, v) for all v ∈ V .

Adopting edge-cut partition [6], GRAPE takes the set Fi.O of “border nodes” as Ci at each worker Pi, i.e.,
nodes with edges across different fragments. The PIE program of SSSP in GRAPE specializes three functions:
(1) a standalone sequential algorithm for SSSP as PEval, e.g., our familiar Dijkstra’s algorithm [14], to compute
Q(Fi) as partial evaluation; (2) a bounded sequential incremental algorithm of [25] as IncEval that computes
Q(Fi⊕Mi), where messages Mi include updated (smaller) dist(s, u) (due to new “shortcut” from s) for border
nodes u; and (3) Assemble that takes a union of the partial answers Q(Fi) as Q(G).

(1) PEval. As shown in Fig. 2a, PEval (lines 1-14) is verbally identical to Dijsktra’s algorithm [14]. One only
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Input: Fi(Vi, Ei, Li), source vertex s
Output: Q(Fi) consisting of current dist(s, v) for all v ∈ Vi

Declare: (designated) /*candidate set Ci is Fi.O*/
for each node v ∈ Vi, an integer variable dist(s, v);
message Mi := {dist(s, v) | v ∈ Fi.O};
function aggregateMsg = min(dist(s, v));

/*sequential algorithm for SSSP (pseudo-code)*/
1. initialize priority queue Que;
2. dist(s, s) := 0;
3. for each v in Vi do
4. if v! = s then
5. dist(s, v) :=∞;
6. Que.addOrAdjust(s, dist(s, s));
7. while Que is not empty do
8. u := Que.pop() // pop vertex with minimal distance
9. for each child v of u do // only v that is still in Q
10. alt := dist(s, u) + Li(u, v);
11. if alt < dist(s, v) then
12. dist(s, v) := alt;
13. Que.addOrAdjust(v, dist(s, v));
14. Q(Fi) := {dist(s, v) | v ∈ Vi}

(a) PEval for SSSP

Input: Fi(Vi, Ei, Li), partial result Q(Fi), message Mi

Output: Q(Fi ⊕Mi)

Declare: message Mi = {dist(s, v) | v ∈ Fi.O, dist(s, v) decreased};
1. initialize priority queue Que;
2. for each dist(s, v) in M do
3. Que.addOrAdjust(v, dist(s, v));
4. while Que is not empty do
5. u := Que.pop() /* pop vertex with minimum distance*/
6. for each children v of u do
7. alt := dist(s, u) + Li(u, v);
8. if alt < dist(s, v) then
9. dist(s, v) := alt;
10. Que.addOrAdjust(v, dist(s, v));
11. Q(Fi) := {dist(s, v) | v ∈ Vi}

(b) IncEval for SSSP

Figure 2: GRAPE for SSSP

needs to declare status variable as an integer variable dist(s, v) for each node v, initially ∞ (except dist(s, s)
= 0) and (a) update parameters (in message Mi) as Ci.x̄ = {dist(s, v) | v ∈ Fi.O}, i.e., the status variables
associated with nodes in Fi.O at fragment Fi; and (b) min as an aggregate function (aggregateMsg). If there
are multiple values for the same dist(s, v), the smallest value is taken by the linear order on integers.

At the end of its process, PEval sends Ci.x̄ to master P0. At P0, GRAPE maintains dist(s, v) for all v ∈
F .O = F .I . Upon receiving messages from all workers, it takes the smallest value for each dist(s, v). It finds
those variables with smaller dist(s, v) for v ∈ Fj .O, groups them into message Mj , and sends Mj to Pj .

(2) IncEval. We give IncEval in Fig. 2b. It is the sequential incremental algorithm for SSSP in [26], in response

to changed dist(s, v) for v in Fi.I (deduced by leveraging F .I = F .O). Using a queue Que, it starts with
changes in Mi, propagates the changes to affected area, and updates the distances (see [26]). The partial result
now consists of the revised distances (line 11). At the end of the process, it sends to master P0 the updated
values of those status variables in Ci.x̄, as in PEval. It applies the aggregate function min to resolve conflicts.

The only changes to the algorithm of [26] are underlined in Fig. 2b. Following [26], one can show that
IncEval is bounded: its cost is determined by the sizes of “updates” |Mi| and the changes to the output. This
reduces the cost of iterative computation of SSSP (the While and For loops).

(3) Assemble simply takes Q(G) =
⋃

i∈[1,n]Q(Fi), the union of the shortest distance for each node in each Fi.

The GRAPE process converges at correct Q(G). Updates to Ci.x̄ are “monotonic”: the value of dist(s, v)
for each node v decreases or remains unchanged. There are finitely many such variables. Moreover, dist(s, v) is
the shortest distance from s to v as warranted by the sequential algorithms [14, 26] (PEval and IncEval). 2

Expressive power. The simple parallel model of GRAPE does not come with a price of degradation in the
functionality. More specifically, following [31], we say that a parallel modelM1 can optimally simulate model
M2 if there exists a compilation algorithm that transforms any program with cost C onM2 to a program with
cost O(C) onM1. The cost includes computational cost and communication cost.

As shown in [13], GRAPE optimally simulates parallel models MapReduce [8], BSP [30] and PRAM (Par-
allel Random Access Machine) [31]. That is, all algorithms in MapRedue, BSP or PRAM with n workers can
be simulated by GRAPE using n processors with the same number of supersteps and memory cost. Hence al-
gorithms developed for graph systems based on MapReduce or BSP, e.g., Pregel, GraphLab and Blogel, can be
readily migrated to GRAPE without extra cost. We have established a stronger result, i.e., the simulation result
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above holds in the message-passing model described above, referred to as the designated message model in [13].

As promised, GRAPE has the following unique features. (1) For a graph computation problem Q, GRAPE
allows one to plug in existing sequential algorithms PEval and IncEval, subject to minor changes, and it automat-
ically parallelizes the computation. (2) Under a monotone condition, the parallelization guarantees to converge
at the correct answer in any graph, as long as the sequential algorithms PEval and IncEval are correct. (3)
MapReduce, BSP and PRAM [31] can be optimally simulated by GRAPE. (4) GRAPE easily capitalizes on ex-
isting optimization techniques developed for sequential graph algorithms, since it plugs in sequential algorithms
as a whole, and executes these algorithms on entire graph fragments. (5) GRAPE reduces the costs of iterative
graph computations by using IncEval, to minimize unnecessary recomputations. The speedup is particularly
evident when IncEval is bounded [26], localizable or relatively bounded (see [9] for the latter two criteria).

2.3 Programming with GRAPE
As examples, we outline PIE programs for graph pattern matching (Sim and SubIso), connectivity (CC) and
collaborative filtering (CF). We will conduct experimental study with this variety of computations. We adopt
edge-cut [6] for the PIE programs below. PIE programs under vertex-cut [20] can be developed similarly.

Graph simulation (Sim). A graph pattern is a graph Q = (VQ, EQ, LQ), in which (a) VQ is a set of query
nodes, (b) EQ is a set of query edges, and (c) each node u in VQ carries a label LQ(u).

A graph G matches a pattern Q via simulation if there is a binary relation R ⊆ VQ×V such that (a) for each
query node u ∈ VQ, there exists a node v ∈ V such that (u, v) ∈ R, and (b) for each pair (u, v) ∈ R, LQ(u) =
L(v), and for each query edge (u, u′) in Eq, there exists an edge (v, v′) in graph G such that (u′, v′) ∈ R.

It is known that if G matches Q, then there exists a unique maximum relation [18], referred to as Q(G). If
G does not match Q, Q(G) is the empty set. Graph simulation is in O((|VQ|+ |EQ|)(|V |+ |E|)) time [10,18].

Given a directed graph G and a pattern Q, graph simulation is to compute the maximum relation Q(G).
We show how GRAPE parallelizes graph simulation. GRAPE takes the sequential simulation algorithm

of [18] as PEval to compute Q(Fi) in parallel. PEval declares a Boolean variable x(u,v) for each query node u
in VQ and each node v in Fi, indicating whether v matches u, initialized true. It takes the set Fi.I of “border
nodes” as candidate set Ci, and Ci.x̄(u,v) as the set of update parameters at Fi. At master P0, GRAPE maintains
x(u,v) for all v ∈ F .I . Upon receiving messages from all workers, it changes x(u,v) to false if it is false in one
of the messages. That is, it uses min as the aggregate function, taking the order false ≺ true. GRAPE identifies
those variables that become false, groups them into messages Mj , and sends Mj to Pj .

IncEval is the semi-bounded sequential incremental algorithm of [11]: its cost is decided by the sizes of
“updates” |Mi| and changes necessarily checked by all incremental algorithms for Sim, not by |Fi|.

The process guarantees to terminate since the update parameters Ci.x̄’s are monotonically updated. At this
point, Assemble simply takes Q(G) =

⋃
i∈[1,n]Q(Fi), the union of the simulation relation at each Fi.

Subgraph isomorphism. Here a match of pattern Q in graph G is a subgraph of G that is isomorphic to Q, and
the problem is to compute the set Q(G) of all matches of Q in G. The problem is intractable.

GRAPE parallelizes subgraph isomorphism with two supersteps, one for PEval and the other for IncEval.
(a) PEval is a sequential Breadth First Search (BFS) algorithm that “fetches” a set

⋃
v∈Fi.I

NdQ(v) of nodes
and edges at Fi in parallel. Here NdQ(v) is the set of nodes and edges that are within dQ hop of v, and dQ is
the diameter of pattern Q, i.e., the length of the undirected shortest path between any two nodes in Q. PEval
declares such dQ-neighbors as Ci.x̄ at each Fi, and identifies the update parameters via BFS. (b) IncEval is
simply VF2, the sequential algorithm of [7] for subgraph isomorphism. It computes Q(Fi⊕Mi) at each worker
Pi in parallel, in fragment Fi extended with dQ-neighbor of each node in Fi.I . (c) Assemble takes the union of
all partial matches computed by IncEval from all workers. The correctness is assured by VF2 and the locality of
subgraph isomorphism: a pair (v, v′) of nodes in G is in a match of Q only if v is in the dQ-neighbor of v′.

When message
⋃

v∈Fi.I
NdQ(v) is large, GRAPE further paralellizes PEval by expanding NdQ(v) step by

step, one hop at each step, to reduce communication cost and stragglers. More specifically, IncEval is revised
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such that it identifies new “border nodes”, and finds the 1-hop neighbor of each border node via incremental BFS
to propagate the changes. This proceeds until

⋃
v∈Fi.I

NdQ(v) is in place, and at this point VF2 is triggered.

Graph connectivity (CC). Given an undirected graph G, CC computes all connected components of G. It picks
a sequential CC algorithm as PEval, e.g., DFS. It declares an integer variable v.cid for each node v, recording
the component in which v belongs. The update parameters at fragment Fi include v.cid for all v ∈ Fi.I . At
each fragment Fi, PEval computes its local connected components and creates their ids. It exchanges v.cid for
all border nodes v ∈ Fi.I with neighboring fragments. Given message Mi consisting of the changed v.cid’s
for border nodes, IncEval incrementally updates local components in fragment Fi. It merges two components
whenever possible, by using min as the aggregate function that takes the smallest component id. The process
proceeds until no more changes can be made. At this point, Assemble merges all the nodes having the same cid
into a single connected component, and returns all the connected components.

The process terminates since the cids of the nodes are monotonically decreasing. Moreover, IncEval is
bounded: its cost is a function of the number of v.cid’s whose values are changed in response to Mi.

Collaborative filtering (CF). CF takes as input a bipartite graph G that includes users U and products P , and a
set of weighted edges E ⊆ U × P [21]. (1) Each user u ∈ U (resp. product p ∈ P ) carries latent factor vector
u.f (resp. p.f ). (2) Each edge e = (u, p) in E carries a weight r(e), estimated as u.fT ∗ p.f (∅ for “unknown”)
that encodes a rating from user u to product p. The training set ET refers to edge set {e | r(e) 6= ∅, e ∈ E},
i.e., all the known ratings. Given these, CF computes the missing factor vectors u.f and p.f to minimize an
error function ε(f,ET ) = min

∑
((u,p)∈ET )(r(u, p)−u.fT p.f)2 +λ(‖u.f‖2 +‖p.f‖2). This is typically carried

out by the stochastic gradient descent (SGD) algorithm [21], which iteratively (1) predicts error ε(u, p) =
r(u, p)− u.fT ∗ p.f , for each e = (u, p) ∈ ET , and (2) updates u.f and p.f accordingly to minimize ε(f,ET ).

GRAPE parallelizes CF by adopting SGD [21] as PEval, and the incremental algorithm ISGD of [32] as
IncEval, using master P0 to synchronize the shared factor vectors u.f and p.f . More specifically, PEval declares
v.x = (v.f, t) for each node v (initially ∅), and t bookkeeps a timestamp at which v.f is lastly updated. At
fragment Fi, the update parameters include v.x for all v ∈ Fi.O. At P0, GRAPE maintains v.x = (v.f, t) for
all v ∈ F .I = F .O. Upon receiving updated (v.f ′, t′) with t′>t, it changes v.f to v.f ′, i.e., takes max as
the aggregate function on timestamps. Given Mi at worker Pi, IncEval operates on Fi ⊕Mi by treating Mi

as updates to factor vectors of nodes in Fi.I , and only modifies affected vectors. The process proceeds until
ε(f,ET ) becomes smaller than a threshold, or after a predefined number of step. Assemble simply takes the
union of all the vectors from the workers. As long as the sequential SGD algorithm terminates, the PIE program
converges at the correct answer since the updates are monotonic with the latest changes as in the sequential SGD.

3 Performance Study
We next empirically evaluate GRAPE, for its (1) efficiency, and (2) communication cost, using real-life graphs
larger than those that [13] experimented with. We evaluated the performance of GRAPE compared with Giraph
(an open-source version of Pregel), GraphLab, and Blogel (the fastest block-centric system we are aware of).

Experimental setting. We used five real-life graphs of different types, including (1) movieLens [3], a dense
recommendation network (bipartite graph) that has 20 million movie ratings (as weighted edges) between a set
of 138000 users and 27000 movies; (2) UKWeb [5], a large Web graph with 133 million nodes and 5 billion
edges, (3) DBpedia [1], a knowledge base with 5 million entities and 54 million edges, and in total 411 distinct
labels, (4) Friendster [2], a social network with 65 million users and 1.8 billion relations; and (5) traffic [4], an
(undirected) US road network with 23 million nodes (locations) and 58 million edges. To make use of unlabeled
Friendster for Sim and SubIso, we assigned up to 100 random labels to nodes. We also randomly assigned
weights to all the graphs for testing SSSP.

Queries. We randomly generated the following queries. (a) We sampled 10 source nodes in each graph, and
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constructed an SSSP query for each node. (b) We generated 20 pattern queries for Sim and SubIso, controlled
by |Q| = (|VQ|, |EQ|), the number of nodes and edges, respectively, using labels drawn from the graphs.

We remark that GRAPE can process query workload without reloading the graph, but GraphLab, Giraph and
Blogel require the graph to be reloaded each time a single query is issued, which is costly over large graphs.

Algorithms. We implemented the core functions PEval, IncEval and Assemble for those query classes given in
Sections 2.3, registered in the API library of GRAPE. We used XtraPuLP [28] as the default graph partition
strategy. We adopted basic sequential algorithms for all the systems without optimization.

We also implemented algorithms for the queries for Giraph, GraphLab and Blogel. We used “default” code
provided by the systems when available, and made our best efforts to develop “optimal” algorithms otherwise
(see [13] for more details). We implemented synchronized algorithms for both GraphLab and Giraph for the
ease of comparison. We expect the observed relative performance trends to hold on other similar graph systems.

We deployed the systems on a cluster of up to 12 machines, each with 16 processors (Intel Xeon 2.2GHz)
and 128G memory (thus in total 192 workers). Each experiment was run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency of GRAPE by varying the number n of worker used, from
64 to 192. For SSSP and CC, we experimented with UKWeb, traffic and Friendster. For Sim and SubIso, we
used over Friendster and DBpedia. We used movieLens for CF as its application in movie recommendation.

(1) SSSP. Figures 3a-3c report the performance of the systems for SSSP over Friendster, UKWeb and traffic,
respectively. The results on other graphs are consistent (not shown). From the results we can see the following.

(a) GRAPE outperforms Giraph, GraphLab and Blogel by 14842, 3992 and 756 times, respectively, over traffic
with 192 workers (Fig 3a). In the same setting, it is 556, 102 and 36 times faster over UKWeb (Fig. 3b), and 18,
1.7 and 4.6 times faster over Friendster (Fig. 3c). By simply parallelizing sequential algorithms without further
optimization, GRAPE already outperforms the state-of-the-art systems in response time.

The improvement of GRAPE over all the systems on traffic is much larger than on Friendster and UKWeb.
(i) For Giraph and GraphLab, this is because synchronous vertex-centric algorithms take more supersteps to
converge on graphs with larger diameters, e.g., traffic. With 192 workers, Giraph take 10749 supersteps over
traffic and 161 over UKWeb; similarly for GraphLab. In contrast, GRAPE is not vertex-centric and it takes 31
supersteps on traffic and 24 on UKWeb. (ii) Blogel also takes more (1690) supersteps over traffic than over
UKWeb (42) and Friendster (23). It generates more blocks over traffic (with larger diameter) than UKWeb and
Friendster. As Blogel treats blocks as vertex, the benefit of parallelism is degraded with more blocks.

(b) In all cases, GRAPE take less time when n increases. On average, it is 1.4, 2.3 and 1.5 times faster for n
from 64 to 192 over traffic, UKWeb and Friendster, respectively. (i) Compared with the results in [13] using
less workers, this improvement degrades a bit. This is mainly because the larger number of fragments leads to
more communication overhead. On the other hand, such impact is significantly mitigated by IncEval that only
ships changed update parameters. (ii) In contrast, Blogel does not demonstrate such consistency in scalability.
It takes more time on traffic when n is larger. When n varies from 160 to 192, it takes longer over Friendster.
Its communication cost dominates the parallel cost as n grows, “canceling out” the benefit of parallelism. (iii)
GRAPE has scalability comparable to GraphLab over Friendster and scales better over UKWeb and traffic.
Giraph has better improvement with larger n, but with constantly higher cost (see (a)) than GRAPE.

(c) GRAPE significantly reduces supersteps. It takes on average 22 supersteps, while Giraph, GraphLab and
Blogel take 3647, 3647 and 585 supersteps, respectively. This is because GRAPE runs sequential algorithms over
fragmented graphs with cross-fragment communication only when necessary, and IncEval ships only changes to
status variables. In contrast, Giraph, GraphLab and Blogel pass vertex-vertex (vertex-block) messages.

(2) CC. Figures 3d-3f report the performance for CC detection, and tell us the following. (a) Both GRAPE and
Blogel substantially outperform Giraph and GraphLab. For instance, when n = 192, GRAPE is on average
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(c) Varying n: SSSP (Friendster)
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(g) Varying n: Sim (Friendster)
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(h) Varying n: Sim (DBpedia)
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(i) Varying n:SubIso(Friendster)
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(j) Varying n: SubIso (DBpedia)
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(k) Varying n: CF(movieLens)
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Figure 3: Efficiency of GRAPE

12094 and 1329 times faster than Giraph and GraphLab, respectively. (b) Blogel is faster than GRAPE in some
cases, e.g., 3.5s vs. 17.9s over Friendster when n = 192. This is because Blogel embeds the computation of
CC in its graph partition phase as precomputation, while this graph partition cost (on average 357 seconds using
its built-in Voronoi partition) is not included in its response time. In other words, without precomputation, the
performance of GRAPE is already comparable to the near “optimal” case reported by Blogel.

(3) Sim. Fixing |Q| = (6, 10), i.e., patterns Q with 6 nodes and 10 edges, we evaluated graph simulation over
DBpedia and Friendster. As shown in Figures 3g-3h, (a) GRAPE consistently outperforms Giraph, GraphLab
and Blogel over all queries. It is 109, 8.3 and 45.2 times faster over Friendster, and 136.7, 5.8 and 20.8 times
faster over DBpedia on average, respectively, when n = 192. (b) GRAPE scales better with the number n
of workers than the others. (c) GRAPE takes at most 21 supersteps, while Giraph, GraphLab and Blogel take
38, 38 and 40 supersteps, respectively. This empirically validates the convergence guarantee of GRAPE under
monotonic status variable updates and its positive effect on reducing parallel and communication cost.

(4) SubIso. Fixing |Q| = (3, 5), we evaluated subgraph isomorphism. As shown in Figures 3i-3j over Friendster
and DBpedia, respectively, GRAPE is on average 34, 16 and 4 times faster than Giraph, GraphLab and Blogel
when n = 192. It is 2.2 and 1.3 times faster when n varies from 64 to 192 over Friendster and DBpedia,
respectively. This is comparable with GraphLab that is 1.4 and 2.8 times faster, respectively.

(5) Collaborative filtering (CF). We used movieLens [3] with a training set |ET | = 90%|E|. We compared
GRAPE with the built-in CF in GraphLab, and with CF implemented for Giraph and Blogel. Note that CF favors
“vertex-centric” programming since each node only needs to exchange data with their neighbors, as indicated
by that GraphLab and Giraph outperform Blogel. Nonetheless, Figure 3k shows that GRAPE is on average 4.1,
2.6 and 12.4 times faster than Giraph, GraphLab and Blogel, respectively. Moreover, it scales well with n.

(6) Scale-up of GRAPE. The speed-up of a system may degrade over more workers [24]. We thus evaluate the
scale-up of GRAPE, which measures the ability to keep the same performance when both the size of graph G
(denoted as (|V |, |E|)) and the number n of workers increase proportionally. We varied n from 64 to 192, and
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(d) Varying n: CC (traffic)
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(h) Varying n: Sim (DBpedia)
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(k) Varying n: CF(movieLens)

 0

 2000

 4000

 6000

 8000

 10000

 12000

(64, G1) (96, G2) (128, G3) (160, G4) (192, G5)

C
o

m
m

u
n

ic
at

io
n

 (
M

) GRAPE

(l) SSSP (Synthetic)

Figure 4: Communication costs

for each n, deployed GRAPE over a synthetic graph. The graph size varies from (50M, 500M) to (250M, 2.5B)
(denoted as G5), with fixed ratio between edge number and node number and proportional to n . The scale up at
e.g., (128, G3) is the ratio of the time using 64 workers over G1 to its counterpart using 128 workers over G3.
As shown in Fig. 3l, GRAPE preserves a reasonable scale-up (close to linear scale-up, the optimal scale-up).

Exp-2: Communication cost. The communication cost (in bytes) reported by Giraph, GraphLab and Blogel
depends on their own implementation of message blocks and protocols [17], where Giraph ships less data (in
bytes) than GraphLab over specific datasets and queries, and vice versa for others. For a fair and consistent
comparison, we report the total number of exchanged messages.

In the same setting as Exp-1, Figure 4 reports the communication costs of the systems. We observe that
Giraph and GraphLab ship roughly the same amount of messages. GRAPE incurs much less cost than Giraph
and GraphLab. For SSSP with 192 workers, it ships on average 10%, 0.0017%, 45%, and 9.3% of the data
shipped for Sim, CC, SubIso and CF by Giraph (GraphLab), respectively, and reduces their cost by 6 orders
of magnitude! While it ships more data than Blogel for CC due to the precomputation of Blogel, it only ships
13.5%, 54%, 0.014% and 16% of the data shipped by Blogel for Sim, SubIso, SSSP and CF, respectively.

(1) SSSP. Figures 4a-4c show that both GRAPE and Blogel incurs communication costs that are orders of
magnitudes less than those of GraphLab and Giraph. This is because vertex-centric programming incurs a large
number of inter-vertex messages. Both block-centric programs (Blogel) and PIE programs (GRAPE) effectively
reduce unnecessary messages, and trigger inter-block messages only when necessary. We also observe that
GRAPE ships 0.94% and 17.9% of the data shipped by Blogel over UKWeb and Friendster, respectively. Indeed,
GRAPE ships only updated values. This significantly reduces the amount of messages that need to be shipped.

(2) CC. Figures 4d-4f show similar improvement of GRAPE over GraphLab and Giraph for CC. It ships on
average 0.0017% of the data shipped by Giraph and GraphLab. As Blogel precomputes CC (see Exp-1(2)), it
ships little data. Nonetheless, GRAPE is not far worse than the near “optimal” case of Blogel, sometimes better.
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(3) Sim. Figures 4g and 4h report the communication cost for graph simulation over Friendster and DBpedia,
respectively. One can see that GRAPE ships substantially less data, e.g., on average 8.5%, 8.5% and 11.4%
of the data shipped by Giraph, GraphLab and Blogel, respectively. Observe that the communication cost of
Blogel is much higher than that of GRAPE, even though it adopts inter-block communication. This shows that
the extension of vertex-centric to block-centric by Blogel has limited improvement for more complex queries.
GRAPE works better than these systems by employing incremental IncEval to reduce excessive messages.

(4) SubIso. Figures 4i and 4j report the results for SubIso over Friendster and DBpedia, respectively. On
average, GRAPE ships 26%, 26% and 31% of the data shipped by Giraph, GraphLab and Blogel, respectively.

(5) CF. Figure 4k reports the result for CF over movieLens. On average, GRAPE ships 6.5%, 6.5% and 7.3% of
the data shipped by Giraph, GraphLab and Blogel, respectively.

(6) Communication cost (synthetic). In the same setting as Figure 3l, Figure 4l reports the communication cost
for SSSP. It takes more cost over larger graphs and more workers due to increased “border nodes”, as expected.

Summary. Our experimental study verifies the findings in [13] using larger real-life graphs, with some new
observations. (1) Over large-scale graphs, GRAPE remains comparable to state-of-the-art systems (Giraph,
GraphLab, Blogel) by automatically parallelizing sequential algorithms. (2) GRAPE preserves reasonable scala-
bility and demonstrates good scale-up when using more workers because its incremental computation mitigates
the impact of more border nodes and fragments. In contrast, Blogel may take longer time with larger number of
workers since its communication cost cancels out the improvement from block-centric parallelism. (3) GRAPE
outperforms Giraph, GraphLab and Blogel in communication costs, by orders of magnitude on average.

4 Conclusion
We contend that GRAPE is promising for making parallel graph computations accessible to a large group of
users, without degradation in performance or functionality. We have developed stronger fundamental results in
connection with the convergence and expressive power of GRAPE, which will be reported in a later publication.
We are currently extending GRAPE to support a variant of asynchronous parallel model (ASP).
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