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Abstract

Data preparation is a crucial phase for data analysis applications. Data scientists spend most of
their time on collecting and preparing data in order to efficiently and accurately extract valuable insights.
Data preparation involves multiple steps of transformations until data is ready for analysis. Users often
need to integrate heterogeneous data; to query data of various formats, one has to transform the data
to a common format. To accurately execute queries over the transformed data, users have to remove
any inconsistencies by applying cleaning operations. To efficiently execute queries, they need to tune
access paths over the data. Data preparation, however is i) time-consuming since it involves expensive
operations, and ii) lacks knowledge of the workload; a lot of preparation effort is wasted on data never
meant to be used.

To address the functionality and performance requirements of data analysis, we re-design data
preparation in a way that is weaved into data analysis. We eliminate the transform-and-load cost using
in-situ query processing approaches which adapt to any data format and facilitate querying diverse
datasets. To address the scalability issues of cleaning and tuning tasks, we inject cleaning operations into
query processing, and adapt access paths on-the-fly. By integrating the aforementioned tasks into data
analysis, we adapt data preparation to each workload and thereby minimize response times.

1 Introduction

Driven by the promise of big data analytics, enterprises gather data at an unprecedented rate that challenge state-
of-the art analytics algorithms [43]. Decision support systems used in industry, and modern-day analytics involve
interactive data exploration, visual analytics, aggregate dashboards, and iterative machine learning workloads.
Such applications, rely heavily on efficient data access, and require real-time response times irrespective of the
data size. Besides the high volume of data, data analysis requires combining information from multiple datasets of
various data formats which are often inconsistent [15, 25]. Therefore, satisfying these requirements is a challenge
for existing database management systems.

To offer real-time support, database management systems require compute and data-intensive preprocessing
operations which sanitize the data through data loading and cleaning, and enable efficient data access through
tuning. These data preparation tasks rely heavily on assumptions over data distribution and future workload.
However, real-time analytics applications access data instantly after its generation and often workloads are
constantly shifting based on the query results [10]. Thereby, making a priori static assumptions about data or
queries may harm query performance [3, 17].
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Figure 1: Data Processing pipeline.

Data preparation involves several steps of processing until raw data is transformed into a form that fits
data analysis. To enable queries that combine a variety of data formats, such as relational, or semi-structured
hierarchical formats which have become the state-of-the-art for data exchange, data scientists rely on database
management engines which offer a broad-range of analysis operations. To overcome this heterogeneity of data
formats, database management systems perform data loading which transforms raw data into a single relational
data format to allow for more flexibility in the operations that users can execute. As the data collected by the
application is often a result of combining multiple, potentially erroneous sources, it contains inconsistencies and
duplicates. To return correct results, database management systems must recognize such irregularities and remove
them through data cleaning before analyzing the data. Finally, to improve query performance and enable near
real-time query responses, database management systems avoid or reduce unnecessary data access by tuning
access paths (e.g., indexes) over the dataset. Figure 1 presents the data pipeline of a state-of-the-art data analytics
framework. The data to be analyzed is collected from a variety of sources, and might appear in various formats
(e.g., XML, CSV, etc.). The multiple input formats are transformed into a single uniform format by loading them
into a DBMS. Then, to remove any inconsistencies cleaning operations are applied. Finally, a tuner builds access
paths for efficient access. The final result is stored in a clean and tuned database, and is ready to receive query
requests.

The preprocessing steps are exploratory and data-intensive, as they involve expensive operations, and highly
depend on the data and the query workload. Data preparation tasks access the entire dataset multiple times: data
loading results in copying and transforming the whole dataset into a common format. Cleaning tasks perform
multiple passes over the data until they fix all the inconsistencies. Finally, to build indexes, an extra traversal of
the dataset is needed. Therefore, the increasing data volume limits the scalability of data preparation. Furthermore,
the benefits of data preparation depend highly on the to-be executed workload. Data transformation and cleaning
are only useful if the queries are data intensive and access the majority of data. Finally, tuning requires a priori
knowledge of queries to decide upon the most efficient physical design.
Data preparation is time consuming. Due to the influx of data, data preparation becomes increasingly expensive.
Figure 2 demonstrates the breakdown of the overall execution time of a typical data analysis scenario. The
breakdown corresponds to the time that a system requires to preprocess the data and execute a set of 10 queries.
The execution time reported at each step is based on recent studies on loading, cleaning, and tuning [29, 31].
Specifically, assuming an optimistic scenario in which data cleaning corresponds to 50% of the analysis time,
then based on [31], the rest 50% is mostly spent on loading and tuning. The loading percentage may become
even higher in the presence of non-relational data formats, such as XML, because a DBMS will have to flatten the
dataset in order to load it. Query execution takes 3% of the overall time. Therefore, data preparation incurs a
significant overhead to data analysis.

Despite enterprises collecting and preparing increasingly larger amounts of data for analysis, often the
effectively useful data is considerably smaller than the full dataset [4, 33]. The trend of exponential data growth
due to intense data generation and data collection is expected to persist, however, recent studies of the data
analysis workloads show that typically only a small subset of the data is relevant and ultimately used by analytical
and/or exploratory workloads [10]. Therefore, having to preprocess the whole dataset results in wasting effort
on data which are unnecessary for the actual analysis. Furthermore, modern-day analytics, are increasingly
tolerant to result imprecision. In many cases, precision to “last decimal” is redundant for a query answer. Quick
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approximation with some error guarantee is adequate to provide insights about the data [11]. Thus, using query
approximation, one can execute analytical queries over small samples of the dataset, and obtain approximate
results within a few percents of the actual value [32].
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Figure 2: Cost of Data Preprocessing

Ever Changing Workload. Modern businesses and scientific applica-
tions require interactive data access, which is characterized by no or
little a priori workload knowledge and constant workload shifting both
in terms of projected attributes and selected ranges of the data. For
example, an electricity monitoring company continuously collects infor-
mation about the current and aggregate energy consumption, and other
sensor measurements such as temperature. To optimize consumption,
the company performs predictive analytics over smart home datasets,
looking for patterns that indicate energy request peaks and potential
equipment downtime [21]. Analyses in this context start by identifying
relevant measurements by using range queries and aggregations to iden-
tify areas of interests. The analysis focuses on specific data regions for
a number of queries, but is likely to shift across the dataset to a different
subset. Due to the unpredictable nature of data analytics workloads,
where queries may change depending on prior query results, applica-
tions prepare all data for data access to avoid result inconsistencies.
This preparation requires investment of time and resources into data

that may be useless for the workload, thereby delaying data analysis.
Adapt to Data and Workload. To address the aforementioned shortcomings, we revisit the data processing
pipeline, and aim to streamline the process of extracting insights from data. We reduce the overall time of data
analysis by introducing approaches which adapt online to workload and dataset, which reduce the cost of each of
the steps of data analysis from data collection to result. Specifically, to reduce the cost of loading, we execute
queries over raw data files [5, 25, 26, 27], to reduce the cost of data cleaning we piggy-back operations over
query execution and we only sanitize data affected by the queries [17]. Finally, to reduce the cost of tuning, we
take advantage of data distribution as well as relaxed precision constraints of applications and adapt access paths
online and as a by-product of query execution to data and workload [31, 32]. Figure 3 demonstrates the revised
data analysis process which weaves data preprocessing into query execution by adapting to the underlying data,
as well as to the query workload.

At the core of our approach lies in-situ query processing, which allows the execution of declarative queries
over external files without duplicating or “locking” data in a proprietary database format. We extend in-situ
approaches [5, 23] by treating any data format as a first-class citizen. To minimize query response times, we build
a just-in-time query engine specialized for executing queries over multiple data formats. This approach removes
the need for transforming and loading, while also offering low data access cost. To reduce the cost of data
cleaning, we enhance query execution by injecting data cleaning operations inside the query plan. Specifically,
we introduce a query answer relaxation technique which allows repairing erroneous tuples at query execution
time. By relaxing the query answer, we ensure that the query returns all entities that may belong to the query
result (e.g., no missing tuples). Finally, similarly to data cleaning, building indexes over a dataset is becoming
increasingly harder due to (i) shifting workloads and (ii) increasing data sizes which increase access path size as
well. The decision on what access paths to build depends on the expected workload, thus, traditional database
systems assume knowledge of future queries. However, the shifting workload of modern data analytics can
nullify investments towards indexing and other auxiliary data structures. Furthermore, access path size increases
along with input data, thus, building precise access paths over the entire dataset limits the scalability of databases
systems. To address these issues, we adapt access paths to data distribution and precision requirements of the
result. This enables building data structures specifically designed to take advantage of different data distributions
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Figure 3: Integrating Cleaning and Tuning to Data Access.

and create data summaries requiring less storage space.
In this paper we describe techniques that enable instant access to data irrespective of data format, and

enable data cleaning and tuning without interrupting query execution. Each technique addresses a step in the
preprocessing phase of data analysis, reducing the total data-to-insight time for users. Specifically, in Section 2,
we describe the design behind our just-in-time query engine which enables efficient query execution despite data
heterogeneity. In Section 3, we demonstrate a novel approach to intertwine query execution with data cleaning
through query answer relaxation. Our approach incrementally cleans only data that will be analyzed. In Section 4,
we present our approach to adapt access paths online to data distribution and to precision requirements, as well as
to available storage resources. Finally, in Section 5, we conclude by highlighting techniques and related open
problems for adaptive data management systems.

2 Adapting Data Access and Query Engine to Data Format

Data analysis requires combining information from numerous heterogeneous datasets. For example, applications
such as sensor data management and decision support based on web click-streams involve queries over data
of varying models and formats. To support analysis workloads over heterogeneous datasets, practitioners are
left with two alternatives: a) use a database engine that supports multiple operations [37], or b) execute their
analysis over dedicated, specialized systems for each of their applications [35]. The first approach might hurt
performance for scenarios involving non-relational data, but allows for extensive functionality and expressiveness.
The second approach requires using multiple tools, as well as writing custom scripts to combine the results.
Hence, performing analysis effortlessly and efficiently is challenging.

We present an approach that bridges the conflicting requirements for flexibility and performance when
analyzing data of various formats. We achieve that by combining an optimizable query algebra, richer than the
relational one, with on-demand adaptation techniques to eliminate numerous query execution overheads.

2.1 An Expressive Query Algebra

To support queries over heterogeneous data, we need a query algebra that treats all supported data types as
first-class citizens in terms of both expressive power and optimization capabilities. Specifically, our approach
is based on the monoid comprehension calculus [16]. A monoid is an algebraic construct term stemming from
category theory which can be used to capture operations between both primitive and collection data types.
Therefore, monoids are a natural fit for querying various data formats because they support operations over
several data collections (e.g., bags, sets, lists, arrays) and arbitrary nestings of them.

The monoid calculus provides the expressive power to manipulate different data formats, and optimizes
the resulting queries in a uniform way. First, the monoid calculus allows transformations across data models
by translating them into operations over different types of collections, hence we can produce multiple types of
output. The calculus is also expressive enough for other query languages to be mapped to it as syntactic sugar:
For relational queries over flat data (e.g., binary and CSV files), our design supports SQL statements, which it
translates to comprehensions. Similarly, for XML data, XQuery expressions can be translated into our internal
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algebra. Thus, monoid comprehensions allow for powerful manipulations of complex data as well as for queries
over datasets containing hierarchies and nested collections (e.g., JSON arrays).

For each incoming query, the first step is mapping it into the internal language that is based on monoid
comprehensions. Then, the resulting monoid comprehension is rewritten to an algebraic plan of the nested
relational algebra [16]. This algebra resembles the relational algebra, with the difference that it allows more
complex operators, which are applicable over hierarchical data. For example, apart from the relational operators,
such as selection and join, it provides the unnest and outer unnest operators which “unroll” a collection field
path that is nested within an object. Therefore, the logical query plan allows for optimizations that combine the
aforementioned operators.

The optimizer is responsible for performing the query rewriting and the conversion of a logical to a physical
query plan. To apply the optimizations, the optimizer takes into consideration both the existence of hierarchical
data, as well as that the queries might be complex, containing multiple nestings. Therefore, the optimization
involves a normalization algorithm [16] which transforms the comprehension into a “canonical” form. The
normalization also applies a series of optimization rewrites. Specifically, it applies filter pushdown and operator
fusion. In addition, it flattens multiple types of nested comprehensions. Thus, using the normalization process,
the comprehension is mapped to an expression that allows efficient query execution.

The monoid comprehension calculus is a rich model, and therefore incurs extra complexity. The more complex
an algebra is, the harder it becomes to evaluate queries efficiently: Dealing with complex data leads to complex
operators, sophisticated yet inefficient storage layouts, and costly pointer chasing during query evaluation. To
overcome all previous limitations, we couple a broad algebra with on-demand customization.

2.2 Query Engines On-Demand

We couple this powerful query algebra with on-demand adaptation techniques to eliminate the query execution
overheads stemming from the complex operators. For analytical queries over flat (e.g., CSV) data, the system
must behave as a relational system. Similarly, for hierarchical data, it must be as fast as a document store.
Specifically, our design is modular, with each of the modules using a code generation mechanism to customize
the overall system across a different axis.

First, to overcome the complexity of the broad algebra,we avoid the use of general-purpose abstract operators.
Instead, we dynamically create an optimized engine implementation per query using code generation. Specifically,
using code generation, we avoid the interpretation overhead by traversing the query plan only once and generating
a custom implementation of every visited operator. Once all plan operators have been visited, the system can
produce a hard-coded query engine implementation which is expressed in machine code.

To treat all supported data formats as native storage, we customize the data access layer of the system based
on the underlying data format while executing the query. Specifically, we mask the details of the underlying
data values from the query operators and the expression generators. To interpret data values and generate code
evaluating algebraic expressions, we use input plug-ins where each input plug-in is responsible for generating
data access primitives for a specific file format.

Finally, to utilize the storage that better fits the current workload, we materialize in-memory caches and treat
them as an extra input. The shape of each cache is specified at query time, based on the format of the data that the
query accesses. We trigger cache creation i) implicitly, as a by-product of an operator’s work, or ii) explicitly, by
introducing caching operators in the query plan. Implicit caching exploits the fact that some operators materialize
their inputs: nest and join are blocking and do not pipeline data. Explicit caching places buffering operators at
any point in the query plan. An explicit caching operator calls an output plug-in to populate a memory block with
data. Then, it passes control to its parent operator. Creating a cache adds an overhead to the current query, but it
can also benefit the overall query workload.

Our design combines i) an expressive query algebra which masks data heterogeneity with ii) on-demand
customization mechanisms which produce a specialized implementation per query. Based on this design, we
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build Proteus, a query engine that natively supports different data formats, and specializes its entire architecture
to each query and the data that it touches via code generation. Proteus also customizes its caching component,
specifying at query time how these caches should be shaped to better fit the overall workload.

3 Cleaning Data while Discovering Insights

Data cleaning is an interactive and exploratory process which involves expensive operations. Error detection
requires multiple pairwise comparisons to check the satisfiability of the given constraints [18]. Data repairing
adds an extra overhead since it requires multiple iterations in order to assign candidate values to the erroneous
cells until all constraints are satisfied [12, 15, 28, 38]. At the same time, data cleaning depends on the analysis
that users perform; data scientists detect inconsistencies, and determine the required data cleaning operations
while exploring through the dataset [40]. Therefore, the usage of offline data cleaning approaches requires long
running times in order to discover and fix the discrepancies that might affect data analysis.

To address the efficiency problem, as well as the subjective nature of data cleaning, there is need for a
data cleaning approach which is weaved into the data analysis process, and which also applies data cleaning
on-demand. Integrating data cleaning with data analysis efficiently supports exploratory data analysis [13], and
ad-hoc data analysis applications [20] by reducing the number and the cost of iterations required in order to
extract insights out of dirty data. In addition, by cleaning data on the fly, one only loads and cleans necessary data
thereby minimizing wasted effort whenever only a subset of data is analyzed.

We intermingle cleaning integrity constraint violations [14] with exploratory data analysis, in order to
gradually clean the dataset. Specifically, given a query and a dirty dataset, we use two levels of processing to
correctly execute the query by taking into consideration the existence of inconsistencies in the underlying dataset.
In the first level, we map the query to a logical plan which comprises both query and cleaning operators. The
logical plan takes into consideration the type of the query (e.g, Select Project, Join), and the constraints that the
dataset needs to satisfy in order to optimally place the cleaning operators inside the query plan. Then, in the
second level, the logical plan is executed by applying the cleaning tasks that are needed. To execute the plan, we
employ a query answer relaxation technique, which enhances the answer of the query with extra information
from the dataset in order to detect violations based on the output of each query operator that is affected by a
constraint. Then, given the detected violations, we transform the query answer into a probabilistic answer by
replacing each erroneous value with the set of values that represent candidate fixes for that value. In addition, we
accompany each candidate value with the corresponding probability of being the correct value of the erroneous
cell. After cleaning each query answer, the system extracts the changes made to the erroneous tuples, and updates
the original dataset accordingly. By applying the changes after each query, we can gradually clean the dataset.

3.1 Logical-level Optimizations

In the first stage, the system translates the query into a logical plan involving query and cleaning operators. The
cleaning operators are update operators which either operate over the underlying dataset, or over the condition
that exists below them in the query plan. To place the cleaning operators, the system determines whether it is
more efficient and/or accurate to integrate the query with the cleaning task, and partially clean the dataset, or to
fully clean the dataset before executing the query. To decide on the cleaning strategy, we employ a cost model
which exploits statistics regarding the type and frequency of the violations. To optimally place the cleaning
operators, the system examines: a) the approximate number of violations that exist in the dataset, and b) how the
query operators overlap with the erroneous attributes. Thus, the statistics provide an estimate of the overhead that
the cleaning task adds to each query, and determine the optimal placement of the cleaning operations.

At the logical plan level, we apply a set of optimizations by pruning unnecessary cleaning checks, and
unnecessary query operators. To apply the optimizations, we analyze how the input constraints that must hold in
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the dataset affect the query result. For example, it is redundant to apply a cleaning task in the case of a query
that contains a filter condition over a clean attribute. Therefore, the logical plan will select the optimal execution
strategy of the queries given the cleaning tasks that need to be applied.

3.2 Relaxed query execution

In the final stage, the system executes the optimized logical plan, and computes a correct query answer by
applying the cleaning tasks at query execution. Regardless of the type of query, we need to enhance the query
answer with extra tuples from the dataset to allow the detection and repairing of errors. Executing queries over
dirty data might result in wrong query answers [19]; a tuple might erroneously satisfy a query and appear in the
query answer due to a dirty value, or similarly, it might be missing from the query answer due to a dirty value.

To provide correct answers over dirty data, we employ query answer relaxation [30, 36]. Query relaxation
has been used successfully to address the problem of queries returning no results, or to facilitate query processing
over incomplete databases. We define and employ a novel query answer relaxation technique in the context of
querying dirty data, which enhances the query answer with extra tuples from the dataset that allow the detection
of violations of integrity constraints. Then, given the detected errors, we propose candidate fixes by providing
probabilistic answers [39]. The probabilities are computed based on the frequency that each candidate value
appears - other schemes to infer the probabilities are also applicable. The purpose of the query answer relaxation
mechanism is to enhance the query answer with the required information from the dataset, in order to allow
correct answers to the queries.

To capture errors in query results, we first compute the dirty query answer, and then relax it by bringing extra
tuples from the dataset; the extra tuples, together with the tuples of the query answer represent the candidates for
satisfying the query. The set of extra tuples consist of tuples which are similar to the ones belonging to the query
answer; the similarity depends on the correlation that the tuples have with respect to the integrity constraints that
hold in the dataset [41]. After enhancing the query answer with the extra tuples, the cleaning process detects for
violations and computes the set of candidate values for each erroneous cell together with their probabilities.

By integrating data cleaning with query execution using the aforementioned two-level process, we minimize
the cost of data preparation; we efficiently clean only the part of the dataset that is accessed by the queries. In
addition, by providing probabilistic answers for the erroneous entities, we reduce human effort, since users can
select the correct values among the set of candidate values over the answers of the queries.

4 Adapting Data Access Paths to Workload and Resources

Apart from loading and cleaning decisions, as data-centric applications become more complex, users face
new challenges when exploring data, which are magnified with the ever-increasing data volumes. Data access
methods have to dynamically adapt to evolving workloads and take advantage of relaxed accuracy requirements.
Furthermore, query processing systems must be knowledgeable of the available resources and maximize resource
utilization thereby reduce waste. To address the variety of workloads we design different adaptive access path
selection approaches depending on application precision requirements.
Adaptive indexing over raw data. To achieve efficient data access for applications requiring precise results
despite dynamic workloads we propose adaptive indexing for in-situ query processing. We use state-of-the-art in-
situ query processing approaches to minimize data-to-query time. We introduce a fine-grained logical partitioning
scheme and combine it with a lightweight indexing strategy to provide near-optimal raw data access with minimal
overhead in terms of execution time and memory footprint. To reduce the index selection overhead we propose an
adaptive technique for on-the-fly partition and index selection using an online randomized algorithm.
Adapt access paths to approximation. Apart from adapting to data distribution, we need to enable scaling of
access paths despite ever-increasing datasets. We take advantage of the relaxed precision requirements posed by
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data scientists who tolerate imprecise answers for better query performance [11]. Existing approaches [2, 8], either
require full a priori knowledge of the workload to generate the required approximate data structures or improve
performance through minimizing data access at query time. We design and demonstrate an adaptive approach
which generates synopses (summaries of the data, such as samples, sketches, and histograms) as a by-product of
query execution and re-uses them for subsequent queries. It dynamically decides upon synopsis materialization
and maintenance while being robust to workload and storage budget changes. To support interactive query
performance for ever increasing datasets and dynamic exploratory workloads there is need for relaxed precision
guarantees which enable the use of approximate data structures and reduce the size of stored and processed data.

These aforementioned observations serve as a platform to show the following key insights: i) Taking advantage
of data characteristics in files can complement in-situ query processing approaches by building data distribution
conscious access paths. Data properties such as ordering or clustering enable the construction of access paths
spanning subsets of a dataset thereby reducing the cost of tuning and storage, while minimizing data access costs
and further reducing the data-to-insight time. ii) Ever-increasing datasets make precise access paths prohibitively
expensive to build and store. Similarly, using data synopses as a drop-in replacement for indexes limits their
benefits. On the contrary, integrating synopses as a first-class citizen in query optimization and materializing
synopses during query execution and re-using them across queries improves scalability and reduces preprocessing.
iii) Static tuning decisions can be suboptimal in the presence of shifting exploratory workloads. On the other
hand, adapting access paths online, according to the workload while adhering to accuracy requirements is key to
provide high query performance in the presence of workload changes.

4.1 Adaptive indexing over Raw data files

Executing queries over raw data files, despite reducing cost through avoiding the initial data loading step, it
enables the access of data files by multiple applications thus it prohibits the physical manipulation of data
files. Building efficient data access paths requires physical re-organization of files to reduce random accesses
during query execution. To overcome this constraint we propose an online partitioning and indexing tuner for
in-situ query processing which when plugged into a raw data query engine, offers fast queries over raw data
files. The tuner reduces data access cost by: i) logically partitioning a raw dataset to virtually break it into
smaller manageable chunks without physical restructuring, and ii) choosing appropriate indexing strategies
over each logical partition to provide efficient data access. The tuner dynamically adapts the partitioning and
indexing scheme as a by-product of query execution. It continuously collects information regarding the values
and access frequency of queried attributes at runtime. Based on this information, it uses a randomized online
algorithm to define the logical partitions. For each logical partition, the tuner estimates the cost-benefit of building
partition-local index structures considering both approximate membership indexing (i.e., Bloom filters and zone
maps) and full indexing (i.e., bitmaps and B + trees). By allowing fine-grained indexing decisions our proposal
makes the decision of the index shape at the level of each partition rather than the overall relation. This has two
positive side-effects. First, there is no costly investment for indexing that might prove unnecessary. Second, any
indexing effort is tailored to the needs of data accesses on the corresponding range of the dataset.

4.2 Adapting to Relaxed Precision

State-of-the-art AQP engines are classified into two categories, depending on the assumptions they make about
the query workload. Offline AQP engines (e.g. BlinkDB [2] and STRAT [8]) target applications where the query
workload is known a priori, e.g., aggregate dashboards that compute summaries over a few fixed columns. Offline
AQP engines analyse the expected workload to identify the optimal set of synopses that should be generated
to provide fast responses to the queries at hand, subject to a predefined storage budget and error tolerance
specification. Since this analysis is time-consuming, both due to the computational complexity of the analysis
task, as well as the I/O overhead in generating the synopses, AQP engines perform the analysis offline, each time
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the query workload or the storage budget changes. Offline AQP engines substantially improve query execution
time under predictable query workloads, however their need for a priori knowledge of the queries makes them
unsuitable for unpredictable workloads. To address unpredictable workloads online AQP techniques introduce
approximation at query runtime. State-of-the-art online AQP engines achieve this by introducing samplers during
query execution. By reducing the input tuples, samplers improve performance of the operators higher in the query
plan. In this way, online AQP techniques can boost unknown query workloads. However, query-time sampling is
limited in the scope of a single query, as the generated samples are not constructed with the purpose of reuse
across queries – they are specific to the query, and are not saved. Thus, online AQP engines offer substantially
constrained performance gains compared to their offline counterparts for predictable workloads.

In summary, all state-of-the-art AQP engines sacrifice either generality or performance, as they make static,
design-time decisions based on a fixed set of assumptions about the query workload and resources. However,
modern data analytics workloads are complex, far from homogeneous, and often contains a mix of queries that
vary widely with respect to the degree of approximability [2].

We design a self-tuning, adaptive, online AQP engine. Our design builds upon ideas from (adaptive) database
systems, such as intermediate result materialization, query subsumption, materialized view tuning and index
tuning, and adapts these in the context of AQP, while also enabling a combination and extension of the benefits of
both offline and online approximation engines. We extend the ideas of online AQP by injecting approximation
operators in the query plan, and enabling a broad range of queries over unpredictable workloads. By performing
online materialization of synopses as a byproduct of query execution, we provide performance on-par with
offline AQP engines under predictable workloads, yet without an expensive offline preparation phase. The main
components of our system are the enhanced optimizer which enables the use of approximate operators and
matches existing synopses, and the online tuner which decides on the materialization of intermediate results.
Integrating approximation to optimizer. Our system extends a query optimizer with just-in-time approximation
capabilities. The optimizer injects synopses operators into the query plan before every aggregation. Intuitively,
this represents the potential to approximate at that location. Subsequently, by using transformation rules, it pushes
the synopses operators closer to the raw input. The alternatives generated by rules have no worse accuracy but
can have better performance. The optimizer calculates the cost of each plan using data statistics to decide a plan
that adheres to user accuracy requirements and improves performance. Based on the generated query plans, the
optimizer compares whether any of the already materialized synopses may be re-used. To be re-used a synopsis
must (i) satisfy the accuracy guarantees requirements, and (ii) subsume the required set of data. If no existing
synopses are candidates for re-use, the optimizer interacts with the online tuner to decide whether to materialize
intermediate results.
Online Tuner. The optimizer feeds every prospective approximate plan to the online tuner which stores execution
metadata considering historical plans (e.g., appearance frequency, execution cost). Based on the historical plans,
the tuner decides whether to introduce a materializer operator to generate a summary. The tuner’s decisions are
driven by a cost:utility model, which leads to a formalization of the task as an optimization challenge. As the
optimizer already ensures the precision of the query results, the decisions made by the tuner affect solely query
performance, and not the required accuracy. Finally, the tuner keeps track of the available storage budget and
decides on storage location and replication for a materialized sub-plan. The tuner based on the available storage
and the cost:benefit model decides whether and which synopses to be stored or evicted.

By using approximate query processing one allows for low latency in return for relaxed precision. However,
the ever-increasing data sizes introduce challenges to such systems. Specifically, offine approximation approaches
in order to offer low response time, they require long pre-processing, full future workload knowledge and have
high storage requirements. On the other hand, online approximation approaches although have no preprocessing,
storage requirements and are workload-agnostic they have small performance gains. Our approach adaptively
combines the two approaches and trades precision and storage for performance at runtime offering the best of
both worlds.
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5 Related Work

Our philosophy has been inspired by the omnipresent work on minimizing data-to-insight time. In-situ processing
approaches, such as the work by Idreos et al. [22] propose adaptive and incremental loading techniques in order
to eliminate the preparation phase before query execution. NoDB [6] advances this idea by making raw files first-
class citizens. NoDB introduces data structures to adaptively index and cache raw files, tightly integrates adaptive
loads, while implementing in-situ access into a modern DBMS. In the context of processing heterogeneous raw
data, Spark and Hadoop-based systems [1, 42] operate over raw data, while also supporting heterogeneous data
formats. RAW [27] allows queries over heterogeneous raw files using code generation. ViDa [26] envisions
effortlessly abstracting data out of its form and manipulating it regardless of its structure, in a uniform way.

Work on reducing the data cleaning cost by automating and optimizing common cleaning tasks significantly
reduces human effort and minimizes the preprocessing cost. BigDansing [28] is a scale-out data cleaning system
which addresses performance, and ease-of-use issues in the presence of duplicates and integrity constraint
violations. Tamr, the commercial version of Data Tamer [38], focuses on duplicate elimination by employing
blocking and classification techniques in order to efficiently detect and eliminate duplicate pairs. In the context of
adaptive and ad-hoc cleaning QuERy [7] intermingles duplicate elimination with Select Project, and Join queries
in order to clean only the data that is useful for the queries. Transform-Data-by-Example [20] addresses the
problem of allowing on-the-fly transformations - a crucial part of data preparation.

Work on adaptive tuning focuses on incrementally refining indexes while processing queries. Database
Cracking approaches [23] operate over column-stores and incrementally sort the index column according to
the incoming workload, thus reducing memory access. COLT [34] continuously monitors the workload and
periodically creates new indexes and/or drops unused ones by adding an overhead to each query.

A plethora of research topics on approximate query processing is also relevant to our work. Offline sampling
strategies [2, 8] focus on computing the best set of uniform and stratified samples given a storage budget by
assuming some a priori knowledge of the workload. Online sampling approaches such as Quickr [24] take
samples during query execution by injecting samplers inside the query plan.

6 Summary and Next Steps

The constantly changing needs for efficient data analytics combined with the ever growing datasets, require a
system design which is flexible, dynamic and embraces adaptivity. We present techniques which streamline
processes that constitute bottlenecks in data analysis and reduce the overall data-to-insight time. To remove
data loading, we introduce a system that adapts to data heterogeneity and enables queries on variety of data
formats. To reduce data cleaning overheads, we overlap cleaning operations with query execution and finally, we
introduce physical tuning approaches which take advantage of data distribution as well as the reduced precision
requirements of modern analytics applications.
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